Research article

An a priori error analysis of the porous thermoelastic Coleman–Gurtin model

  • Published: 25 December 2025
  • MSC : 65M60, 74F05, 74K10, 74F10, 65M15, 65M12

  • In this work, we study, from the numerical point of view, a poro-thermoelastic problem where the heat conduction is modeled by using the Coleman–Gurtin law. This is written as a linear system of partial differential equations written in terms of the displacements, the porosity (or volume fraction), and the temperature. Then, we introduce a fully discrete approximation of a weak form of the thermomechanical problem, based on the classical finite element method to approximate the spatial variable and the implicit Euler scheme to discretize the time derivatives. We prove a discrete stability property and a main a priori error estimates result, which allows us to conclude the linear convergence of the approximations under suitable additional regularity. Finally, we present some numerical simulations to demonstrate the convergence and the decay of the discrete energy.

    Citation: Noelia Bazarra, José R. Fernández, Víctor Prego, Ramón Quintanilla. An a priori error analysis of the porous thermoelastic Coleman–Gurtin model[J]. AIMS Mathematics, 2025, 10(12): 30460-30477. doi: 10.3934/math.20251336

    Related Papers:

  • In this work, we study, from the numerical point of view, a poro-thermoelastic problem where the heat conduction is modeled by using the Coleman–Gurtin law. This is written as a linear system of partial differential equations written in terms of the displacements, the porosity (or volume fraction), and the temperature. Then, we introduce a fully discrete approximation of a weak form of the thermomechanical problem, based on the classical finite element method to approximate the spatial variable and the implicit Euler scheme to discretize the time derivatives. We prove a discrete stability property and a main a priori error estimates result, which allows us to conclude the linear convergence of the approximations under suitable additional regularity. Finally, we present some numerical simulations to demonstrate the convergence and the decay of the discrete energy.



    加载中


    [1] R. B. Hetnarski, J. Ignaczak, Generalized thermoelasticity, J. Thermal Stresses, 22 (1999), 451–476. https://doi.org/10.1080/014957399280832 doi: 10.1080/014957399280832
    [2] R. B. Hetnarski, J. Ignaczak, Nonclassical dynamic thermoelasticity, Int. J. Solids Struct., 37 (2000), 215–224. https://doi.org/10.1016/S0020-7683(99)00089-X doi: 10.1016/S0020-7683(99)00089-X
    [3] I. S. Sokolnikoff, R. M. Redheffer, Mathematics of physics and modern engineering, McGraw-Hill Inc., New York, 1966.
    [4] C. Cattaneo, On a form of heat equation which eliminates the paradox of instantenous propagation, C. R. Acad. Sci. Paris, 247 (1958), 431–433.
    [5] H. W. Lord, Y. Shulman, A generalized dynamical theory of thermoelasticity, J. Mech. Phys. Solids, 15 (1967), 299–309. https://doi.org/10.1016/0022-5096(67)90024-5 doi: 10.1016/0022-5096(67)90024-5
    [6] A. E. Green, K. A. Lindsay, Thermoelasticity, J. Elasticity, 2 (1972), 1–7. https://doi.org/10.1007/BF00045689 doi: 10.1007/BF00045689
    [7] A. E. Green, P. M. Naghdi, A unified procedure for construction of theories of deformable media. Ⅰ. Classical continuum physics, Proc. R. Soc. London A, 448 (1995), 335–356. https://doi.org/10.1098/rspa.1995.0020 doi: 10.1098/rspa.1995.0020
    [8] A. E. Green, P. M. Naghdi, A unified procedure for construction of theories of deformable media. Ⅱ. Generalized continua, Proc. R. Soc. London A, 448 (1995), 357–377. https://doi.org/10.1098/rspa.1995.0021 doi: 10.1098/rspa.1995.0021
    [9] A. E. Green, P. M. Naghdi, A unified procedure for construction of theories of deformable media. Ⅲ. Mixtures of interacting continua, Proc. R. Soc. London A, 448 (1995), 379–388. https://doi.org/10.1098/rspa.1995.0022 doi: 10.1098/rspa.1995.0022
    [10] M. Renardy, W. J. Hrusa, J. A. Nohel, Mathematical problems in viscoelasticity, Pitman Monographs and Surveys in Pure and Applied Mathematics, Vol. 35, Longman Scientific and Technical, New York, 1987.
    [11] R. Quintanilla, Moore-Gibson-Thompson thermoelasticity, Math. Mech. Solids, 24 (2019), 4020–4031. https://doi.org/10.1177/1081286519862007 doi: 10.1177/1081286519862007
    [12] D. Ieşan, A gradient theory of porous elastic solids, ZAMM, 100 (2020), e201900241. https://doi.org/10.1002/zamm.201900241 doi: 10.1002/zamm.201900241
    [13] D. Ieşan, A theory of porous thermoelastic solids with the second gradient of temperature, J. Elast., 157 (2025), 82. https://doi.org/10.1007/s10659-025-10177-x doi: 10.1007/s10659-025-10177-x
    [14] D. Ieşan, R. Quintanilla, A second gradient theory of thermoelasticity, J. Elast., 154 (2023), 629–643. https://doi.org/10.1007/s10659-023-10020-1 doi: 10.1007/s10659-023-10020-1
    [15] M. E. Gurtin, A. C. Pipkin, A general theory of heat conduction with finite wave speeds, Arch. Rat. Mech. Anal., 31 (1968), 113–126. https://doi.org/10.1007/BF00281373 doi: 10.1007/BF00281373
    [16] M. E. Gurtin, Time-reversal and symmetry in the thermodynamics of materials with memory, Arch. Rational Mech. Anal., 44 (1972), 387–399. https://doi.org/10.1007/BF00249968 doi: 10.1007/BF00249968
    [17] P. J. Chen, M. E. Gurtin, On a theory of heat conduction involving two temperatures, Z. Angew. Math. Phys., 19 (1968), 614–627. https://doi.org/10.1007/BF01594969 doi: 10.1007/BF01594969
    [18] M. Conti, V. Pata, R. Quintanilla, Thermoelasticity of Moore-Gibson-Thompson type with history dependence in the temperature, Asymptotic Anal., 120 (2020), 1–21. https://doi.org/10.3233/ASY-191576 doi: 10.3233/ASY-191576
    [19] A. C. Eringen, Microcontinuum field theories. Ⅰ. Foundations and solids, Springer-Verlag, New York, 1999. https://doi.org/10.1007/978-1-4612-0555-5
    [20] D. Ieşan, Thermoelastic models of continua, Solid Mechanics and its Applications, Vol. 118, Kluwer Academic Publishers Group, Dordrecht, 2004. https://doi.org/10.1007/978-1-4020-2310-1
    [21] S. C. Cowin, The viscoelastic behavior of linear elastic materials with voids, J. Elasticity, 15 (1985), 185–191. https://doi.org/10.1007/BF00041992 doi: 10.1007/BF00041992
    [22] S. C. Cowin, J. W. Nunziato, Linear elastic materials with voids, J. Elasticity, 13 (1983), 125–147. https://doi.org/10.1007/BF00041230 doi: 10.1007/BF00041230
    [23] J. W. Nunziato, S. C. Cowin, A nonlinear theory of elastic materials with voids, Arch. Rational Mech. Anal., 72 (1979), 175–201. https://doi.org/10.1007/BF00249363 doi: 10.1007/BF00249363
    [24] N. Bazarra, J. R. Fernández, R. Quintanilla, Numerical approximation of some poro-elastic problems with MGT-type dissipation mechanisms, Appl. Numer. Math., 177 (2022), 123–136. https://doi.org/10.1016/j.apnum.2022.03.008 doi: 10.1016/j.apnum.2022.03.008
    [25] S. De Cicco, D. Ieşan, On the theory of thermoelastic materials with a double porosity structure, J. Thermal Stresses, 44 (2021), 1514–1533. https://doi.org/10.1080/01495739.2021.1994493 doi: 10.1080/01495739.2021.1994493
    [26] J. R. Fernández, M. Masid, A porous thermoelastic problem: an a priori error analysis and computational experiments, Appl. Math. Comput., 305 (2017), 117–135. https://doi.org/10.1016/j.amc.2017.01.070 doi: 10.1016/j.amc.2017.01.070
    [27] J. Baldonedo, J. R. Fernández, R. Quintanilla, On the time decay for the MGT-type porosity problems, Discrete Contin. Dyn. Syst. Ser. S, 15 (2022), 1941–1955. https://doi.org/10.3934/dcdss.2022009 doi: 10.3934/dcdss.2022009
    [28] B. Feng, T. A. Apalara, Optimal decay for a porous elasticity system with memory, J. Math. Anal. Appl., 470 (2019), 1108–1128. https://doi.org/10.1016/j.jmaa.2018.10.052 doi: 10.1016/j.jmaa.2018.10.052
    [29] D. Ieşan, R. Quintanilla, Viscoelastic materials with a double porosity structure, C. R. Mécanique, 347 (2019), 124–140. https://doi.org/10.1016/j.crme.2018.12.004 doi: 10.1016/j.crme.2018.12.004
    [30] A. Miranville, R. Quintanilla, Exponential decay in one-dimensional type Ⅲ thermoelasticity with voids, Appl. Math. Lett., 94 (2019), 30–37. https://doi.org/10.1016/j.aml.2019.02.014 doi: 10.1016/j.aml.2019.02.014
    [31] A. M. Al-Mahdi, Asymptotic behavior of a thermoelastic system with Coleman–Gurtin's law in porous media problems, J. Anal., 33 (2025), 2739–2760. https://doi.org/10.1007/s41478-025-00933-6 doi: 10.1007/s41478-025-00933-6
    [32] M. S. Alves, R. N. Monteiro, Stability of non-classical thermoelasticity mixture problems, Commun. Pure Appl. Anal., 19 (2020), 4879–4898. https://doi.org/10.3934/cpaa.2020216 doi: 10.3934/cpaa.2020216
    [33] P. G. Ciarlet, The finite element method for elliptic problems, Classics in Applied Mathematics, SIAM: Society for Industrial and Applied Mathematics, 2002. https://doi.org/10.1137/1.9780898719208
    [34] M. Campo, J. R. Fernández, K. L. Kuttler, M. Shillor, J. M. Viaño, Numerical analysis and simulations of a dynamic frictionless contact problem with damage, Comput. Methods Appl. Mech. Eng., 196 (2006), 476–488. https://doi.org/10.1016/j.cma.2006.05.006 doi: 10.1016/j.cma.2006.05.006
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(82) PDF downloads(10) Cited by(0)

Article outline

Figures and Tables

Figures(3)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog