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Abstract: In this work, we study, from the numerical point of view, a poro-thermoelastic problem
where the heat conduction is modeled by using the Coleman—Gurtin law. This is written as a linear
system of partial differential equations written in terms of the displacements, the porosity (or volume
fraction), and the temperature. Then, we introduce a fully discrete approximation of a weak form
of the thermomechanical problem, based on the classical finite element method to approximate the
spatial variable and the implicit Euler scheme to discretize the time derivatives. We prove a discrete
stability property and a main a priori error estimates result, which allows us to conclude the linear
convergence of the approximations under suitable additional regularity. Finally, we present some
numerical simulations to demonstrate the convergence and the decay of the discrete energy.
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1. Introduction

It is known that, when considering a thermoelastic problem, the usual way to determine the heat
conduction is through the linear relationship between heat flux and temperature gradient (attributed to
Fourier, also of Type I by Green and Naghdi). Unfortunately, this hypothesis has some theoretical and
empirical consequences that are not well accepted by the scientific community. Some of these are:

(1) It does not fit well with the description of heat conduction in low-temperature processes [1,2].
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(2) The mathematical study of this hypothesis allows us to demonstrate the instantaneous propagation
of thermal waves [3]. This fact is not compatible with the hypothesis of maximum bounded
velocity and, consequently, it is not compatible with the principle of causality.

(3) Considering only the first order of temperature development, it does not appear to be adequate to
describe the effects of heat over long distances.

(4) It also fails to take into account the possible effects on the past history of the solid or fluid.

These difficulties have naturally motivated many researchers to explore alternatives to Fourier’s
classical description of heat conduction. One of the best-known examples is the Cattaneo—-Maxwell
proposal [4], which successfully addresses the second issue by introducing a dissipative hyperbolic
equation for heat flux. This idea gave rise to two foundational theories of thermoelasticity: the
Lord—Shulman model [5] and the Green—Lindsay model [6].

Green and Naghdi also developed an alternative axiomatic framework for continuum
thermodynamics [7-9]. Besides the previously mentioned Type I theory, they introduced Type II and
Type III formulations. Type II again leads to a hyperbolic (non-dissipative) heat equation, whereas
Type III encompasses Types I and II as limiting cases. However, the heat equation associated with
Type 111 is parabolic and therefore subject to the same difficulties outlined in point 2 [10].

For this reason, following a line of thought parallel to the Cattaneo—Maxwell refinement of
Fourier’s law, a relaxation parameter can be incorporated, leading to the Moore—Gibson—-Thompson
equation [11], which is once again hyperbolic. It is also worth highlighting the substantial contributions
of Dorin Iesan (see, for example, [12—-14]), who, building on the Green—Naghdi axioms, proposed
several thermoelastic theories in which the heat equation includes higher-order spatial derivatives,
thereby addressing the third difficulty.

Regarding the last point, it is important to recall that, between 1965 and 1975, several thermoelastic
theories were developed in which the concept of material history played a central role. Among them,
we may cite the proposal of Gurtin and Pipkin [15], that of Gurtin [16], and the theory introduced by
Coleman and Gurtin [17]. More recently, the work [18] attempted to incorporate a history-dependent
structure into the Moore—Gibson—Thompson equation, although it ultimately reconnects with Gurtin’s
earlier proposal. In this paper, we focus specifically on the formulation by Coleman and Gurtin.

On the other hand, it is widely recognized that classical elasticity theory is insufficient for describing
the full behavior of real materials, as it does not account for phenomena such as microstructure or
material mixtures. For this reason, during the second half of the last century, several generalized
theories of materials were proposed to incorporate these effects, thereby extending the classical
framework. Among the most notable contributions are those of Eringen [19] and Iesan [20]. Terms
such as micropolarity and microstretch are commonly used to refer to some of these generalizations.
One particularly relevant class is that of porous materials or materials with voids.

The key idea behind these models is that the elastic medium contains pores distributed throughout
its structure. As a consequence, describing the material requires not only the classical deformation
variables but also the volume fraction, which quantifies the amount of solid present at each material
point. This theory was introduced by Cowin and Nunziato [21-23] and has been widely applied to the
study of biological tissues, construction materials, volcanic rocks, and related media. It is also worth
mentioning that, from a purely mathematical standpoint, the governing equations for porous materials
coincide with those of elastic materials with stretch.
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These models have attracted significant attention in recent years [24—26]. In particular, the analysis
of solution decay in the one-dimensional setting, under various dissipation mechanisms, has been
the subject of sustained research over the past two decades [27-30]. We specifically highlight [31],
where the system of equations considered in this work was studied analytically, establishing results on
existence and decay of solutions.

In this article, we study numerical solutions of the system of equations from both mechanical and
thermal perspectives. From the mechanical standpoint, the analysis is carried out within the framework
of porous elastic materials, while from the thermal viewpoint, we adopt the Coleman—QGurtin theory.
To the best of our knowledge, this work is the first to address the numerical approximation of
Coleman—Gurtin-type poroelasticity. The main objective is to quantify the error introduced by the
spatial discretization using the finite element method and by the temporal discretization of the time
derivatives via the backward Euler scheme. To this end, we establish a discrete stability property
and derive a priori error estimates. Finally, we remark that the Coleman—Gurtin model has been
employed in mathematical physics to analyze complex systems such as porous materials, microbeams,
and laminated structures.

The paper is organized as follows: In Section 2 we present the weak formulation of the one-
dimensional poro-thermoelastic problem and recall an existence and uniqueness result, together with a
discussion of the exponential decay of solutions. Section 3 introduces the fully discrete approximation,
where the spatial variable is discretized by the finite element method and the time derivatives by the
backward Euler scheme. We also establish a discrete stability property and provide an a priori error
analysis, which yields linear convergence under suitable additional regularity assumptions. Section 4
contains numerical simulations illustrating the accuracy of the proposed approximations and the decay
of the discrete energy. Finally, we present some conclusions in Section 5.

2. The poro-thermoelastic model

In what follows, we present the porous thermoelastic problem obtained by using the Coleman—
Gurtin model. Therefore, let [0, £], £ > 0 be the poro-thermoelastic bar, and denote by x € [0, {] and
t € [0, ), the spatial and time variables, respectively.

Our aim in this paper is to solve the following thermomechanical problem, which is written in terms
of the transverse displacement of the solid elastic material u, the volume fraction ¢, and the temperature
difference 6.

Find the displacements u : [0, ] X [0, 00) — R, the volume fraction ¢ : [0, £] X [0, 00) — R, and the
temperature 6 : [0, €] X [0, 00) — R such that

Pty — pityy = by + B8, =0 in (0,£) x (0, ), 2.1)
Ty — dd +bu, + €6 —mh =0 in (0,0)x (0, c0), (2.2)
016, - ﬁl[(l — @), + @ f ()0t — 8)ds| + Pu +mp, =0 in (0,0)x(0,00), (2.3)
1 0
u(x,0) = up(x), u(x,0) =vo(x) fora.e. xe(0,?), 2.4)
$(x,0) = go(x),  ¢(x,0) = Yo(x) forae. x € (0,0), (2.5)
6(x,0) = 6y(x) forae. x € (0,0), (2.6)
8(x,) =0 forae xe (0,0, <0, 2.7)
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u(x,t) = ¢(x,t) =0(x,t) =0 forx=0,Cand >0, (2.8)

where p, J, u, b, d, m, py, &, b, B, and B are constitutive coefficients. In this case, in order to have
couplings among the equations, we need to assume that 5 and m are different from zero, although we
do not have any restriction on their sign.
From condition (2.7), we can conclude that the memory vanishes at the initial condition. So, in order
to simplify the problem, we will include it into the integral term, leading to the following problem:
Find the displacements u : [0, {] X [0, 00) — R, the volume fraction ¢ : [0, ] X [0, 00) — R, and the
temperature 6 : [0, ] X [0, c0) — R such that

Pty = ptey = b + 6, =0 in (0, £) x (0, 00),
Jy —dpy +bu, +EH—mh=0 in (0,€) X (0, ),

pi6; - /31[(1 -~ @ +a f §()0,,(t — $)ds| + i, + mg, =0 in (0,0)x (0,00),
1 0

u(x,0) = up(x), u,(x,0)=vy(x) forae. xe(0,70),

¢(x,0) = go(x),  ¢:(x,0) = Yo(x) forae. x € (0,0),

0(x,0) = 0y(x) fora.e. x € (0,7),

u(x,t) = ¢(x,t) =0(x,t) =0 forx=0,andt > 0.

Finally, making a change of variable within the integral terms, the previous problem can be written
in the following form:

Find the displacements u : [0, {] X [0, 00) — R, the volume fraction ¢ : [0, £] X [0, 00) — R, and the
temperature 6 : [0, ] X [0, c0) — R such that

PUy — iy, — b, + 66, =0 1in  (0,£) X (0, 00), (2.9)
Ty —dpres +buy +Ed—mO =0 in (0,0) x (0, 00), (2.10)
016; - ﬂi[(l ~ @), + @ f 8(t = $)0.(s) ds| + Bu +mp, =0 in  (0,£)x (0,00), (2.11)
1 0
u(x,0) = up(x), u,(x,0)=vy(x) fora.e. xe(0,90), (2.12)
6(x,0) = do(x), Bi(x,0) = Yo(x) forae. x € (0,0), (2.13)
0(x,0) = 0y(x) fora.e. x € (0,¢), (2.14)
u(x,t) = ¢(x,1) =6(x,t) =0 forx=0,fand > 0. (2.15)

In the rest of this paper, if we denote k(s) = —ag,(s), we will assume that

p>0, u>0, ac(,1), J>0, d>0 &¢>0, p;>0 B >0, ué>b*, (2.16)

the relaxation function satisfies g(co0) = 0, 2.17)
k€ CY0,00), k(s)>0, «s)<O0 forevery s e (0,c), (2.18)
and f k(s)ds, f k(s)sds > 0, (2.19)

0 0
there exists a constant v > 0 such that x,(s) < —vk(s) ¥s > 0 and x(0) < oo. (2.20)

The following existence and uniqueness result can be proved after the arguments used in [32].
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Theorem 2.1. Assume that the constitutive coefficients and the relaxation kernel g satisfy
conditions (2.16)—(2.20). Then, problem (2.9)—(2.15) has a unique solution with the regularity

u, ¢ € C([0, 00); L*(0, 6)) N C'([0, 00); Hy (0, 0)),
6 € C'([0, 00); LX(0, £)) N C([0, %0); H}(0, 0)).

J
Moreover, if we also suppose that the stability number 2 = L_ y equals to zero, then the semigroup

generated by the operator associated to problem (2.9)—(2.15) is exponentially stable.

In the rest of this section, we obtain the variational formulation of problem (2.9)—(2.15). Let us
define the variational spaces Y = L?(0,£) and V = Hé (0, ¢) and consider a finite interval of time [0, T'],
T > 0 being the final time, where we will study the deformation of the thermoelastic bar. Moreover,
let us denote by (-,-) and || - ||, the usual inner product and norm, respectively, given in the space Y.

Therefore, applying integration by parts and using the boundary conditions (2.15), it leads to the
following weak problem written in terms of the velocity field v = u,, the volume fraction speed ¥ = ¢,,
and the temperature 6.

Find the velocity v : [0,T] — V, the volume fraction speed ¥ : [0,T] — V, and the temperature
0 :10,T] — V such that v(0) = vy, ¥(0) = g, 6(0) = 6y and, for a.e. t € [0, T] and for all w,r,z €V,

PW(0), w) + (1), wy) = b(@(1), w) + B(0(1), w) = 0, (2.21)
JWi(0), 1) + d(p:(1), 1) + b(ux(1), 1) + E(P(1), 1) — m(6(1), 1) = 0, (2.22)

P1(6:(1), 2) + a1 (0(1), 2,) + @2 ( f g(t = 5)0x(s) ds, zx) +Bvx(0),2) + m(Y(1),2) =0, (2.23)
0

where we note that the displacements u and the volume fraction ¢ are recovered by the expressions
f !
u(t) = f v(s)ds +uy, @(t) = f U(s)ds + ¢p. (2.24)
0 0

3. Numerical analysis of the variational problem

In this section, we will numerically study the variational problem (2.21)—(2.24). Therefore, we will
first provide a numerical scheme based on the classical finite element method and the implicit Euler
scheme, and then we will obtain a discrete stability property and a main a priori error estimates result.

3.1. Fully discrete approximation

In this first subsection, we introduce some fully discrete approximations of the variational
problem (2.21)—(2.24). We will proceed doing it by approximating both in space and time. Regarding
the spatial approximation, we construct a uniform partition of the bar by using the nodes @y = 0 <
... < ay = €. Now, we can define the finite element space

Vi ={w" e C(0,£) NV Wi, oy € Pilai aia]) for i =0,...,M —1}.

Here, P ([a;, a;+1]) denotes the space of polynomials with a degree less than or equal to one in the
subinterval [a;, a;;1]. Moreover, let h = a;,; — a; = {/M be the spatial discretization parameter.
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Now, we can define the discrete initial conditions as
= Pluy, Vi=Plvy, ¢h=Plgy, yh=Py 0 =P,

where P" is the finite element interpolation operator over the finite element space V" (see, for
details, [33]).

Regarding the discretization of the time derivatives, let#y = 0 < ... <ty = T be a uniform partition
of the time interval [0,T] with nodes t, = nk forn = 0,...,N and a time step k = t; —ty = T/N.
Furthermore, let w, = w(f,) be the value of a continuous function w(¢) at time ¢t = ¢,, and, for a
sequence {W”}nN:O’ let 5w, = (w, — w,_1)/k be its divided differences.

Applying the well-known implicit Euler scheme, we have the following fully discrete problem:

Find the discrete velocity V'* = {vZk}n 0 C V" the discrete volume fractlon speed Yy = {g[/h"}n 0 C

V", and the discrete temperature 8" = (0"} V" such that vi* = vi, it =y, 60F = 04 and, for
n=1,...,N and for all wh /' e Vi
P&V, W) + (16, )2s W) = BB W) + B(E, )5 w") = 0, 3.1
TSP, ") + d( @) 1) + DUl ) 1) + EEF, 1) — m(@)f, ") = 0, (3.2)
P10, ) + an (01 20 + aa (11, 22) + BWIE)n 2 + m(yl, 2 = 0, (3.3)

where we note that the discrete displacements # and the discrete volume fraction ¢/* are recovered
by the expressions

ka vuf ot =k Y W+ g, (3.4)
j=1

and I"* is an approximation of the integral of the relaxation function defined as
I =k g (0.
=1

It is easy to show that the above fully discrete problem has a unique solution by using the well-
known Lax—Milgram lemma.

3.2. An a priori error analysis

In this subsection, we will show a discrete stability property and a main a priori error estimates
result, from which we will conclude the linear convergence of the approximations.
First, we have the following.

Lemma 3.1. Under the assumptions (2.16)—(2.20), we have the following stability estimates:
VAP + 1O + P + IO + 16)1P < € for n=1,...,N,

where C > 0 is a constant that is independent of the discretization parameters.

Proof. First, we obtain some estimates for the discrete velocity. Taking as a test function w" = v
in (3.1), it leads

POV V) + (), 0190 =BG Vi) + B ) = 0
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Taking into account the estimates

pOVIE V) > 2k[nv”knz — v, 1P,
() 0490 = LI = Nk )P

DI ), VO < BAIB)AP + VP,

it follows that

LR = ] + 2 [P = 16aE )R] + BO i) < BA@OIP + D). (3.5)

Now, we proceed with the estimates for the volume fraction speed. By using as a test function
' = ¢ in (3.2), we have

JOY "y + AP, W) + DI 05 + E@, W) — m(@*, y™) = 0

Keeping in mind the estimates

J@w ) = 2k[nwz"u — 1P,

d
A@ W0 = S [P = 1 7],
EQ W = S [I0IP ~ 10l ],

D ) 2 BOEYIE + 1),
@y <m0 + W)

we obtain the following estimates:

J d & )
Sl = P |+ (IR = DR ] + o I = 11 1P

(3.6)
< C(IP + 1P + [1212).

Finally, we derive the estimates for the temperature. Taking as a test function 7" = "% in (3.3), we have
18O, %) + (01 (01, + o (I, (614),) + BVY). %) + m(u, 61%) = 0
Thus, keeping in mind the estimates

k hk 1 1k 1k
pr(60). 6 = {16417 - 1%, 1)

@107, (01,0 = aill@).1,
B 65 = =Bk, (679,

m(, 0 < mllygIP + 162411%),

n’-n

it follows that

;’—,‘([uef;"n — 116 12] = BOKE (01)) + anl@LVP + o (15, (02,) < C(IMP +164P).  (3.7)
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Combining estimates (3.5)—(3.7), we find that

||v’”‘|| 3 IP] + 2 [||(uh’<>x|| —||(un1x||]+%€[nwﬁ’<n — 1P|
[||<¢f:">x|| —||<¢n Dall ]+§[n¢z"n —||¢2’il||2]+ﬂ[nezku — g2, 1P

+a1||<9',:’<)x||2 + oy (1%, (015, )
< CN@EYP + IV + )P + I + 162491).

ail

Multiplying these estimates by k and summing it until n, we have

I+ G + P + 1O + g1 + 116,11
+kZ||(0h")x|| +kz VARCON

<C Z(Hw’“k)xnz VI + G + P + 1641
FCUDMIE + VAR + 1P + AR + 6P,

We observe that

kz (1, @) <skZ||(9h">x|| +Ck2||1hk||
j=1

n J
kz 1P < Ck Z [GONR
j=1 j=1  m=1

where € > 0 is assumed small enough. Thus, using a discrete version of Gronwall’s lemma (see, for
instance, [34]), we conclude the desired stability estimates. O

Now, we provide the numerical analysis of the approximations to problem (2.21)—(2.24) obtained
from the fully discrete problem (3.1)—(3.4). This is summarized in the following.

Theorem 3.1. Let the assumptions (2.16)—(2.20) still hold. Denoting by (u,v, ¢, ¥, ), the solution to
problem (2.21)—(2.24), and by {u'*, vk, g%, "k th} , the solution to problem (3.1)—(3.4), we have

n’n’ n’>7Tn?’>"n

the following a priori error estimates that, for all {w }nN 0 {rZ}nNzo, {ZZ}fLO cvh

hky 2 hk hk2 hk(12 hk 2 hki12
max {IIv = VI + 1t — )l + i = W22+ NG = G412 + 1 = G20 + 116, — 624115 )

Q
==
M=

[”vtj = 6V + llutg; = Su Il + W, = Sl + 1l — 6115 + 116, = 56,11°

j=1
CN 1
h2 h 2
Hlvy = Wil + 1y = I + 10, = 5+ NErr |+ — >[Iy =) = (et =W
j=1
gy - ) - WP+ 16 = 2 = ©1 = 2 DIP] + € max [[1v, = Wi+l — 7P
J J+HL j+l J+1 j+1 0<neN n n n n

h2 2 hy 2 h2 h2 1112
116, = 2P| + C(lvo = VI + o — el + llwro = Wil + ligo — GG + 1160 — 1),
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where we denote by C, a positive constant independent of h and k, but depending on the continuous
solution. Moreover, let || -

lly be the usual norm in the space V, and we represent by Err,, the
approximation error of the integral term given by

Iy n
Err, = f 8t = )0.(5)ds kY g1 (0.
0 =1

Proof. Subtracting the variational equation (2.21) at time ¢ = t, and for a test functionw = w" € V* c V
and the discrete variational equation (3.1), we have, for all w" € V"

(3.8)

p(th - 6vzk’ Wh) + ,U((I/tn - uﬁk)x’ Wﬁ) - b((¢n - ¢zk)xa Wh) +ﬁ((9n - sz)m Wh) =

2

and so, we conclude that

p(th - 6v,h1k, Vn — Vzk) + /l((un - uzk)x’ (Vn - Vzk)x) - b((¢n ¢hk)m Vp — th)
+ﬁ((9n - sz)m Vp — VZk)

= P(Vm - 6‘}2]{’ Vn — Wh) + ﬂ((”n - qu)x’ (Vn - Wh)x) - b((¢n

- ¢Zk)x, Vn — Wh)
+:8((0n - HZk)m Vp — Wh)'

By using the estimates

hk hk 2
POV, = 6V v, = Vi) 2 2k[nv,,—v P = ey = VI 1P
Gty = ), Gty = 5169 = [0, = 0P = Wty = 0,01
DI = G150 v = VI < BB — GNP + v = VIR,
ﬁ((gn - QZk)x’ Vn — Wh) = _ﬁ(gn - ng, (Vn - Wh)x)
it follows that, for all w" € V",

2l = VP = vy = Vi IP] + e = 0P = Nt = 2 )]
+ﬁ((9n - sz)xa Vp — vZk)

< C(Ivin = SVall? + sy = G113, + I1v,

39
= W + v = VM + (et = )P 59
+16, = G + 1l

= GIVP + 6V, = OVIE v, — wh)).

Now, we obtain the error estimates for the volume fraction speed. So, subtracting the variational

equation (2.22) at time ¢ = t, and for a test function r = 7 € V" C V and the discrete variational
equation (3.2), it leads

J(wtn - &phk h) + d((¢n ¢zk)xa rfc) + b((un - qu)x’ rh) + é:((pn - ¢Zk’ rh) - m(gn - sza rh) = 0

and therefore we obtain, for all 7" € V",

J(wtn - &//Zk’ wn - wﬁk) + d((¢n - ¢Zk)x’ (l//n - %k)x) + b((un - uzk)m l//n - ,};k)
+E(n — B — W) — m(6, — O, — Y1)

= J(‘/’tn - &ﬁzk’ wn - rh) + d((¢n - ¢ﬁk)xa (wn - rh)x) + b((un - qu)x’ wn - rh)
+E(n — B — 1) =m0, — O, — 1.
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Taking into account the estimates

J
T@U = 00 = 00 2 W = 01 = s = 0P,
d
d((@n = &) 06, = 56195 2 {1660 = S0P = 1 @umr = 5P|

£~ 914,00, = 600 = 2 (19w = 1A = lgns - 91, P],
D((t = ), 0 — 1) < Bl — 0P + [ty — )P,

we have the following estimates that for all 7* € V",

J d
ﬂ[nwnf— P = Waer = 05 IP |+ 1 = 8P = 1@ = &)1
+oelI6n = I — g - #1511 (3.10)
< C(Igin = Sall® + s = 08Il + s = P11, + 1l = G417 + i = w11
(2t = ulF)IP + 116, — 62412)-

Finally, we will obtain the error estimates for the temperature field. We proceed in a similar way
as in the previous variables. So, we subtract variational equation (2.21) at time ¢ = ¢, and for a test
function z = 7" € V" ¢ V and the discrete variational equation (3.3), and we find that

P1(9m - 69zk’ Zh) + Cyl((en - gzk)x, Zﬁ) +ay (In - I,l:k’ Zz) +ﬁ((vn - vﬁk)x, Zh) + m(l//n - wzk, Zh) = 0
Therefore, it follows that for all 7 € V",

P1(0 = 60, 6, — 0) + @1 (6, — 0%, (B, — 0),) + @y (I, = II%, (6, — 01%),)
BV = Vi), O, = O1F) + m(y, — %, 6, — 01%)
= 1O — 60, 6, = 2") + @1 (6, — 1), (B, — 1)) + e (1, = I, (6, - ).
+B((Vn = Vi), On = 2) + m(Wn — WF, 0, = 2.

We use the estimates

p1(68, = 56,0, ~ 61 > {16, = 17 = 16,1 = 615,11
a1((6, — ), (6, — 019),) = i ll(6, — 02,1,
ﬂ((vn - vﬁk)xa 9n - 921{) = _IB(Vn - VZk’ (Qn - QZk)x)’
ﬁ((vn - Vzk)xa gn - Zh) = _ﬁ(vn - Vﬁk, (gn - Zh)x),
which allow us to obtain

%L[llgn - HZk”z - ”911—1 - Hzlilllz] + Cll”(gn - sz)xllz _ﬁ(vn - Vzk’ (9,, - ezk)x)
< C(Il9m = 60, + 116, = 2115, + 1165 = G411 + b — @ik + v,y = viHIP (G.11)
+||Errn||2 + ”In - Iyillk”2 + 8”(911 - GZk)xllz + (69n - 50};](, gn - Zh)),
where £ > 0 is assumed small enough, Err, was defined in (3.8), and [, is an approximation of the
integral term given by

I, =k Z gn—j(gj)x-
=1
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If we combine estimates (3.9)—(3.11), we find that, for all w", 7, 7" € V",

2ol = VP = vy = V0P 2l = sl = s = o 0P
+—[||wn e R [ o i[nm — 1P = Nl — 815, 1P]
%k[nwn GNP = pnr = EE AP | + CINO = 0P
+ 216 = IF = 16, = €5, 1P|

< C(”Vm = Vall® + ety = St Iy, + Vi = W, + 11vi = VI + 1l — ).
H16, = G311 + 118 = B3P + (v, = 6V v, = wh)
HWim = SYall® + llpin = Sully + Il = 15 + 1hn = G217 + llin — w1
6 = 66,11 + 116, = 215, + NErrlP* + 11, = LI + (66, — 663*, 6, — Zh)).

Multiplying these estimates by k, by induction we have, for all {w/, 7, Z}}'_ c V" x V" x V",

V= VIR 11ty = )P + 0 = WP + b — SE4IP + 118 — S50,
N (N e A
j=1

2 2 hii2 hk)2
< Ck Y (v = SvIP + loagy = Sl + vy = Wil + lhv; = v
j=1
2 2 2 h
iy = WP+ 160; = 4P + 195 = SN + (v — 6V vy = wh)
sy = U + 11y = 6,1 + s = iR, + 1l = 1412+l = WP
2 2 2 2 2
16 = 00,1 + 116 = Z11R, + 1Err|I> + 11 = P4 +116; - %)

+(80; — 66", 0, — 7)) + C(llvo — VAIP + lluto — ufll? + llgro - e
+lio — ShIR + 1160 — O511).

Finally, using the estimates
kZ(évj — 5\/5?" =W ) =, - vhk Vo — wﬁ) + (vg — Vo, V| — w}l’)
+ Z(v, Wi = wh= v = wh),
kZ(&m — Yy = #) = W = W — 1) + (W — 0,0 — 7))
=1

n—1
W= = = W = ),
j=1

k> (60, = 60,0, = ) = (6, — 0%, 6, — ) + (6} — 60,601 — 21

n—1

+ (0= 0,0, -2 = 00 - 20,

J=1

AIMS Mathematics Volume 10, Issue 12, 30460-30477.



30471

n n J
kM= TP < Ch Tk 1 — 0P,
=1 =1 m=1

and a discrete version of Gronwall’s lemma (see, again, [34]), we obtain the desired a priori error
estimates. O

It is worth noting that by applying the error estimates provided in Theorem 3.1, we can analyze the
convergence order of the approximations given in the fully discrete problem (3.1)—(3.4). For instance,
if we assume that

u, ¢ € W([0, T1; L*(0, £)) N C'([0, T1; H*(0, £)),
6 € W>>([0, T1; L0, £)) N C([0, T1; HX(0, £)) N C'([0,T1; V),

then the linear convergence of the approximations can be deduced, that is, there exists a positive
constant such that

hk hk hk hk ik
max {lv, = Vil + e, = ) lly + W = w1+ 1l = 6Tl + 116, = 011} < Ch+ k).

4. Numerical simulations

In this section, we demonstrate, from the numerical point of view, the accuracy of the
approximations and the behavior of the discrete energy by solving some numerical examples. In this
way, the following linear system, derived from problem (3.1)—(3.4) and implemented in MATLAB is
that for all w”, v, 7" € V",

g(vﬁk, W) + k(%) W) = %(vfi’i],wh) — (™ ), W) + D), W)

RO W) + (F s ),
L) AR + BRI ) = T A e ) = B )
_§(¢Z]ip rh) + m(QZk’ rh) + (F2n, rh)’
n—1
P 2) 4 an( 6 2+ k8OO, 2 = EH0E 2 (Y. 00— N6, 2
=1
BV, 2" = m, 2 + (F3, 7).

The numerical scheme was implemented on a 3.2 GHz PC, and we note that a typical run, with
parameters & = k = 0.001, took about 1.62 sec of CPU time.

4.1. First example: numerical convergence

As a simple example, in order to show the accuracy of the approximations, we use the following

data:
521, TZI, p=2, ﬁ:l, J=1, C¥1=0.5, 0220.5,

p=2 d=1, pi=1, &=2, b=1, m=1, gt =e?,

and the initial conditions that for all x € [0, 1],
up(x) = vo(x) = x(x — 1), @o(x) = Yo(x) = x(x — 1),  6p(x) = x(x — 1).
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Considering the supply terms that for all (x, ¢) € [0, 1] X [0, 1],

Fi(x,t) = ' (2x* = 2x - 4),

Fy(x, 1) = €'(2x* = 3),

=3t 7
Faon =i+ 2 1),
3(x, 1) = €'(2x 3 3)

the exact solution to the problem can be calculated as

u(x,t) = ¢(x, 1) = 0(x,1) = e'x(x = 1) VY(x,1) €[0,1] x [0, 1].

Thus, the approximation errors estimated by

max
0<n<N

hk hk hk hk 1k
{1y = VA + Nl = 1y + W = 0341+ 1l = B0l + 116, = G111}

are presented in Table 1 for several values of the discretization parameters 4 and k. Moreover, the
evolution of the error depending on the parameter & + k is plotted in Figure 1. We notice that the
convergence of the algorithm is clearly observed, and the linear convergence seems to be found when
the parameters are small, confirming the theoretical behavior.

Table 1. Numerical errors for some values of 4 and k.

hlk— 0.01 0.005 0.002 0.001 0.0005 0.0002 0.0001
1/2° 0.284497  0.283968  0.283726  0.283658  0.283626  0.283608  0.283602
1/24 0.142581 0.141947 0.141718  0.141669 0.141649 0.141639  0.141635
1/2° 0.072243  0.071204 0.070879  0.070824  0.070806 0.070799  0.070797
1/25 0.037956  0.036093  0.035518  0.035430 0.035406 0.035398  0.035396
1/27 0.022089  0.018980 0.017920  0.017755 0.017713  0.017700 0.017698
1/28 0.015393  0.011067  0.009269 0.008958  0.008877 0.008853  0.008850
1/2° 0.012794  0.007733  0.005182  0.004634  0.004479 0.004433  0.004427
1/210 0.011855 0.006439  0.003406  0.002592  0.002317 0.002230  0.002217
1721 0.011554 0.005973  0.002701  0.001704 0.001296 0.001140 0.001115
1/212 0.011470  0.005824  0.002440 0.001352  0.000852 0.000617  0.000570
17212 0.011449  0.005783  0.002353  0.001222  0.000676  0.000382  0.000308
1/2% 0.011443  0.005772  0.002328 0.001178 0.000611 0.000286 0.000191

AIMS Mathematics

Numerical error

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

h+k

Figure 1. Asymptotic constant error.
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4.2. Second example: behavior of the discrete energy decay

In this final section, our aim is to show the behavior of the discrete energy depending on the value

of the stability coefficient £ = £ — £,
u

Therefore, using the following data:

=1, T=80, p=8, B=6, J=1, a =05 a =05,
u=8, d=1, p =6, £€=01, b=05 m=1 gt =22,

and the initial conditions that for all x € [0, 1],
up(x) = vo(x) =0,  do(x) = ho(x) =0, Go(x) = x(x— 1),

if we define the discrete energy as

1
Ey = S (VAP + iR + TP + dIOR + a1 + 205, 6).

taking the discretization parameters 4 = k = 0.001, its evolution in time is plotted in Figure 2 (in both
natural and semi-log scales). As can be seen, it converges to zero, and an exponential decay seems to
be achieved. It is worth noting that the values of the constitutive coeflicients satisfy conditions (2.16)
and also that Z = 0.

& 005

log E(t)

0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 80
t t

Figure 2. Evolution in time of the discrete energy (natural and semi-log scales) with = = 0.

Now, we solve a similar problem, slightly changing the constitutive data

I, T=80, p=0.1, B=5 J=18, a =05, a»=05,
2, d=1, p=6, £€=2, b=1, m=1, g(t)=2e""

4
u
Taking the discretization parameters & = k = 0.001, its evolution in time is plotted in Figure 3 (in both
natural and semi-log scales). We have also added (in red) the function 4 x 10~##"!/2 to compare the

decay. As can be seen, it converges to zero, and a polynomial decay seems to be achieved. In this case,
we note that the values of the constitutive coefficients satisfy conditions (2.16), but E # 0.
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log E(t)
log( C*t3)

S oos

log E(t)

4 6 8 10 12 14 16 18 20 0 10 20 30 40 50 60 70 80
t t

Figure 3. Evolution in time of the discrete energy (natural and semi-log scales) with = # 0.

5. Conclusions

In this work, we have analyzed, from the numerical point of view, a porous thermoelastic problem
where the heat conduction is modeled with the Coleman—Gurtin model. By using an adequate change
of variable in the integral of the kernel function, we have obtained its variational formulation. Then, we
have introduced a fully discrete problem by using the finite element method to approximate the spatial
variable and the implicit Euler scheme to discretize the time derivatives. By applying a discrete version
of Gronwall’s lemma, we have proved a discrete stability property (see Lemma 3.1), and a main a priori
error estimates result, Theorem 3.1. The linear convergence of the approximations has been concluded
under a suitable additional regularity. Finally, we have provided some numerical simulations: a first
example that demonstrated the numerical convergence in a simple academical case, and a second one
to show the evolution of the discrete energy depending on the constitutive parameters.
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