Research article

Geometric analysis of integral operators related to Touchard polynomials and generalized Bessel functions

  • Received: 25 August 2025 Revised: 25 October 2025 Accepted: 25 November 2025 Published: 05 December 2025
  • MSC : 30C45, 30C50, 33C10

  • This article investigated the inclusion properties of Touchard polynomials $ Y_m(p, z) $ and generalized Bessel functions of the first kind $ \mathcal{G}_a(z) $, along with their associated convolution and integral operators, within the analytic function classes $ \mathcal{R}_{s, d}^{w}(\delta) $ and $ \mathcal{M}_{b, s}^{w}(\delta) $. Using coefficient bounds of certain function classes, we derived sufficient conditions for the convolution operators $ \mathcal{Y}_m^p(\psi, z) $ and $ \mathcal{E}_{l_{a}, c}(\psi, z) $, and the integral operators $ \mathfrak{Y}_m(p, z) $ and $ \mathfrak{G}_{a}(z) $ to belong to various subclasses of starlike and convex functions. Furthermore, inclusion results among these subclasses were obtained, thereby extending and unifying several existing results in geometric function theory.

    Citation: Manas Kumar Giri, Narjes Alabkary, Raghavendar Kondooru, Saiful R. Mondal. Geometric analysis of integral operators related to Touchard polynomials and generalized Bessel functions[J]. AIMS Mathematics, 2025, 10(12): 28753-28784. doi: 10.3934/math.20251265

    Related Papers:

  • This article investigated the inclusion properties of Touchard polynomials $ Y_m(p, z) $ and generalized Bessel functions of the first kind $ \mathcal{G}_a(z) $, along with their associated convolution and integral operators, within the analytic function classes $ \mathcal{R}_{s, d}^{w}(\delta) $ and $ \mathcal{M}_{b, s}^{w}(\delta) $. Using coefficient bounds of certain function classes, we derived sufficient conditions for the convolution operators $ \mathcal{Y}_m^p(\psi, z) $ and $ \mathcal{E}_{l_{a}, c}(\psi, z) $, and the integral operators $ \mathfrak{Y}_m(p, z) $ and $ \mathfrak{G}_{a}(z) $ to belong to various subclasses of starlike and convex functions. Furthermore, inclusion results among these subclasses were obtained, thereby extending and unifying several existing results in geometric function theory.



    加载中


    [1] P. L. Duren, Univalent functions, New York: Springer-Verlag, 1983, 32–75.
    [2] L. A. Wani, A. Swaminathan, Inclusion properties of hypergeometric type functions and related integral transforms, Stud. Univ. Babes-Bolyai Math., 65 (2020), 211–227. http://doi.org/10.24193/subbmath.2020.2.04 doi: 10.24193/subbmath.2020.2.04
    [3] A. W. Goodman, On uniformly starlike functions, J. Math. Anal. Appl., 155 (1991), 364–370. https://doi.org/10.1016/0022-247X(91)90006-L doi: 10.1016/0022-247X(91)90006-L
    [4] A. W. Goodman, On uniformly convex functions, Ann. Polon. Math., 56 (1991), 87–92. https://doi.org/10.4064/ap-56-1-87-92 doi: 10.4064/ap-56-1-87-92
    [5] F. Rønning, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc., 118 (1993), 189–196. https://doi.org/10.2307/2160026 doi: 10.2307/2160026
    [6] S. Kanas, A. Wisinowaska, Conic regions and k-uniform convexity, J. Comput. Appl. Math., 105 (1999), 327–336. http://doi.org/10.1016/S0377-0427(99)00018-7 doi: 10.1016/S0377-0427(99)00018-7
    [7] H. Silverman, Univalent functions with negative coefficients, Proc. Am. Math. Soc., 51 (1975), 109–116. https://doi.org/10.2307/2039855 doi: 10.2307/2039855
    [8] S. Kanas, A. Wisinowaska, Conic domains and starlike functions, Rev. Roumaine Math. Pures Appl., 45 (2000), 647–658.
    [9] W. Janowski, Some extremal problems for certain families of analytic functions, Ann. Pol. Math., 28 (1973), 297–326. http://doi.org/10.4064/ap-28-3-297-326 doi: 10.4064/ap-28-3-297-326
    [10] K. I. Noor, S. N. Malik, On coefficient inequalities of functions associated with conic domains, Comput. Math. Appl., 62 (2011), 2209–2217. https://doi.org/10.1016/j.camwa.2011.07.006 doi: 10.1016/j.camwa.2011.07.006
    [11] L. Spacek, Contribution à la theorie des fonctions univalents, Čas. Mat. Fys., 62 (1932), 12–19. http://doi.org/10.21136/CPMF.1933.121951 doi: 10.21136/CPMF.1933.121951
    [12] R. J. Libera, Univalent $\alpha-$spiral functions, Canad. J. Math., 19 (1967), 449–456. https://doi.org/10.4153/CJM-1967-038-0 doi: 10.4153/CJM-1967-038-0
    [13] C. Selvaraj, R. Geetha, On subclasses of uniformly convex spirallike functions and corresponding class of spirallike functions, Int. J. Contemp. Math. Sci., 5 (2010), 1845–1854. Available from: https://www.m-hikari.com/ijcms-2010/37-40-2010/index.html.
    [14] V. Ravichandran, C. Selvaraj, R. Rajalakshmi, On uniformly convex spiral functions and uniformly spirallike functions, Soochow J. Math., 29 (2003), 393–406. Available from: https://www.researchgate.net/publication/233841914.
    [15] S. R. Mondal, M. K. Giri, R. Kondooru, Sufficient conditions for linear operators related to confluent hypergeometric function and generalized Bessel function of the first kind to belong to a certain class of analytic functions, Symmetry, 16 (2024). https://doi.org/10.3390/sym16060662 doi: 10.3390/sym16060662
    [16] M. K. Giri, R. Kondooru, Exploring the inclusion properties of integral operators related to the Pascal distribution series in certain subclasses of univalent functions, Sahand Commun. Math. Anal., 22 (2025), 261–289. https://doi.org/10.22130/scma.2024.2022462.1920 doi: 10.22130/scma.2024.2022462.1920
    [17] K. Raghavendar, A. Swaminathan, Integral transforms of functions to be in certain class defined by the combination of starlike and convex functions, Comput. Math. Appl., 63 (2012), 1296–1304. https://doi.org/10.1016/j.camwa.2011.12.077 doi: 10.1016/j.camwa.2011.12.077
    [18] J. Touchard, Sur les cycles des substitutions, Acta Math., 70 (1939), 243–297. https://doi.org/10.1007/BF02547349 doi: 10.1007/BF02547349
    [19] S. Porwal, An application of a Poisson distribution series on certain analytic functions, J. Complex Anal., 2014 (2014), 3. http://doi.org/10.1155/2014/984135 doi: 10.1155/2014/984135
    [20] S. Porwal, G. Murugusundaramoorthy, Unified classes of starlike and convex functions associated with Touchard polynomials, Sci. Tech. Asia, 27 (2022), 207–214. Available from: https://ph02.tci-thaijo.org/index.php/SciTechAsia/article/view/247908.
    [21] Á. Baricz, Generalized Bessel functions of the first kind, 23–69, Heidelberg: Springer Berlin, 2010. http://doi.org/10.1007/978-3-642-12230-9
    [22] Á. Baricz, Geometric properties of generalized Bessel functions of complex order, Mathematica, 48 (2006), 13–18.
    [23] S. Porwal, M. Ahmad, Some sufficient conditions for generalized Bessel functions associated with conic regions, Vietnam J. Math., 43 (2015), 163–172. https://doi.org/10.1007/s10013-014-0089-8 doi: 10.1007/s10013-014-0089-8
    [24] M. K. Giri, K. Raghavendar, Inclusion results on hypergeometric functions in a class of analytic functions associated with linear operators, Contemp. Math., 5 (2024), 1738–1757. https://doi.org/10.37256/cm.5220244039 doi: 10.37256/cm.5220244039
    [25] G. Murugusundraramoorthy, S. Porwal, Univalent functions with positive coefcients involving Touchard polynomials, Al-Qadisiyah J. Pure Sci., 25 (2020), 1–8. https://doi.org/10.29350/qjps.2020.25.4.1176 doi: 10.29350/qjps.2020.25.4.1176
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(158) PDF downloads(27) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog