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1. Introduction
The classification and behavior of subclasses such as starlike, convex, and close-to-convex
functions, along with extremal problems and coefficient estimates for normalized analytic functions,

play a central role in geometric function theory.
A normalized analytic function ¥(z) is of the form

V@ =2+ Y x7, (1.1)
=2

defined on the open unit disk A = {z € C: |z] < 1}.
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Let A be the class of normalized analytic functions and S be the class of univalent functions. The
classes of starlike functions and convex functions are denoted by S* and C, respectively (see [1]).
A normalized analytic function ¥(z) is said to be k-uniformly convex of order r if and only if

% (1 Zlﬂ”(z)) Sk 2" (2)
(+wa> e

where 0 < k < co and 0 < r < 1. This class of functions is denoted by k — UCV(r) (see [2]).

If r=0,thenk —UCV(O0) =k —-UCYV,andif k = 1, then 1 — UCV(0) = UCYV. For more details,
see [3-7].

A related class k — S, (r) is defined as Y(z) € k — UCV(r) & ' (2) € k—S,(r).

If r =0, then k = S,(0) = k — ST (see [8]).

Again, ¥(z) is said to be a k Janowski convex function if and only if

b

K- DD ) |- Dy,
R ﬂgy -k <z%' -h
< Z Z <
e DS e ||+ DS -+ D)

where k > 0and —1 < X, < X; < 1. This class of functions is denoted by k—UCV[ X, X;] (see [9,10]).

Again a related class k — ST [X1, X5] is defined as ¥(z) € k — UCV[X,X2] & '(2) €
k—S8T1X1,Xz].

Note thatif X; = 1-2rand X, = -1, then k—=S7[1-2r,-1] = k-S,(r) and k—UCV[1-2r,-1] =
k—UCYV(r).

In recent years, several researchers have constructed convolution operators based on special
functions because of their deep connections with mathematical analysis. In particular, operators
associated with the Touchard polynomials and the generalized Bessel functions of the first kind provide
a fruitful framework for analyzing various subclasses of analytic functions. Convolution operators
transform one analytic function into another while preserving important geometric properties such as
univalence, convexity, and starlikeness. For further details, see [15-17].

Motivated by these connections, the present work introduces and investigates new convolution
operators derived from the Touchard polynomials and the generalized Bessel function of the first
kind. These operators are studied in the context of the analytic function classes R;f ,(0) and M}:’S(é) to
establish inclusion properties and sufficient conditions under which the operators preserve geometric
characteristics. This approach not only unifies several existing results in the literature but also extends
them to a more general framework involving special functions and probability-related structures.

Let us define convolution operators associated with the Touchard polynomials and the generalized
Bessel function of the first kind. The Touchard polynomials (see [18]) arise naturally in the
enumeration of set partitions and the study of Poisson-type distributions (see [19,20]).

The Poisson distribution is defined for a random variable X and expected value p. The m™ moment
E(X,,) = T,,(p) is defined as

[ J' -m
Tup) =€y % (12)

J=0
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The coefficients of the Touchard polynomials after the second force are defined as follows:

j—1 — 1y
Y(p,z>—z+2”](f_—l),)e . (13)
j=2 )
, o B ~ b pj_l(j—l)m,
Y(p)=Y (p,)=1+e P;W (1.4)

Now, we considered the linear operator Y/, : A — A, defined as

o PG - : S
Yo, 2) = Ya(p. ) s @ =2+ ) p(j(]_—l)‘)e"’sz’ =z+ ) Af,
J=2 ’ j=2
where * is the Hadamard product or convolution and
PG
j= WE pXj. (15)

The generalized Bessel function of the first kind (see [21,22]) @,; .(z) is the particular solution of
the differential equation

2P+ bz®'(2) + (cz* —a* + (1 = b)a)D(z) =0

where a,b € R and ¢ € C. The a™ - order generalized Bessel function of the first kind is defined as

(o8]

Pu(2) = Dy (2) = Z(; D {a+ o 52)

_1jj 2j+a
(=De (%) VzeC.

@,(z) is normalized by the transformation G,(z), which is defined as

Ga(@) = lao(P)]™'272 Bp(V2).

The series representation of G,(z) is defined as

(Die
Qa(z)—oFl(ll, ) 241(1 ok (1.6)

where [, =a+ (b+1)/2 #0,—1,-2,---. The first- and second-order derivatives of G,(z) at z = 1 are
given as follows:

(—c/d))
1 _ 1.7
Gul) = Z(l),u—l)' (1.7
gy=Y S (1.8)

£ (), - )]
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The transformation also satisfies the following conditions (see [22]).

S (=c/4Y 4~ 1)
£ (1) (Dyjer

[Ga-1(D) = 1], (1.9)

and

—4l,
Cc

Gur1(2) = G, (2), VzeC, (1.10)

wherec <0,/,>1and/, #0,-1,-2,---
Let y(z) € A, and the convolution operator &;, (¢, z) is defined as (see [23])

E1,c,2) = 2Gu(D) * YD) = 2+ ) A7,

j=2
where * denotes the Hadamard product or convolution and

N
T UG =D

In this article, we investigate the inclusion properties of Touchard polynomials and the generalized
Bessel function of the first kind, together with their associated convolution operators, within the
function classes RV:, ,(0) and M;;,S(d) (as introduced in Section 2). Specifically, we establish sufficient
conditions, expressed in terms of the relevant parameters, that guarantee the convolution operators
belong to various subclasses of univalent functions. The main theorems, along with their proofs,
are presented in Section 3, which also explores several geometric properties of linear and integral
operators. Moreover, certain special cases of our results are shown to reduce to well-known findings in
the existing literature. For completeness, Section 2 recalls a few foundational results required for our
analysis, while the concluding remarks are given in Section 4.

(1.11)

2. Preliminary results

In analytic and univalent function theory, the introduction of various subclasses of normalized
analytic functions has proven useful for exploring the geometric aspects of complex mappings. This
section presents a selection of these subclasses that form the foundation for the results developed in
the later sections.

A function ¥/(z) € S is said to be spirallike if and only if

[+ 20)
Y(z)

for some ¢ with [f| < 5 and for all z € A (see [11, 12]).
A normalized analytic function (z) is said to be k—uniformly convex spirallike of order r if and

only if
R {e-l" (1 + ZW(Z))} > k
Y (2)
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where k > 0,0 < r < 1, and ¢t < 1. This class of functions is denoted by k — UCSP(t, r) (see [13]).
Similarly if y/(z) satisfies the following condition fork > 0,0 <r < 1,and ¢t < I:

R { e_itzw'(z)} k|
Y(2) Y(z)

then it is called k—uniformly spiralike of order r. This class of functions is denoted by k — SP,(t, 7).
Note thatif k = 1, then 1 — UCSP(t,r) = UCSP(t,r) and 1 — SP,(t,r) = SP,(t,r) (see [13]).
Similarly if k = 1 and r = 0, then 1 -UCSP(t,0) = UCSP(t) and 1 -SP,(t,0) = SP,(¢) (see [14]).
Let us define a subclass Sfji(t, r) of normalized analytic functions that generalizes k — UCSP(t,r),
k—8P,(t,r), k—UCV(r), k= S,(r), and other subclasses.

Let (z) € A and ¥(z) will be in the class S’v‘jﬁ(t, r) if and only if

1‘ + 7, (2.2)

’ 2117
uy' @) + vy @)

_ uzy’ (2) + vzzw”(z))}
Rie ¢+ >k -1 +r 2.3
{e (g W) + v @) W) + v @) ’ (23)
where k> 0,0<r<1,t<1,and0 < u,v,¢ < 1.
Note that:

. f ¢ =0,v =0, and u = 1, then S’;f,(t, r) = k- SP,(t,r), the class of k—uniformly spirallike
functions of order r.
i. f¢ =1,v =1, and u = 0, then S]V‘j(t, r) = k — UCSP(t,r), the class of k—uniformly convex
spirallike functions of order r.
ii. f ¢ =0,v=0,u =1, and kK = 1, then S’;f,(t, r) = SP,(t,r), the class of uniformly spirallike
functions of order r (see [13]).
iv. f¢=1,v=1,u =0,and k = 1, then Sfj(t, r) = UCSP(t,r), the class of uniformly convex
spirallike functions of order r (see [13]).
v. If¢=0,v=0,u=1,and ¢ = 0, then Slv‘j(t, r) = k= §,(r), the class of k—starlike functions of
order r (see [2]).
vi.lf¢=1,v=1,u=0,and t = 0, then Sljﬁ(r, r) = k — UCYV(r), the class of k—uniformly convex
functions of order r (see [2]).
vii. If¢=0,v=0,u=1,r=0,and ¢t = 0, then S’v‘ji(t, r) = k — 87T, the class of k—starlike functions
(see [8]).
vili. If ¢ =1, v=1,u=0,r =0, and ¢t = 0, then S’v‘j,i(t, r) = k — UCYV, the class of k—uniformly
convex functions (see [6]).
ix. If¢=0,v=0,u=1,k=0,r =0, and ¢t = 0, then S’V‘j(t, r) = 8%, the class of starlike functions
(see [3]).
X.If¢=1,v=1,u=0,k=0,r =0, and ¢t = O, then Slﬁji(t, r) = C, the class of convex functions
(see [4]).

Definition 2.1. [2] Consider a function y(z) € A, wherew € C\0,0< s < 1,and0 <d < 1. The
Junction Y(z) is said to belong to the class R (0) if it satisfies the inequality
(1—d+25)"2 +(d - 2500/ (2) + sy (2) — 1

<1
2w(l = 6) + (1 —d +25)22 + (d = 25/ (2) + sy (2) — |
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For function Y(z) € R} [(0), the coefficients x; satisfy the bound

2(1 = 9)lwl
lx;| < , —>
1+(—-1(d—-2s+js)

i=2,3,-. (2.4)

Definition 2.2. [24] Consider a function y(z) € A, where w € C\ 0 and 6 < 1. For parameters
0<b<land0 < s <1, the function y(z) is said to belong to the class M, (6) if and only if

W(2) + sz (2) + b2y (2) — 1

(2.5)
2w(l = 8) + ' (2) + sz’ (2) + b2y’ (2) — 1
For functions ¥(z) € MZS((S), the coeflicients x; satisfy the inequality
2(1-96
(1 = olwl =23, (2.6)

lxjl < — = 3
j+ j2b—s)+ j*(s —3b) + j’s

The sufficient conditions for the classes k — UCYV[X;, X;] and k — ST [X;, X,] are given in the
following lemmas.

Lemma 2.1. [10] Let y(z) € A. A sufficient condition for a function to belong to the class k —
UCYV[X,, X;] is the inequality

.M8

T
(3]

JR2(k+ DG =D+ jX + D = (X + Dlllajl < 1% - Xil. 2.7)

Lemma 2.2. [10] Let y(z) € A. A sufficient condition for a function to belong to the class k —
ST X1, X;] is the inequality

Z [2(k+ DG = D +1j(X2 + 1) = (X1 + Dlllajl < X2 = Xil. (2.8)
j=2

J

3. Main results

In the following lemmas, we establish sufficient conditions for the classes Sﬁjﬁ(t, r), k—UCSP(t,r)
and k — SP,(t, ).

Lemma 3.1. Let Y(z) € A be a function of the form (1.1). Then, ¥(z) belongs to the class Sﬁf,(t, r)
provided that the following inequality is satisfied:

Z[(k +DUG-Dv+jc+r+1w+u)+(c+r+ Du)+ (A + )+ x| <u—-gu+v). (3.1)
=2
Proof. Suppose the condition (2.3) holds, and then it suffices to show that

(| @ + vy (2) N
u(z) + vy’ (z)

¢—1

Fr-R {e (9 J @)+ v Q)

W) T vl () ) -(1+ r)} <l+r (3.2)
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From the left side of the above expression, we have

’ 2417
' uzy’ (z) + vz (2) N

_ o u @)+ vzzw”(z)) ~ }

wo v TSR {e (g Yo ) U
uzy'(2) + vy (2) ~

<k+1) W) T vl () +¢+r 1'

V2 X0 J( = DX + (u+ (s +r = Dv)z(1 + X2, jxz’™)
w(z + 250 x;7) +va(l + X2, jxjzi™h)
.\ (¢ +r=Dulz+ X3, x;z')

u(z + Z;iz x;20) +vz(1 + Z;’;z jx;z7h
2imliG =Dy + jls + v+ jlu+v) + (s + ru+ ullx)|
W+ v) = 2, + i)
[(c+r(u+v)+V]
W+ v) — 2o, + ol

= (k+1)

<(k+1)

The above expression is bounded above by 1 and applying it in (3.2), we get

k+1) Z[j(j —Dv+ jlc+rv+ jlu+v)+(c+nru+ullx]+[(cr)(u+v)+v]

=2
<(+rwu+v)—~1A+r) Z(u + vlx;jl. 3.3)

=2
From (3.3) we will get the stated condition. Thus, the proof is complete. O

Lemma 3.2. Let y(z) € A be a function of the form (1.1). Then, Y(z) belongs to the class k —
UCSP(t, r) provided that the following inequality is satisfied:

2:@Mj—1)+amt—rﬁMA§Cmt—n (3.4)

=2

Proof. Suppose the condition (2.1) given in the definition of k — UCSP(t, r) holds. Then it suffices to

show that
(0] s e 12 2 9))
Y'(2) Y'(2)
That is,
Zw//(z) ~ _ille//(Z) ~
k —tﬁ’(z) %{e e } <cost—r. (3.5)
From the left side of the above expression, we have
W (z) L2 (2) W (2) 22 JU = Dlxjl
k —Rie"—23 <2k <2k .
e {e ) } D 70 R B P
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The above expression is bounded above by 1 and applying it in (3.5), we get

D 2kj(j = Dixjl < cost—r = > (cost - r)jlx;]. (3.6)
=2 j=2
From (3.6) we will get the stated condition. Thus, the proof is complete. O

Lemma 3.3. Let y(z) € A be a function of the form (1.1). Then, y belongs to the class k — SP,(t,r)
provided that the following inequality is satisfied:

[ee)

D @k(j = 1)+ cost = r)lx;| < cost — r. 3.7)

j=2
Proof. By the Alexander-type theorem, ¥(z) € k — UCSP(t,r) if and only if Y(z) € k — SP,(t,r). O

Using the sufficient conditions established in the above lemmas, we obtain criteria ensuring that
the linear operators Y,,(p, z) and G.(z), defined in the Introduction, belong to different subclasses of
analytic functions.

3.1. Inclusion results for Y, (p, z) and G,(2)

The following results are established based on the coefficients of the linear operators together with
the sufficient conditions for various subclasses of analytic functions.

Theorem 3.1. Let y(z) € A. If Y(2) satisfies the following condition, then Y,,(p,z) € S]V‘j(t, r).
(k + 1)yvY’

m

A +Hlk+D((c+r+1v+uw)+ A +rw]Y, (p)+[(k+ D(s+7r+ Du+ 1+ rulY,(p)
<u+k+D[(c+r+2)v+uw)]+A+r—-¢)u+v).

Proof. Substituting Eq (1.3) in (3.1), as the sufficient condition for the class Sﬁji(t, r), we get the
following expression:

PG =D
—6

Z[(k+ DGG=1v+jls+r+1yw+uw)+(+r+ Du)+ A +ru+ (1 +rvj] D1

J=2 (J-
<u-—q¢u+v).
This leads to the following expression:
)m+l

00 j-1
(k+ 1)y Z p—(] =

j—1 i— 1) j—1 i— 1) j-1 — 1"
+(k+1)(§+r+1)u2% _p+(1+r)uz% —p+(1+r)vsz((il)') -

o) i—1 . m
e+ (k+ 1)((¢+r+1)v+u) Z jpj(j(i—l)l!)e-P

<u-—gu+v).
Applying the identity (1.4) to simplify the above, we obtain

k+1wv@,  (»-D+Ek+D(sc+r+1w+u) (Y, (p)-1)+k+ D(c+r+ Du¥,(p)—1)
+(1+rnu,(p)-D+A+rv¥,(p)—1)<u-gc(u+v). (3.8)

Hence, the required result is obtained from (3.8), completing the proof. O

AIMS Mathematics Volume 10, Issue 12, 28753-28784.



28761

Theorem 3.2. Let a function Y(z) € A and of the form (1.1). If Y(z) satisfies the following condition,
then Gu(2) € Sy5(t, ).
k+1wG /() +[k+ D({(s+r+Dv+u)+ A +rwlGg, (1) + [(k+ D(s+r+ Du+ (1 +rulG.(1)

+[(k+1)((g‘+r+1)(v+u)+u)+(1+r)(v+u)]ﬁ <Q2+nrnNu—-cu+v)+k+D(c+r+ Du.

a

Proof. Substituting Eq (1.6) in (3.1), as the sufficient condition for the class S]V‘jﬁ(t, r), we get the
following expression:

(=c/4)
(o) (1)

Z[(k + DG =1Dv+jc+rv+ ju+v)+(sc+nru+u)+ (1 +ru+ jv)
=

<u-—g¢u+v).

Applying (1.7) and (1.8) in the above expression, we obtain the following result:

k+1vG/ (D) +[(k+ D({(s+rv+@+v)+ (1 +rpw] (Q 1)+ H)

+ [(k+ D)({(s +ru+u)+ (1 +r)u] (ga(l) + H - 1)
<u-—gu+v). (3.9)
We will get the required result from (3.9). O
Theorem 3.3. Let y(z2) € A. If Y(2) satisfies the following condition, then Y,,(p,z) € k — UCSP(t, r).
2kY ., (p)+ (cost—r)Y, (p) < 2(k —r+ cost).

Proof. Substituting Eq (1.3) in (3.4), as the sufficient condition for the class k — UCSP(t,r), we get
the following expression:

j—1 — 1)y
Z(2k(]— 1)+cost—r)]%e <cost—r.
i=2 )

This leads to the following expression:

- Lp G-t o P G- D"
2k » j—————e P +(cost—r) ) j—————e P <cost—r.
Z ! ; G-1)

Applying the identity (1.4) to simplify the above, we obtain
2k(Y, .(p)— 1)+ (cost—r)(Y,(p)— 1) < cost—r. (3.10)
The desired result follows directly from (3.10), which completes the proof. O

Theorem 3.4. Let y(z) € A. If Y(2) satisfies the following condition, then Y,,(p,z) € k — SP,(t, ).

2kY, (p) + (cost — 2k — r)Y,,(p) < 2(cost —r).

AIMS Mathematics Volume 10, Issue 12, 28753-28784.
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Proof. Substituting Eq (1.3) in (3.7), as the sufficient condition for the class k — SP,(t, r), we get the
following expression:

G- D"
(= D!

Z(ij+cost—2k—r) e’ <cost—r.

j=2

This leads to the following expression:

PG =" G-
2 E P — 2k — E = L eP< -
k G- —— e P+ (cost—2k—r) ) G- e? <cost—r

Applying the identity (1.4) to simplify the above, we obtain
2k(Y, (p) — 1)+ (cost —r)(Y,,(p) — 1) < cost—r. (3.11)
From (3.11), we obtain the required result. O

Theorem 3.5. Let a function Y(z) € A and of the form (1.1). If Y(z) satisfies the following condition,
then G,(z) € k — UCSP(t,r).

2kG. (1) + (cost — r)G, (1) < (cost —r) (1 - H)

Proof. Substituting Eq (1.6) in (3.4), as the sufficient condition for the class k — UCSP(t, r), we get
the following expression:

< cost-—r.

(—c/4)
/Z;(yc(]— D+ cost=nj Yk

Simplifying the above expression, we have

4)J 4)/
2kZ(l( —c/4) +(cost—r)Z:(l()J(C]/_)l)Y <cost—r.

Applying (1.7) and (1.8) in the above expression, we obtain the following result:

2kG. (1) + (cost —r) (g;(l) + ﬁ) <cost—r. (3.12)
Hence, the required result is obtained from (3.12), completing the proof. m|

Theorem 3.6. Let a function y(z) € A and of the form (1.1). If Y(z) satisfies the following condition,
then G,(z) € k — SP,(t, ).

8kl,G.(1) + 4l,(cost — 2k — r)G,(1) + c(cost — r) < 8l,(cost —k —r).

AIMS Mathematics Volume 10, Issue 12, 28753-28784.
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Proof. Substituting Eq (1.6) in (3.7), as the sufficient condition for the class k — UCSP(t, r), we get
the following expression:

Z(2kj+cost— 2k — r)( c/ ,) <cost—r.
£ L))"
Simplifying the above expression, we have
O (=c/4y O (—c/4)
2k ——— +(cost—2k—-r) — < CcoSt—T.
; (@)= D! 24 (1), ()"

Applying (1.6) and (1.7) in the above expression, we obtain the following result:

2k(g;(1) + ﬁ) +(cost — 2k — 7) (ga(l) + ﬁ - 1) < cost—r. (3.13)
We will get the required result from (3.13). O

Using linear operators Y,,(p,z) and G.(z), the convolution operators Y% (¢, z) and &, (¢, z) were

introduced in the Introduction. Based on the coefficient bounds of the classes st(d) and RZ ,(0), we

establish sufficient conditions ensuring that these convolution operators belong to different subclasses
of analytic functions.

3.2. Results on the convolution operators ¥h (¥, 2) and &, (¥, z) associated with the class MZV,S((S)

The following theorems provide conditions under which the operators Y/, (i, z) and &;, (¢, z) belong
to the classes Sﬁji(t, r, k—UCSP(t,r), k—SP,(t,r), k —UCV[X,, Xz], and k — ST [X,, X,].

Theorem 3.7. Let a function y(z) € A and of the form (1.1). Again if Y(z) € M; (6) and satisfies the
following condition, then Y5y, z) € Séj(l, r).

k+ 1Y, _(p)+k+ D(c+r+1w+uw)+ (A +rwlY, ,(p)+[(k+ 1)(c+r+ Du+ 1+ nrulY,—(p)
(s —2b)

<7+ (ke Dis +r+2)0+ ) + (= A+ V)55—o

Proof. Substituting Eq (1.5) in (3.1), as the sufficient condition for the class Sﬁf,(t, r), we get the
following expression:

(o9

o ) PG -
Z[(k + DG -1+ j(c+r+1w+u)+(c+r+ Du)+ (1 +r)(u+ ]V)]W
— !

J
<u-g(u+v). (3.14)

e x|

From the denominator of (2.6), j + j(2b — s) + j2(s — 3b) + j*b > (j — 1)*(s — 2b), and then (2.6) is

< 200
1S G- = 20y

=2,3,---. (3.15)

AIMS Mathematics Volume 10, Issue 12, 28753-28784.
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Substituting this upper bound from (3.15) into the inequality (3.14), we have

Z[(k+ DGG=1Dv+ j((c+r+1)v+u)+ (s +7r+ Du)

=2
Ie; _ 1\ym
+a+ﬂxu+wﬂ56%7§L'ﬂw|
Z[(k+ DGG=1Dv+ jl(s+r+1v+u) +(c+r+ Du)

j=2

PG, 20— o
G-D! ¢ G=19(s-2b)

21 - 8)wl PG — 1yt

TN 1)23 BT

+ (1 +r(u+jv)

i1y 1yn=2
S Ik + D((s+r+ Dy +u) + (1 +r)v];—p] (5/_ 13 o
PRG- 1

+ [k + D)(s +r+ Du+ (1 +r)u]Z =

(3.16)

Now, applying (1.3) and (1.4) into Eq (3.16), and then using the result in (3.14), we conclude

(k+ v, (p) = D) +[(k+ D((s+ 7+ Dv+u)+ (1L +rvl(Y, ,(p)— 1)
+[(k+ D¢+ 7+ Du+ (1 +nul(Yna(p) - 1)
(s —2b)

<(M—§(M+V))m. (3.17)

Hence, the required result is obtained from (3.17), completing the proof. O

Remark 3.1. Ifwetake b=0,s=0,¢=1,v=0,u=1,k=0,r=0, and t = 0 in Theorem 3.7, this

20(1 =6
result reduces to Theorem 4.3 of [25] when A =0, B=1,and A =1+ M
T

Theorem 3.8. Let a function y(z) € A and of the form (1.1). Again if Y(z) € M; (6) and satisfies the
following condition, then Yy, z) € k — UCSP(t, r).

2KY,,_(p) + (cost = )Y, 2(P)<2k+(cost—r)(1+ —— )

2(1=8)wl)’

Proof. Substituting Eq (1.5) in (3.4), as the sufficient condition for the class k — UCSP(t, r), we get
the following expression:

PG
(- D!

e ’|xj| <cost—r. (3.18)

Z(Zk(]—1)+cost—r)]

j=2
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Applying (3.15) in (3.18), we have

;(Zk(] “1)+cost— I’)]pj(l(i 1)!) e %ﬁ);(‘?'_@b) <cost—r.
Further simplifying, we get
ZkZ " lij__li?m 1 e’ + (cost— r)i pjl(]—_lﬁm_ze_p < (cost— r)zg:—g?lzvl. (3.19)
Now, applying (1.4) into Eq (3.19), we conclude
2k(Y,,_(p)— 1)+ (cost —r)(Y, ,(p)—1) < (cost— r)ﬂ. (3.20)
2(1 - 6)wl
Hence, the required result is obtained from (3.20), completing the proof. O

Theorem 3.9. Let a function y(z) € A and of the form (1.1). Again if Y(z) € M; (6) and satisfies the
following condition, then Y, z) € k — SP,(t,r).
(s —2b)
2kY 2(p)+(cost—2k—r)Ym z(p)< (COSl—I")(l +m)
Proof. Substituting Eq (1.5) in (3.7), as the sufficient condition for the class k — SP,(t,r), we get the
following expression:

p G-

Z(zk(] — 1)+ cost—7) T

e Plx;| < cost—r. (3.21)

Applying (3.15) in (3.21), we have

> PG, 2 -8l
(2kj +cost — 2k — r)—— e’ — <cost—r.
Z‘,zz ’ G-DU ¢ G- 17G-2b)

Further simplifying, we get

G- 1(J -pm? priG-Dm? (s —2b)
2](2 1)' p+(COSt—2k )Z W@ pS(COSt—I’)m. (322)

Now, applying (1.4) into Eq (3.22), we conclude

-2b
2k(Y, _,(p) — 1) + (cost — 2k — r)(Y,—2(p) — 1) < (cost — r)u. (3.23)
2(1 = o)wl
The desired result follows directly from (3.23), which completes the proof. O
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Theorem 3.10. Let y(2) € A. Again if y(z) € M, (6) and satisfies the following condition, then
*yf?)l(w’ Z) € k - %{C(V[XlaXZ]

Qk+D+1X+ 1DY,_(p) + (X1 + 1+ X+ 1D Y, »(p)
(s =2b)IX; - Xi
2(1 = 9)lw|

<2k+D)+2IX + 1+ 1X + 1]+

Proof. Substituting Eq (1.5) in (2.7), applying (3.15), and following as in the above theorem, we get
the following expression:

P ‘(]—1)’”e p_ 201 =)l

D120+ DG = 1+ JI0G + D]+ 16+ DI,
Jj=2

- D! (j = D*(s = 2b)
< 1X; - Xil. (3.24)
Now, applying (1.3) in (3.24), we conclude
, , -2b)| X, - X
QK+ 1)+ 1% + DN (V1 () = D) + (X + DI+ 6 + DD (Vo) — 1y < S22 =Xl
2(1 = 6wl

(3.25)
From (3.25), we obtain the required result. O

Theorem 3.11. Let y(z) € A. Again if Y(z) € M;”’S(d) and satisfies the following condition, then
Yo, 2) € k—ST[X,, X1
(s —2b)

2(k + DYyo1(p) + 11X + 1Y, (p) + 1X0 + Y ua(p) < 2(k+ D) + X0 + 1] + X + 1] + X5 — Xllm.

Proof. Substituting Eq (1.5) in (2.8), applying (3.15), and following as in the above theorem, we get
the following expression:

PG - D™ -p 201 = 9)lwl

Z 2(k+ D= D+ jl(Xz + DI+ (X3 + D]

= (j-D! (j— D*(s —2b)
< Xo - Xyl (3.26)
Now applying (1.3) and (1.4) in (3.26), we get
206+ DT pea(p) = D+ 106+ DI04 () = 1+ + DiTa(p) = 1) < e = Xil 30—
(3.27)
Hence, the required result is obtained from (3.27), completing the proof. O

Theorem 3.12. Let Y(z) € A. Again, if Y(2) € MXS(d) and the following condition is met, then
&, 2) € Syt 7).

(1 -1)

(k+ DvGa(1) + [(k + D((c +r =Dy +u) + (1 +r)v] ( )Qa (D
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16(l, -2
+[(k+DQ2v—uw)+ A +r)u—-v)] (%)Qa—z(l)

+[(k+1)((g‘+r—1)v+u)+(1+r)v](@—l)

16(1, - 2
+[(k + D@v =) + (1 + r)(u —v)]( ( > )2)(4(1 — o8 1)

(s —3b)
2(1 = &)l
Proof. Substituting Eq (1.11) in (3.1), as the sufficient condition for the class Sfj(t, r), we get the
following expression:

<k+DBV-w)+ U +r(u-v)+[u—gu-+v))

(/4!
(la)j-1(j — D!
<u-g(u+v). (3.28)

Z[(k+ DGG=1wv+ j((s+r+1w+u)+(c+r+ Du) +(1+r)(u+ jv)

J=2

|xj|

From the denominator of (2.6), j + j(2b — s) + j*(s — 3b) + j°p > j(j + 1)(s — 3b), and then (2.6)
can be written as
2(1 - 6)wl
lxj| < — .
J(G + D(s - 3b)
Substituting this upper bound from (3.29) into the inequality (3.28), we get

(3.29)

Z[(k+ IwjiG+D+(G+Dk+ D(s+r—1wv+u)+ (1 +rpw]

=2
(—c/4)! 2(1 = 6)wl
(l)j-1(G = D j(j + 1)(s — 3b)
<u-¢u+v). (3.30)

+k+DQ2v—-—u)+ {1 +r)(u-v)

Now applying (1.6) in (3.30), we get
(k+ Dv(Gu(1) = 1)

+[k+ D((c+r—Dv+u)+ 1 +rv] (4(1 ~ L)

C
ﬂ@”“*4+4@—n)
16(l, — 2),

c
+[(k+1DQ2v—u)+ A +r)(u—-v)] (T (ga—Z(l) -1+ s 2)) —~ 1)

(s —3b)
2(1 = )w|’
The desired result follows directly from (3.31), which completes the proof. O

<[u—g(u+v) (3.31)

Theorem 3.13. Let a function y(z) € A and of the form (1.1). Again if y(z) € M} (6) and satisfies the
following condition, then &, .(y,2) € k — UCSP(t, ).
c(s —3b)

2keG,(1) =4, — 1)(cost =2k = r)G,-1(1) = 8k(l, = 1) < (cost—r)|c=4(, - 1)+ ——— .
2(1 = o)l
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Proof. Substituting Eq (1.11) in (3.4), as the sufficient condition for the class k — UCSP(t,r), we get
the following expression:

(=c/4!

mlle <cost—r. (332)
al j- :

D @k(j = 1) +cost—r)j
=2

From the denominator of (2.6), j + j(2b — s) + j*(s — 3b) + j*b > j*(s — 3b), and then (2.6) can be
written as

2(1 = o)wl
x| < m, =2,3,---. (3.33)
Applying (3.33) in (3.32), we have
= —e/dy 2(1-6
> @kj+cost 2k~ 1)j (=c/4) A=W _ e (3.34)

j=2 (la)j—l(j - 1)‘ jz(S - 3b) -

Simplifying (3.34), we get

O (—c/4) 4l =1 v (=c/4) (s —3b)
k 2 —(la)j(j)! + (cost—2k—r) " 2 G 1,0 < (cost— r)—z(1 YV (3.35)
Now, applying (1.6) into equation (3.35), we conclude
4l - 1) (c/4) (s —3b)
2k(G,(1) — 1) — (cost — 2k —r) - (ga_l(l) -1+ U= 1)) < (cost — r)m. (3.36)
From (3.36), we obtain the required result. O

Theorem 3.14. Let a function y(z) € A and of the form (1.1). Again if Y(z) € M;, (6) and satisfies the
following condition, then &;, .(f,z) € k — SP,(t, ).

8kc(1 —1,)G,-1(1) + 16(cos t — 4k — r)(l, — 2),G (1)

+ 16(cost — 4k — r)(l, - 2)2( - 1) + 8ke(l, — 1) + 2kc?

c
4(la = 2)
(s —3b) )

— 2 —_—
< (cost—r)c (1 + 0=l

Proof. Substituting Eq (1.11) in (3.7), as the sufficient condition for the class k — SP,(t, r), we get the
following expression:

. i
> @k(j~ 1) +cost - 1) (zc/4)

———|xj| < cost—r. (3.37)
£ (@) G= D

Applying (3.29) in (3.37), we have

- . (—c/4)! 2(1 = 6)lwl
Z(2k(] + 1)+ cost — 4k — r)(la)j_l(j R TERV TS < cost—r.

J=2
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Further simplifying, we get

A4l -1 (—c/4) (1, -2) < (—c/4)*!
2h—" ;(z +(cost —dk = )—"3 ;(la

o= D!
(s —3b)

< (COSI— l’)m

Now, applying (1.6) into equation (3.38), we conclude

41, - 1) (c/4)
2k - (ga—l(l) -1+ (la _ 1))
42(1, - 2), ¢ ¢
+(cost =4k — )52 (Qa—z(l) 30— 160, —2)
(s — 3b)
< (cost— r)m-

Hence, the required result is obtained from (3.39), completing the proof.

=2)jn(G+ D!

|

(3.38)

(3.39)

O

Theorem 3.15. Let y(z) € A. Again if Y(z) € My (6) and satisfies the following condition, then

&, 2) € k—UCV[X), Xzl

41 -1,

c

Qe+ 1D +1X + 1) Go(D) + [IXy + 1] = 2(k + 1)](

41_la
+[|X1+1|—2(k+1)]( ( - ))(4(1C—1)_1)

(s = 3b)
2(1 = &)wl’

)Qa—l(l)

<2k+ D)+ X+ 1]+ X — X

Proof. Substituting Eq (1.11) in (2.7), applying (3.33), and following as in the above theorem, we get

the following expression:

(=c/4)~" 201 = 8wl
()1 = D! j*(s = 3b)

D26+ DG = 1)+ X + 1+ X, + 1]
j=2
<1X; — Xil.
Now applying (1.7) and (1.6) in (3.40), we get

Qk+ 1D +1X+ 1) (Ga(1) -1

11X+ 1= 20+ 1] (M)(@H(D G

¢ (la - 1)
<X -X |M
ST A sl

The desired result follows directly from (3.41), which completes the proof.

(3.40)

(3.41)

O
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Theorem 3.16. Let a function y(z) € A and of the form (1.1). Again if y(z) € M} (6) and satisfies the
following condition, then &, .(,2) € k — ST [X1, Xz].

41 -1,

Qk+ 1) + X + ll)( )ga 1D

16(, -1
+(X, + 1 = X + 1] = 4(k + 1)) (C—)Z)Qa 2(1)

41 -1,
+Q%+DH&+H%(6 )@Uin_q

161, — 1
+ (X + 1= X, + 1] — 4k + 1)) (& )ﬂ(qziz)_q

(s —3b)
2(1 = o)w|
Proof. Substituting Eq (1.11) in (2.8), applying (3.29), and following as in the above theorem, we get
the following expression:

<X, = Xl

[ee)

; , (=c/4yY~" 2(1 = O)w|
]Z:; [2(k +1)j = 2(k + 1) + X + 1] + X + 1|](la)j—1(j TG+ 1)(s = 3b) <X, - Xyl (3.42)

Now applying (1.6) in (3.42), we get

41 -1, c
2k+ D+ X+ 1 a—-1(1 -1
Qe+ 1) + X, + |>( )(g D+ )
16(l, — 1),
X +1-1X,+1]-4 )| ——— -1
+(X + 1 =X + 1] - 4k + ))( 2 )(gal()+4(l ) )
(s —3b)
<X - Xl :
<o = Xils = (3.43)
We will get the required result from (3.43). This completes the proof. O

3.3. Results on the convolution operators Y} (¥, z) and &, (¥, z) associated with the class R” d(é)

Theorem 3.17. Let y(z) € A Again if Y(2) € R} () and satisfies the following condition, then
YhW.2) € Sys(t.n).

k+ 1Y, (p)+[k+ D(c+r+1w+u)+ A +rwlY, _(p)
+[(k+1)(c+r+Du+ 1+ nnulY,—1(p)
—k+D(c+r+2)u+v)— 1 +r)(u+v)
(d—-25)

<[k+D(c+r+2)+ A +r]Ju+v)+ m(w —¢(u+v)).

Proof. Substituting Eq (1.5) in (3.1), as the sufficient condition for the class Sﬁjﬁ(t, r), we get the
following expression:

prG-1"
(-D!

Z k+DG=1wv+j(s+r+1w+u)+(c+r+ Du)+ (1 +r)u+ jv)] e x|
=
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<u-—g¢(u+v). (3.44)

Since 1 + (j — 1)(d — 2s + js) = (j — 1)(d — 2s), the inequality from (2.4) can be written as

) < 2(1 - 9)lw
V=G D@28

Using the bound from (3.45) in the inequality (3.44), we obtain

=2,3,---. (3.45)

Z[(k+ DGG-1Dv+ jl(c+r+1)ywv+u)+(s+r+ Du)
=)
(- 1)’"6 _p 2lwl(1 - 9)
(- D! (j— 1 -2s)
<u-—-¢(u+v). (3.46)

+ (1 +r(u+jv)]

Now applying (1.3) and (1.4) in (3.46), and then using the result in (3.44), we get

k+ DY, (p) =D+ (k+D((s+r+Dv+uw¥,_(p)-1)
+(k+ (s +r+ Du¥y(p) = 1)
+ (1 + Nup1(p) = D + (L + ), (p) - 1)

(d-2s)
<—"(u- + V). 3.47
Sl = 6) (u—gs(u+v) (3.47)
From (3.47), we obtain the required result. O

Remark 3.2. Ifwetaked =1, s=0,¢=1,v=0u=1k=0,r=0,andt =0 in Theorem 3.17,

20(l =6
then it reduces to Theorem 4.3 of [25] for A=0, B=1,and A =1 + M
T

Theorem 3.18. Let a function y(z) € A and of the form (1.1). Again if Y(z) € R} (6) and satisfies the
following condition, then M'(y,z) € k — UCSP(t, ).

2kY,(p) + (cost — )Y, 1(P)<2k+(cost—r)( o )

2(1 = owl)

Proof. Substituting Eq (1.5) in (3.4), as the sufficient condition for the class k — UCSP(t, r), we get
the following expression:

PG =D

Z(Zk(]—1)+cost—r)] o

e ’|xj| <cost—r. (3.48)
J=2 G-

Applying (3.45) in (3.48), we have

pG - 1" 2(1 = 6)lwl
G-1) e p(j—l)(d—2s) <cost—r.

Z(Zk(]—1)+cost—r)]

j=2
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Further simplifying, we get

oG- D" - N 1(J— ! (d - 2s)
ZkZ T P+ (cost - r)Z m— £ W 7 P <(cost-— r)m. (3.49)

Now, applying (1.4) into Eq (3.49), we conclude

d-2
2k(Y, (p)— 1)+ (cost —r)(Y,,_,(p) — 1) < (cost — r)g. (3.50)
2(1 = o)wl
Hence, the required result is obtained from (3.50), completing the proof. O

Theorem 3.19. Let a function y(z) € A and of the form (1.1). Again if Y(z) € R} (6) and satisfies the
following condition, then Y5, (., z) € k — SP,(t, r).

d-2
2kY, _,(p) + (cost —2k —r)Y,,—1(p) < (cost —r) (1 + i )

2(1 =8)wl)”

Proof. Substituting Eq (1.5) in (3.7), as the sufficient condition for the class k — SP,(t,r), we get the
following expression:

P - o

D1 e Plx;| <cost—r. (3.51)

Z(Zk(]— 1) +cost —r)

Jj=2 (

Applying (3.15) in (3.51), we have

plG-n" 2(1 = 9)wl
jZZ(Zk]+cost— 2k — ) G-l ep(j—l)(d—2s)SCOSt_r'

Further simplifying, we get

=i — 1yl =i — 1yn-1
2k2p U= D" oy (cost—2k— )Z—p V= D"

(j— D! (j=1!
(d —2s)
< (COSt— r)m (352)

Now, applying (1.4) into Eq (3.52), we conclude

d-2
2k(Y, _,(p) — 1) + (cost — 2k — r)(Y;u-1(p) — 1) < (cost — r)g. (3.53)
2(1 = o)wl
By virtue of (3.53), the desired conclusion is achieved, and the proof is thereby finalized. O

Theorem 3.20. Let y(z) € A. Again if Y(z) € RY () and satisfies the following condition, then
Y5, 2) € k= UCVIX,, Xa].

Qk+ 1) + X + 1) Yo (p) + (X + 1] + [Xo + 1]) Yiu(p)
(d = 39)X; - X

<2k+D)+2IX + 1|+ X, + 1]+
(ke 1)+ 2+ 1+ X+ 1+ =55

AIMS Mathematics Volume 10, Issue 12, 28753-28784.



28773

Proof. From the denominator of (2.4), 1 +(j—1)(d—2s+ js) > j(d —3s), and then (2.4) can be written
as
2(1 = 9)|w|

IJI_W =2,3,---. (3.54)

Substituting Eq (1.5) in (2.7), applying (3.54), and following as in the above theorem, we get the
following expression:

P 1(J—1)’"e_,, (1 -9)w|

D20+ DG = D+ e + 11+ X+ 1117

X, — Xyl 3.55
Z D d=3s) X2 — X (3.55)
Now applying (1.3) in (3.55), we get
(d - 39X, — X
Qe+ 1D +1X + 1) Vs (p) = D+ (X1 + 11+ X0 + 1) (Yu(p) — 1) < =L (3.56)
2(1 = o)wl
We will get the required result from (3.56). This completes the proof. O

Theorem 3.21. Let y(z) € A. Again if Y(z) € RY () and satisfies the following condition, then
yﬁ(w’ Z) € k ST[XI’XZ]

2(k + DY, (p) + X5 + 11Y,,_ (p) + X1 + 1|Y,-1(p)
(d—=25)1X, — Xy

<2k+ D)+ X+ 1+|X + 1]+
<2 )+ 11X + 1]+ X + 1 31— o)l

Proof. Substituting Eq (1.5) in (2.8), applying (3.45), and following as in the above theorem, we get
the following expression:

PG - D" -p 2 = 9)lw]
G-D! ~ (-D(d-2s

Z[Z(k+ DG=1D+ X+ 1|+ X, + 1]

<|1X; - Xyl (3.57)
=2 )
Now applying (1.3) and (1.4) in (3.57), we get

d-25)X - X
2(k + DY u(p) = D) + X2 + 1Y, (p) = 1) + Xy + (Y- 1(P)—1)_( > DX ll- (3.58)
(1-9)wl

From (3.58), we obtain the required result. O

Theorem 3.22. Let y(z) € A Again if Y(z) € RY (6) and satisfies the following condition, then
8. e, 2) € Syt ).

[+ DG+ r+ Dyt + (1 + g - G, )

_ (4u(la - D[k + 1)(5 treD+ 1+ r])ga—l(l)

B u(l, - D[k+1)(c+r+1)+1+7] c 1
c ) 41, - 1)

(d-3s)

<[+ Dlls+rt Dyt + (1wl + = g+ vl —o .
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Proof. Substituting Eq (1.11) in (3.1), as the sufficient condition for the class S’V‘j(t, r), we get the
following expression:

Z[(k+ DG-1v+jl(c+r+1yw+u)+(s+r+ Du)

Jj=2

(=c/4y"!
(la)j-1(j = D!
<u-gs+v). (3.59)

+ (1 +r(u+jv)] |x

Applying (3.54) on the left side of (3.59), we have

Z[(k+ DGG=1v+ j(s+r+1)w+u)+(c+r+ Du)

=2
(—c/4)y~" 2(1 - §)lw|

(L) j-1(G = D! j(d = 3s)

<u-—-g¢(u+v). (3.60)

+ (1 +r(u+jv)

Now applying (1.6) in (3.60), we get
(K + 1)v(i)gaﬂ(1>
+[(k+D(c+r+1v+u)+ 1 +rvl(G.(1) - 1)

[k + D(s+r+ Du+ A+ Pul (#) (ga_l(l) S )

4(la = 1)
(d-35s)
—su+v)]—7—7——. 3.61
< [u—g¢u+v)] 30 = o)l (3.61)
Hence, the required result is obtained from (3.61), completing the proof. O

Theorem 3.23. Let a function y(z) € A and of the form (1.1). Again if Y(z) € R} (6) and satisfies the
following condition, then &, .(,2) € k — UCSP(t, ).

d—-3s )

2kG, (1) — (cost = r)Gu(1) < (cost —r) (m B

Proof. Substituting Eq (1.11) in (3.4), as the sufficient condition for the class k — UCSP(t,r), we get
the following expression:

(=c/4)!

Z(2k(j — 1)+ cost — r)j—(la)j_l(j Y

J=2

lxj] < cost—r. (3.62)

Applying (3.54) in (3.62), we have

N ; o (=c/4t 21 = o)l
;(Zk(J —1)+cost— r)](la)j—l(j 1 =3 <cost—r. (3.63)
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Simplifying (3.63), we get

(- C/ )/ (—c/4) (d - 3s)
2kz 0 + (cosi )Z o = S =35 (3.64)

Now, applying (1.6) and (1.7) into Eq (3.35), we conclude

d-3
2kG, (1) — (cost —r)(G,(1) — 1) < (cost — r)ﬁ. (3.65)

The desired result follows directly from (3.65), which completes the proof. O

Theorem 3.24. Let a function y(z) € A and of the form (1.1). Again if Y(z) € R} (6) and satisfies the
following condition, then &, .(,z) € k — SP,(t, ).

keG,(1) —2(cost =2k —r)(l, — 1)G,-1(1) + 2(cost = 2k — r)(l, — 1)

(d - 3s) )

C
< 2k t—-r=1+—7"7"7"—].
< 2kc + (cos r)2( +2(1—6)|w|

Proof. Substituting Eq (1.11) in (3.7), as the sufficient condition for the class k — SP, (¢, r), we get the
following expression:

> (@k(j — 1) +cost - PN < cost—r. (3.66)
‘= (la)j-1(j = D!
Applying (3.54) in (3.66), we have
N —c/4)t 2(1 -
> (k) +cost 2%k~ 1) e/ 20 =00 osi— .

= (l)j-1(G = D! j(d - 3s)

Further simplifying, we get

[

(—c/4)/ - 1) (—c/4) (d —3s)
2.1, S+ (eost =2k n=— Z(Z . S @St G6D
Now, applying (1.6) into Eq (3.67), we conclude
-4, - 1) c (d - 3s)
2k(ga(1) — 1)+ (cost — 2k — l’)f (Qa_l(l) -1+ 4(la ~ 1)) < (cost— l’)m (368)
From (3.68), we obtain the required result. O

Theorem 3.25. Let y(z) € A. Again if Y(z) € RY () and satisfies the following condition, then
ala,c(w’ Z) ek-— WC(V[Xl, X2]

Q2+ 1)+ 1X; + 1D G,(1) + (X1 + 1]+ X; + 1) Gu(1)
(d - 3s)

<IXi+1|+|X+1+1X - X{|————.
X+ 111X+ 1+ 1 = Xilg 7
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Proof. Substituting Eq (1.11) in (2.7), applying (3.54), and following as in the above theorem, we get
the following expression:

_ -1 -
(—c/4" 21 5>|SV)V'§|X2_X1|. (3.69)

Z; 20+ D = D+ 06 + DI+ 106 + DIl o =

Now applying (1.7) and (1.6) in (3.69), we get

(d - 3s)

QU+ 1)+ X+ 1D G+ (X1 + 11+ 1K + 1D Galh) = 1) < X2 = Xl

(3.70)

Hence, the required result is obtained from (3.70), completing the proof. O

Theorem 3.26. Let y(z) € A Again if Y(2) € RY () and satisfies the following condition, then
Sla,c(l/’v Z) €k— ST[X], XQ]

Qe+ 1D+ X + 1) Go(D) + (IXy + 1] = 2(k + 1)) Go-1(D)
(d - 3s)

<X+ 1|+ |X; + 1|+ | X - Xy|——.
<X+ 11+ X0+ 11+ X = Xilg g — o

Proof. Substituting Eq (1.11) in (2.8), applying (3.54), and following as in the above theorem, we get
the following expression:

S o (—c/4™" 2(1 - 6wl
; [2(k+ 1)j+ jIXo + 1|+ X, + 1| = 2(k + 1)](la)j—l(j_ D1 jid = 3s) <X, - Xl (3.71)

J

Now applying (1.6) in (3.71), we get

d—3s
Qk+D+1X + ID(Gu(D) = D+ (X + 1] = 2(k + 1)) (Gar (D) = D) < X5 — Xllm- (3.72)
The desired result follows directly from (3.72), which completes the proof. O
3.4. Geometric properties of the integral operator 9),,(p, 2)
The integral operator 9),,(p, z) is defined, for all z € D, by
“Yu(p,6 oG-
@m(P, Z) = f (p )de =z+ Z We_pzf. (373)

Theorem 3.27. Let y(z) € A. If Y(2) satisfies the following condition:
2kY, (p) + (cost — 2k — r)Y,,(p) < 2(cost —r),

then 9),,(p,z) € k — UCSP(t,r).

Proof. The proof is similar to the preceding theorems. In particular, the sufficient condition in
Theorem 3.27 is identical to that given in Theorem 3.4. O
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A convolution operator 9%,(¢, z) is defined, for ¥/(z) € A and z € D, by

o PG =D

j—1 )
V0.0 = Dulp 0+ (@) = 2+ 33 e e, (3.74)
=2 ‘

where * denotes the Hadamard product.

Theorem 3.28. Let a function y/(z) € A and of the form (1.1). Again if y(z) € M} (6) and satisfies the
following condition, then V1, z) € k — UCSP(t,r).

2kY! (p) + (cost — 2k — r)Y,,_ 2(p)<(cost_r)(1+ (s —2b) )

2(1 =)l )
Theorem 3.29. Let y(z) € A. Again if Y(z) € My (6) and satisfies the following condition, then
V0, z) € k—UCV[X,, Xa].

2(k + DY,mi(p) + 1Xo + 1Y, (p) + 1X1 + 1Y,2(p)
(s —2b)
2(1 = d)lwl

Theorem 3.30. Let a function y(z) € A and of the form (1.1). Again if Y(z) € R} (6) and satisfies the
following condition, then D', z) € k — UCSP(t, ).

<2k+ D)+ X + 11+ 1X7 + 1]+ |1 X — X4

2kY, _(p) + (cost—2k —r)Y,—1(p) < (COSt—r)( d—"2s )

2(1 =8)wl)”

Theorem 3.31. Let y(z) € A. Again if Y(z) € R} ,(6) and satisfies the following condition, then
Z(lﬁ, Z) € k - (L{C(V[le X2]

20k + DYu(p) +1X2 + 1Y, (p) + 1Xi + 1Y-1(p)
(d-2s)1X; - X||
2(1 = §)lwl

Remark 3.3. The conditions stated in Theorems 3.28-3.31 are similar to the sufficient conditions given
in Theorem 3.9, Theorem 3.11, Theorem 3.19, and Theorem 3.21, respectively.

<2k+ D)+ X+ 1+ X+ 1]+

3.5. Geometric properties of the integral operator ®,(2)

An integral operator ®,(z) is defined, for all z € D, by

Z C/4)] L
®.(2) = (0)dO = 3.75
@) fogm Z(l)jl(]), (3.75)
Theorem 3.32. Let y(z) € A be a function of the form (1.1). If y(z) satisfies the following condition:
[+ D5+ -+ Dy +1)+ (1 + G - S ”VCgaﬂ(l)

+[k+1D(c+r+ Du+ ({1 +nrul®,(1)
<k+du+((k+D)(c+r+1D)+1+r—¢)(v+u),

then G,(z) € S5(t, ).
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Proof. Substituting (3.75) in (3.1), we obtain

(=c/4)"!

Z[(k +D(G=-1wv+jc+rv+ ju+v)+(+nu+u)+ 1 +ru+ jv)]——
= (la)j—l(])!

<u-—gu+v).
Applying (1.7) and (1.8) in the above expression, we obtain

(k + 1)v §a+1(1) +[(k+DUc+r+Dv+uw)+ (1 +rpl(Gu(1) - 1)

+ [(k +I)c+r+Du+{1+nru](G,(1)-1)
<u-—-g(u+v). (3.76)

The required result follows directly from (3.76). O
Theorem 3.33. Let Y(z) € A be a function of the form (1.1). If Y(2) satisfies the following condition:

2kG. (1) + (cost — r)G,(1) < 2(cost —r),

then ©,(z) € k — UCSP(t,r).
Proof. Applying (3.75) in (3.4), we obtain

i(Zk(]—1)+cost—r)](_ D cost—r.
= () (D!~

Simplifying, we get

(—c/4)™! 2 (=c/4)i!
2k Z(l )J G- +(COSI—F)sz <cost—r.

Using (1.7) and (1.6) in the above expression, we obtain
2kG.(1) + (cost —r) (G,(1) — 1) < cost —r. (3.77)
Hence, the required result is obtained from (3.77), completing the proof. O
Theorem 3.34. Let Y(z) € A be a function of the form (1.1). If Y(2) satisfies the following condition:
2kG.(1) + (cost — 2k — r)®,(1) < 2(cost —r),

then ©,(z) € k — SP,(t, r).
Proof. Applying (3.75) in (3.7), we obtain

> (@kj +cost -2k - P st
Z, ()1 ()!
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Simplifying, we have

(=c/4)™! 2\ (—c/4)i!
2k oy S AT
Z ()G = D! + (cost r); W) < COSt—T

Using (1.6) and (3.75) in the above expression, we get
2k (G, (1) = 1)+ (cost =2k —r)(G,(1)—1) <cost—r.
It follows from (3.78) that the required result holds true, which concludes the proof.

A convolution operator €, .(, z) is defined by

(=c/4)"!

€Wy 2) = Gul2) # l//(z)—z+2(l) T
Jj-

where * denotes the Hadamard product.

Theorem 3.35. Let y(z) € A. Suppose Y(z) € M;, (6) and satisfies the following condition:

8kc(l — 1)Ga-1(1) + 16(cos t — 4k — r)(ly — 2)2Ga—(1)
C
+ 16(cost — 4k — l")(la - 2)2 (m - 1) + 8ke(l, — 1)
- (cost — r)c? (1 s (s —3b) )

- 2 (1=8)wl)
Then €, .(Y,2) € k = UCSP(t, ).
Proof. Substituting (3.79) and (3.29) into (3.4), we obtain

[ee)

' (—c/4)7™" 2(1 - 6)lw]
JZ:;(%(J + 1)+ cost — 4k — r)J(la)j—l(j)! G+ s —3b) <cost—r.

Simplifying (3.80), we get
4(l -1 (—c/4y 16(l, — 2), —c/4)/
Z(l S TN TG Z(l ~2,0)

(s=3b)
2(1 = §)lwl’

Applying (1.6) to (3.81), we get

< (cost—r)

-4, -1
2h—— (g A =1+ o —1))
16(/,

2), ¢ ¢
+(cost—4k—r)c— (g“ 2(1) = T 32(la_2)2)
(s —3b)

2(1 = o)lwl’

Hence, the required result is obtained from (3.82), completing the proof.

< (cost—r)

(3.78)

(3.79)

(3.80)

(3.81)

(3.82)

O
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Theorem 3.36. Let y/(2) € A. Suppose Y(z) € M;, (6) and satisfies the following condition:

(41 = [)Q2%K + 1) + X5 + 1)) cGai (1)
+16(1X, + 1| = [X5 + 1| = 4k + 1))(ls = 2)2Ga-2(1)

c
+16(X, + 1| -1 X, + 1| =4k + 1)), — 2), (4(10 ) - 1)
+Q2Kk+1)+ X, + 1|)c2 (@ — 1) —(IXi+1-1X+ 1| -4k + 1))%
(s=3b)
S |X2—X1|m.

Then €, .(Y,2) € k — UCV[X1, Xz].
Proof. Substituting (3.79) in (2.7), and then applying (3.29), we obtain

(=c/4"" 201 = 5wl
(la) j-1(D! J(G + 1D(s = 3b)

o (—c/4y~1 201 = O)wl
2+ 1= e 1146+ DIy = oo s

=2
<X, = Xil.

JQKk+ D +1X + 1D + D]

.MS

~
I
[\S]

Now applying (1.7) and (1.6) to (3.83), we get

2+ 1)+ X + 1”(4(1; l“))(ga_ml) T )

Y
16(l, -2 1
P+ 1= e 1= D)2 (G - 1 ) )
(s=3b)
<P~ X3 g

The desired result follows directly from (3.84), which completes the proof.

Theorem 3.37. Let y(z) € A. Suppose y(z) € R! (0) and satisfies the following condition:

Sy

2kcG,(1)+4(cost —2k—r)(l, — 1)G,_1(1) —4(cost -2k —r)(, - 1)

(d - 3s) 1)

<4 - —
< 4kc + (cost r)c(z(1 o]

Then €, (y,2) € k — UCSP(t, ).
Proof. Substituting (3.79) and (3.54) into (3.4), we obtain

(2kj+cost—2k—r)j <cost—r.

i (=c/4)' 2(1 = §)lwl
(la)j-1 (D! jd =3s) —

j=2

(3.83)

(3.84)

(3.85)
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Simplifying (3.85), we get

N (—c/4)! (d - 3s)
Z‘ 0. (])' " 4 (cost— 2k - )Z O S (Cost =13 (3.86)
Applying (1.6) and (1.7) to (3.86), we get
41,-1) c (d - 3s)
2k(G,(1) — 1) + (cost — 2k —r) (ga (1) - 4(la — 1)) < (cost— r)2(1 o] (3.87)
From (3.87), we obtain the required result. O

Theorem 3.38. Let y(z) € A. Suppose Y(z) € RY (6) and satisfies the following condition:

Qlk+ 1)+ 1Xa + 1DGa(1) + 40X, + 11 =26+ )2, (1)
£ (X + 1] =26k + 1) 4(1“6_ D+ 11+ 1% + 1)
S 2
TG

Then €, (¥, 2) € k — UCVI[X;, X>].

Proof. Substituting Eq (1.11) in (2.7), applying (3.54), and proceeding as in the previous theorem, we
obtain

(o8]

' ; (—c/4)Y712(1 = )|w|
]Z:; JlQE+ D+ Xy + 1))+ Xy + 1] = 2(k + 1)](la)j_1(j)! W 3s) < |1X; - Xl (3.88)

Now, applying (1.7) and (1.6) to (3.88), we get

Qe+ 1D+ X + 1) (Ga(D) = D) + 40X, + 1] - 2(k + 1))( )Qa (1)
41 -1, c
Xi+1-2(k+1 -1
+ (X1 + 1] =20+ D) — (4(10_1) )
(d - 3s)
<|X; - Xi|lm/7/7——. 3.89
<Xz 1|2(1 By (3.839)
Consequently, by using (3.89), we arrive at the required result, thereby concluding the proof. O

4. Conclusions

The findings of this study provide a comprehensive framework for analyzing the geometric behavior
of operators associated with Touchard polynomials and generalized Bessel functions of the first kind.
In this work, we have examined the inclusion properties of the Touchard polynomials Y, (p,z) and
the generalized Bessel functions of the first kind G,(z), along with their associated convolution and
integral operators, within the analytic function classes R} ,(6) and My’ (6). By employing coefficient
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bounds and appropriate parameter constraints, we have derived sufficient conditions ensuring that the
considered operators belong to various subclasses of starlike and convex functions. These findings
not only unify and extend several existing results in geometric function theory but also highlight new
interconnections between special functions and operator theory.

The results presented in this study provide a deeper understanding of how linear operators are
generated by special functions. The inclusion results established among different subclasses contribute
to the broader framework of geometric function theory by offering generalized criteria that can be
applied to a wide range of operators. Overall, this work enriches the theory of analytic and univalent
functions, providing the way for future investigations involving more generalized operators, fractional
calculus approaches, and other well-known special functions such as Struve functions, error functions,
hypergeometric functions, and g—analogues of special functions.
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