
https://www.aimspress.com/journal/Math

AIMS Mathematics, 10(12): 28753–28784.
DOI: 10.3934/math.20251265
Received: 25 August 2025
Revised: 25 October 2025
Accepted: 25 November 2025
Published: 05 December 2025

Research article

Geometric analysis of integral operators related to Touchard polynomials
and generalized Bessel functions

Manas Kumar Giri1, Narjes Alabkary2,*, Raghavendar Kondooru1 and Saiful R. Mondal2

1 Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology Vellore,
Vellore 632014, India

2 Department of Mathematics and Statistics, College of Science, King Faisal University, Al-Ahsa
31982, Saudi Arabia

* Correspondence: Email: nalabkary@kfu.edu.sa.
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m(ψ, z) and Ela,c(ψ, z),
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and unifying several existing results in geometric function theory.
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1. Introduction

The classification and behavior of subclasses such as starlike, convex, and close-to-convex
functions, along with extremal problems and coefficient estimates for normalized analytic functions,
play a central role in geometric function theory.

A normalized analytic function ψ(z) is of the form

ψ(z) = z +

∞∑
j=2

x jz j, (1.1)

defined on the open unit disk ∆ = {z ∈ C : |z| < 1}.
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Let A be the class of normalized analytic functions and S be the class of univalent functions. The
classes of starlike functions and convex functions are denoted by S∗ and C, respectively (see [1]).

A normalized analytic function ψ(z) is said to be k-uniformly convex of order r if and only if

<

(
1 +

zψ′′(z)
ψ′(z)

)
≥ k

∣∣∣∣∣zψ′′(z)
ψ′(z)

∣∣∣∣∣ + r,

where 0 ≤ k < ∞ and 0 ≤ r < 1. This class of functions is denoted by k −UCV(r) (see [2]).
If r = 0, then k −UCV(0) ≡ k −UCV, and if k = 1, then 1−UCV(0) ≡ UCV. For more details,

see [3–7].
A related class k − Sp(r) is defined as ψ(z) ∈ k −UCV(r) ⇐⇒ zψ′(z) ∈ k − Sp(r).
If r = 0, then k − Sp(0) ≡ k − ST (see [8]).
Again, ψ(z) is said to be a k Janowski convex function if and only if

<


(X2 − 1)

(zψ′(z))′

ψ′(z)
− (X1 − 1)

(X2 + 1)
(zψ′(z))′

ψ′(z)
− (X1 + 1)

 > k

∣∣∣∣∣∣∣∣∣∣∣
(X2 − 1)

(zψ′(z))′

ψ′(z)
− (X1 − 1)

(X2 + 1)
(zψ′(z))′

ψ′(z)
− (X1 + 1)

− 1

∣∣∣∣∣∣∣∣∣∣∣ ,
where k ≥ 0 and −1 ≤ X2 < X1 ≤ 1. This class of functions is denoted by k−UCV[X1, X2] (see [9,10]).

Again a related class k − ST [X1, X2] is defined as ψ(z) ∈ k − UCV[X1, X2] ⇐⇒ zψ′(z) ∈
k − ST [X1, X2].

Note that if X1 = 1−2r and X2 = −1, then k−ST [1−2r,−1] ≡ k−Sp(r) and k−UCV[1−2r,−1] ≡
k −UCV(r).

In recent years, several researchers have constructed convolution operators based on special
functions because of their deep connections with mathematical analysis. In particular, operators
associated with the Touchard polynomials and the generalized Bessel functions of the first kind provide
a fruitful framework for analyzing various subclasses of analytic functions. Convolution operators
transform one analytic function into another while preserving important geometric properties such as
univalence, convexity, and starlikeness. For further details, see [15–17].

Motivated by these connections, the present work introduces and investigates new convolution
operators derived from the Touchard polynomials and the generalized Bessel function of the first
kind. These operators are studied in the context of the analytic function classes Rw

s,d(δ) andMw
b,s(δ) to

establish inclusion properties and sufficient conditions under which the operators preserve geometric
characteristics. This approach not only unifies several existing results in the literature but also extends
them to a more general framework involving special functions and probability-related structures.

Let us define convolution operators associated with the Touchard polynomials and the generalized
Bessel function of the first kind. The Touchard polynomials (see [18]) arise naturally in the
enumeration of set partitions and the study of Poisson-type distributions (see [19, 20]).

The Poisson distribution is defined for a random variable X and expected value p. The mth moment
E(Xm) = Tm(p) is defined as

Tm(p) = e−p
∞∑
j=0

p j jm

j!
. (1.2)
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The coefficients of the Touchard polynomials after the second force are defined as follows:

Ym(p, z) = z +

∞∑
j=2

p j−1( j − 1)m

( j − 1)!
e−pz j. (1.3)

Y ′m(p) = Y ′m(p, 1) = 1 + e−p
∞∑
j=2

p j−1( j − 1)m

( j − 1)!
j. (1.4)

Now, we considered the linear operator Yp
m : A → A, defined as

Yp
m(ψ, z) = Ym(p, z) ∗ ψ(z) = z +

∞∑
j=2

p j−1( j − 1)m

( j − 1)!
e−px jz j = z +

∞∑
j=2

Λ jz j,

where ∗ is the Hadamard product or convolution and

Λ j =
p j−1( j − 1)m

( j − 1)!
e−px j. (1.5)

The generalized Bessel function of the first kind (see [21, 22]) Φa,b,c(z) is the particular solution of
the differential equation

z2Φ′′(z) + bzΦ′(z) + (cz2 − a2 + (1 − b)a)Φ(z) = 0,

where a, b ∈ R and c ∈ C. The ath - order generalized Bessel function of the first kind is defined as

Φa(z) = Φa,b,c(z) =

∞∑
j=0

(−1) jc j

( j)!Γ
(
a + j + b+1

2

) ( z
2

)2 j+a
, ∀z ∈ C.

Φa(z) is normalized by the transformation Ga(z), which is defined as

Ga(z) = [α0(p)]−1z−
p
2Φp(

√
z).

The series representation of Ga(z) is defined as

Ga(z) = 0F1

(
l1;−

cz
4

)
=

∞∑
j=0

(−1) jc j

4 j(la) j( j)!
z j (1.6)

where la = a + (b + 1)/2 , 0,−1,−2, · · · . The first- and second-order derivatives of Ga(z) at z = 1 are
given as follows:

G′a(1) =

∞∑
j=1

(−c/4) j

(la) j( j − 1)!
. (1.7)

G′′a (1) =

∞∑
j=2

(−c/4) j

(la) j( j − 2)!
. (1.8)
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The transformation also satisfies the following conditions (see [22]).

∞∑
n=0

(−c/4) j

(la) j(1) j+1
=
−4(la − 1)

c
[Ga−1(1) − 1] , (1.9)

and

Ga+1(z) =
−4la

c
G′a(z), ∀z ∈ C, (1.10)

where c < 0, la > 1 and la , 0,−1,−2, · · · .
Let ψ(z) ∈ A, and the convolution operator Ela,c(ψ, z) is defined as (see [23])

Ela,c(ψ, z) = zGa(z) ∗ ψ(z) = z +

∞∑
j=2

Λ jz j,

where ∗ denotes the Hadamard product or convolution and

Λ j =
(−c/4) j−1

(la) j−1( j − 1)!
x j. (1.11)

In this article, we investigate the inclusion properties of Touchard polynomials and the generalized
Bessel function of the first kind, together with their associated convolution operators, within the
function classes Rw

s,d(δ) andMw
b,s(δ) (as introduced in Section 2). Specifically, we establish sufficient

conditions, expressed in terms of the relevant parameters, that guarantee the convolution operators
belong to various subclasses of univalent functions. The main theorems, along with their proofs,
are presented in Section 3, which also explores several geometric properties of linear and integral
operators. Moreover, certain special cases of our results are shown to reduce to well-known findings in
the existing literature. For completeness, Section 2 recalls a few foundational results required for our
analysis, while the concluding remarks are given in Section 4.

2. Preliminary results

In analytic and univalent function theory, the introduction of various subclasses of normalized
analytic functions has proven useful for exploring the geometric aspects of complex mappings. This
section presents a selection of these subclasses that form the foundation for the results developed in
the later sections.

A function ψ(z) ∈ S is said to be spirallike if and only if

<

(
e−it zψ

′(z)
ψ(z)

)
> 0

for some t with |t| < π
2 and for all z ∈ ∆ (see [11, 12]).

A normalized analytic function ψ(z) is said to be k−uniformly convex spirallike of order r if and
only if

<

{
e−it

(
1 +

zψ′′(z)
ψ′(z)

)}
≥ k

∣∣∣∣∣zψ′′(z)
ψ′(z)

∣∣∣∣∣ + r, (2.1)
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where k ≥ 0, 0 ≤ r < 1, and t ≤ 1. This class of functions is denoted by k −UCSP(t, r) (see [13]).
Similarly if ψ(z) satisfies the following condition for k ≥ 0, 0 ≤ r < 1, and t ≤ 1:

<

{
e−it zψ

′(z)
ψ(z)

}
≥ k

∣∣∣∣∣zψ′(z)
ψ(z)

− 1
∣∣∣∣∣ + r, (2.2)

then it is called k−uniformly spiralike of order r. This class of functions is denoted by k − SPp(t, r).
Note that if k = 1, then 1 −UCSP(t, r) ≡ UCSP(t, r) and 1 − SPp(t, r) ≡ SPp(t, r) (see [13]).

Similarly if k = 1 and r = 0, then 1−UCSP(t, 0) ≡ UCSP(t) and 1−SPp(t, 0) ≡ SPp(t) (see [14]).
Let us define a subclass Sk,ς

v,u(t, r) of normalized analytic functions that generalizes k −UCSP(t, r),
k − SPp(t, r), k −UCV(r), k − Sp(r), and other subclasses.

Let ψ(z) ∈ A and ψ(z) will be in the class Sk,ς
v,u(t, r) if and only if

<

{
e−ιt

(
ς +

uzψ′(z) + vz2ψ′′(z)
uψ(z) + vzψ′(z)

)}
> k

∣∣∣∣∣∣uzψ′(z) + vz2ψ′′(z)
uψ(z) + vzψ′(z)

+ ς − 1

∣∣∣∣∣∣ + r, (2.3)

where k ≥ 0, 0 ≤ r < 1, t ≤ 1, and 0 ≤ u, v, ς ≤ 1.
Note that:

i. If ς = 0, v = 0, and u = 1, then Sk,ς
v,u(t, r) ≡ k − SPp(t, r), the class of k−uniformly spirallike

functions of order r.
ii. If ς = 1, v = 1, and u = 0, then Sk,ς

v,u(t, r) ≡ k − UCSP(t, r), the class of k−uniformly convex
spirallike functions of order r.

iii. If ς = 0, v = 0, u = 1, and k = 1, then Sk,ς
v,u(t, r) ≡ SPp(t, r), the class of uniformly spirallike

functions of order r (see [13]).
iv. If ς = 1, v = 1, u = 0, and k = 1, then Sk,ς

v,u(t, r) ≡ UCSP(t, r), the class of uniformly convex
spirallike functions of order r (see [13]).

v. If ς = 0, v = 0, u = 1, and t = 0, then Sk,ς
v,u(t, r) ≡ k − Sp(r), the class of k−starlike functions of

order r (see [2]).
vi. If ς = 1, v = 1, u = 0, and t = 0, then Sk,ς

v,u(t, r) ≡ k − UCV(r), the class of k−uniformly convex
functions of order r (see [2]).

vii. If ς = 0, v = 0, u = 1, r = 0, and t = 0, then Sk,ς
v,u(t, r) ≡ k − ST , the class of k−starlike functions

(see [8]).
viii. If ς = 1, v = 1, u = 0, r = 0, and t = 0, then Sk,ς

v,u(t, r) ≡ k − UCV, the class of k−uniformly
convex functions (see [6]).

ix. If ς = 0, v = 0, u = 1, k = 0, r = 0, and t = 0, then Sk,ς
v,u(t, r) ≡ S∗, the class of starlike functions

(see [3]).
x. If ς = 1, v = 1, u = 0, k = 0, r = 0, and t = 0, then Sk,ς

v,u(t, r) ≡ C, the class of convex functions
(see [4]).

Definition 2.1. [2] Consider a function ψ(z) ∈ A, where w ∈ C \ 0, 0 ≤ s < 1, and 0 ≤ d ≤ 1. The
function ψ(z) is said to belong to the class Rw

s,d(δ) if it satisfies the inequality∣∣∣∣∣∣∣ (1 − d + 2s)ψ(z)
z + (d − 2s)ψ′(z) + szψ′′(z) − 1

2w(1 − δ) + (1 − d + 2s)ψ(z)
z + (d − 2s)ψ′(z) + szψ′′(z) − 1

∣∣∣∣∣∣∣ < 1.
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For function ψ(z) ∈ Rw
s,d(δ), the coefficients x j satisfy the bound

|x j| ≤
2(1 − δ)|w|

1 + ( j − 1)(d − 2s + js)
, j = 2, 3, · · · . (2.4)

Definition 2.2. [24] Consider a function ψ(z) ∈ A, where w ∈ C \ 0 and δ < 1. For parameters
0 ≤ b < 1 and 0 ≤ s < 1, the function ψ(z) is said to belong to the classMw

b,s(δ) if and only if∣∣∣∣∣ ψ′(z) + szψ′′(z) + bz2ψ′′′(z) − 1
2w(1 − δ) + ψ′(z) + szψ′′(z) + bz2ψ′′′(z) − 1

∣∣∣∣∣ < 1. (2.5)

For functions ψ(z) ∈ Mw
b,s(δ), the coefficients x j satisfy the inequality

|x j| ≤
2(1 − δ)|w|

j + j(2b − s) + j2(s − 3b) + j3s
, j = 2, 3, · · · . (2.6)

The sufficient conditions for the classes k − UCV[X1, X2] and k − ST [X1, X2] are given in the
following lemmas.

Lemma 2.1. [10] Let ψ(z) ∈ A. A sufficient condition for a function to belong to the class k −
UCV[X1, X2] is the inequality

∞∑
j=2

j
[
2(k + 1)( j − 1) + | j(X2 + 1) − (X1 + 1)|

]
|a j| ≤ |X2 − X1|. (2.7)

Lemma 2.2. [10] Let ψ(z) ∈ A. A sufficient condition for a function to belong to the class k −
ST [X1, X2] is the inequality

∞∑
j=2

[
2(k + 1)( j − 1) + | j(X2 + 1) − (X1 + 1)|

]
|a j| ≤ |X2 − X1|. (2.8)

3. Main results

In the following lemmas, we establish sufficient conditions for the classes Sk,ς
v,u(t, r), k−UCSP(t, r)

and k − SPp(t, r).

Lemma 3.1. Let ψ(z) ∈ A be a function of the form (1.1). Then, ψ(z) belongs to the class Sk,ς
v,u(t, r)

provided that the following inequality is satisfied:

∞∑
j=2

[(k + 1)
(
j( j − 1)v + j((ς + r + 1)v + u) + (ς + r + 1)u

)
+ (1 + r)(u + jv)]|x j| < u − ς(u + v). (3.1)

Proof. Suppose the condition (2.3) holds, and then it suffices to show that

k

∣∣∣∣∣∣uzψ′(z) + vz2ψ′′(z)
uψ(z) + vzψ′(z)

+ ς − 1

∣∣∣∣∣∣ + r −<
{

e−ιt
(
ς +

uzψ′(z) + vz2ψ′′(z)
uψ(z) + vzψ′(z)

)
− (1 + r)

}
< 1 + r. (3.2)
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From the left side of the above expression, we have

k

∣∣∣∣∣∣uzψ′(z) + vz2ψ′′(z)
uψ(z) + vzψ′(z)

+ ς − 1

∣∣∣∣∣∣ + r −<
{

e−ιt
(
ς +

uzψ′(z) + vz2ψ′′(z)
uψ(z) + vzψ′(z)

)
− (1 + r)

}
≤ (k + 1)

∣∣∣∣∣∣uzψ′(z) + vz2ψ′′(z)
uψ(z) + vzψ′(z)

+ ς + r − 1

∣∣∣∣∣∣
= (k + 1)

∣∣∣∣∣∣vz2 ∑∞
j=2 j( j − 1)x jz j−2 + (u + (ς + r − 1)v)z(1 +

∑∞
j=2 jx jz j−1)

u(z +
∑∞

j=2 x jz j) + vz(1 +
∑∞

j=2 jx jz j−1)

+
(ς + r − 1)u(z +

∑∞
j=2 x jz j)

u(z +
∑∞

j=2 x jz j) + vz(1 +
∑∞

j=2 jx jz j−1)

∣∣∣∣∣∣
≤ (k + 1)

∑∞
j=2[ j( j − 1)v + j(ς + r)v + j(u + v) + (ς + r)u + u]|x j|

(u + v) −
∑∞

j=2(u + jv)|x j|

+
[(ς + r)(u + v) + v]

(u + v) −
∑∞

j=2(u + jv)|x j|
.

The above expression is bounded above by 1 and applying it in (3.2), we get

(k + 1)
∞∑
j=2

[ j( j − 1)v + j(ς + r)v + j(u + v) + (ς + r)u + u]|x j| + [(ςr)(u + v) + v]

< (1 + r)(u + v) − (1 + r)
∞∑
j=2

(u + jv)|x j|. (3.3)

From (3.3) we will get the stated condition. Thus, the proof is complete. �

Lemma 3.2. Let ψ(z) ∈ A be a function of the form (1.1). Then, ψ(z) belongs to the class k −
UCSP(t, r) provided that the following inequality is satisfied:

∞∑
j=2

(2k( j − 1) + cos t − r) j|x j| ≤ cos t − r. (3.4)

Proof. Suppose the condition (2.1) given in the definition of k −UCSP(t, r) holds. Then it suffices to
show that

k
∣∣∣∣∣zψ′′(z)
ψ′(z)

∣∣∣∣∣ ≤ <{
e−it

(
1 +

zψ′′(z)
ψ′(z)

)}
− r.

That is,

k
∣∣∣∣∣zψ′′(z)
ψ′(z)

∣∣∣∣∣ −<{
e−it zψ

′′(z)
ψ′(z)

}
≤ cos t − r. (3.5)

From the left side of the above expression, we have

k
∣∣∣∣∣zψ′′(z)
ψ′(z)

∣∣∣∣∣ −<{
e−it zψ

′′(z)
ψ′(z)

}
≤ 2k

∣∣∣∣∣zψ′′(z)
ψ′(z)

∣∣∣∣∣ ≤ 2k

∑∞
j=2 j( j − 1)|x j|

1 −
∑∞

j=2 j|x j|
.
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The above expression is bounded above by 1 and applying it in (3.5), we get
∞∑
j=2

2k j( j − 1)|x j| ≤ cos t − r −
∞∑
j=2

(cos t − r) j|x j|. (3.6)

From (3.6) we will get the stated condition. Thus, the proof is complete. �

Lemma 3.3. Let ψ(z) ∈ A be a function of the form (1.1). Then, ψ belongs to the class k − SPp(t, r)
provided that the following inequality is satisfied:

∞∑
j=2

(2k( j − 1) + cos t − r)|x j| ≤ cos t − r. (3.7)

Proof. By the Alexander-type theorem, ψ(z) ∈ k −UCSP(t, r) if and only if ψ(z) ∈ k − SPp(t, r). �

Using the sufficient conditions established in the above lemmas, we obtain criteria ensuring that
the linear operators Ym(p, z) and Ga(z), defined in the Introduction, belong to different subclasses of
analytic functions.

3.1. Inclusion results for Ym(p, z) and Ga(z)

The following results are established based on the coefficients of the linear operators together with
the sufficient conditions for various subclasses of analytic functions.

Theorem 3.1. Let ψ(z) ∈ A. If ψ(z) satisfies the following condition, then Ym(p, z) ∈ Sk,ς
v,u(t, r).

(k + 1)vY ′m+1(p) + [(k + 1)((ς + r + 1)v + u) + (1 + r)v]Y ′m(p) + [(k + 1)(ς + r + 1)u + (1 + r)u]Ym(p)
< u + (k + 1)[(ς + r + 2)(v + u)] + (1 + r − ς)(u + v).

Proof. Substituting Eq (1.3) in (3.1), as the sufficient condition for the class Sk,ς
v,u(t, r), we get the

following expression:
∞∑
j=2

[(k + 1)
(
j( j − 1)v + j((ς + r + 1)v + u) + (ς + r + 1)u

)
+ (1 + r)u + (1 + r)v j]

p j−1( j − 1)m

( j − 1)!
e−p

< u − ς(u + v).

This leads to the following expression:

(k + 1)v
∞∑
j=2

j
p j−1( j − 1)m+1

( j − 1)!
e−p + (k + 1)((ς + r + 1)v + u)

∞∑
j=2

j
p j−1( j − 1)m

( j − 1)!
e−p

+ (k + 1)(ς + r + 1)u
∞∑
j=2

p j−1( j − 1)m

( j − 1)!
e−p + (1 + r)u

∞∑
j=2

p j−1( j − 1)m

( j − 1)!
e−p + (1 + r)v

∞∑
j=2

j
p j−1( j − 1)m

( j − 1)!
e−p

< u − ς(u + v).

Applying the identity (1.4) to simplify the above, we obtain

(k + 1)v
(
Y ′m+1(p) − 1

)
+ (k + 1)((ς + r + 1)v + u)

(
Y ′m(p) − 1

)
+ (k + 1)(ς + r + 1)u (Ym(p) − 1)

+ (1 + r)u (Ym(p) − 1) + (1 + r)v
(
Y ′m(p) − 1

)
< u − ς(u + v). (3.8)

Hence, the required result is obtained from (3.8), completing the proof. �
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Theorem 3.2. Let a function ψ(z) ∈ A and of the form (1.1). If ψ(z) satisfies the following condition,
then Ga(z) ∈ Sk,ς

v,u(t, r).

(k + 1)vG′′a (1) + [(k + 1)((ς + r + 1)v + u) + (1 + r)v]G′a(1) + [(k + 1)(ς + r + 1)u + (1 + r)u]Ga(1)

+ [(k + 1)((ς + r + 1)(v + u) + u) + (1 + r)(v + u)]
c

4la
< (2 + r)u − ς(u + v) + (k + 1)(ς + r + 1)u.

Proof. Substituting Eq (1.6) in (3.1), as the sufficient condition for the class Sk,ς
v,u(t, r), we get the

following expression:

∞∑
j=2

[(k + 1)
(
j( j − 1)v + j(ς + r)v + j(u + v) + (ς + r)u + u

)
+ (1 + r)(u + jv)]

(−c/4) j

(la) j( j)!

< u − ς(u + v).

Applying (1.7) and (1.8) in the above expression, we obtain the following result:

(k + 1)vG′′a (1) + [(k + 1)((ς + r)v + (u + v)) + (1 + r)v]
(
G′a(1) +

c
4la

)
+ [(k + 1)((ς + r)u + u) + (1 + r)u]

(
Ga(1) +

c
4la
− 1

)
< u − ς(u + v). (3.9)

We will get the required result from (3.9). �

Theorem 3.3. Let ψ(z) ∈ A. If ψ(z) satisfies the following condition, then Ym(p, z) ∈ k −UCSP(t, r).

2kY ′m+1(p) + (cos t − r)Y ′m(p) ≤ 2(k − r + cos t).

Proof. Substituting Eq (1.3) in (3.4), as the sufficient condition for the class k − UCSP(t, r), we get
the following expression:

∞∑
j=2

(2k( j − 1) + cos t − r) j
p j−1( j − 1)m

( j − 1)!
e−p ≤ cos t − r.

This leads to the following expression:

2k
∞∑
j=2

j
p j−1( j − 1)m+1

( j − 1)!
e−p + (cos t − r)

∞∑
j=2

j
p j−1( j − 1)m

( j − 1)!
e−p ≤ cos t − r.

Applying the identity (1.4) to simplify the above, we obtain

2k
(
Y ′m+1(p) − 1

)
+ (cos t − r)

(
Y ′m(p) − 1

)
≤ cos t − r. (3.10)

The desired result follows directly from (3.10), which completes the proof. �

Theorem 3.4. Let ψ(z) ∈ A. If ψ(z) satisfies the following condition, then Ym(p, z) ∈ k − SPp(t, r).

2kY ′m(p) + (cos t − 2k − r)Ym(p) ≤ 2(cos t − r).
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Proof. Substituting Eq (1.3) in (3.7), as the sufficient condition for the class k − SPp(t, r), we get the
following expression:

∞∑
j=2

(2k j + cos t − 2k − r)
p j−1( j − 1)m

( j − 1)!
e−p ≤ cos t − r.

This leads to the following expression:

2k
∞∑
j=2

j
p j−1( j − 1)m

( j − 1)!
e−p + (cos t − 2k − r)

∞∑
j=2

p j−1( j − 1)m

( j − 1)!
e−p ≤ cos t − r.

Applying the identity (1.4) to simplify the above, we obtain

2k
(
Y ′m(p) − 1

)
+ (cos t − r) (Ym(p) − 1) ≤ cos t − r. (3.11)

From (3.11), we obtain the required result. �

Theorem 3.5. Let a function ψ(z) ∈ A and of the form (1.1). If ψ(z) satisfies the following condition,
then Ga(z) ∈ k −UCSP(t, r).

2kG′′a (1) + (cos t − r)G′a(1) ≤ (cos t − r)
(
1 −

c
4la

)
.

Proof. Substituting Eq (1.6) in (3.4), as the sufficient condition for the class k − UCSP(t, r), we get
the following expression:

∞∑
j=2

(2k( j − 1) + cos t − r) j
(−c/4) j

(la) j( j)!
≤ cos t − r.

Simplifying the above expression, we have

2k
∞∑
j=2

(−c/4) j

(la) j( j − 2)!
+ (cos t − r)

∞∑
j=2

(−c/4) j

(la) j( j − 1)!
≤ cos t − r.

Applying (1.7) and (1.8) in the above expression, we obtain the following result:

2kG′′a (1) + (cos t − r)
(
G′a(1) +

c
4la

)
≤ cos t − r. (3.12)

Hence, the required result is obtained from (3.12), completing the proof. �

Theorem 3.6. Let a function ψ(z) ∈ A and of the form (1.1). If ψ(z) satisfies the following condition,
then Ga(z) ∈ k − SPp(t, r).

8klaG
′
a(1) + 4la(cos t − 2k − r)Ga(1) + c(cos t − r) ≤ 8la(cos t − k − r).
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Proof. Substituting Eq (1.6) in (3.7), as the sufficient condition for the class k − UCSP(t, r), we get
the following expression:

∞∑
j=2

(2k j + cos t − 2k − r)
(−c/4) j

(la) j( j)!
≤ cos t − r.

Simplifying the above expression, we have

2k
∞∑
j=2

(−c/4) j

(la) j( j − 1)!
+ (cos t − 2k − r)

∞∑
j=2

(−c/4) j

(la) j( j)!
≤ cos t − r.

Applying (1.6) and (1.7) in the above expression, we obtain the following result:

2k
(
G′a(1) +

c
4la

)
+ (cos t − 2k − r)

(
Ga(1) +

c
4la
− 1

)
≤ cos t − r. (3.13)

We will get the required result from (3.13). �

Using linear operators Ym(p, z) and Ga(z), the convolution operators Yp
m(ψ, z) and Ela,c(ψ, z) were

introduced in the Introduction. Based on the coefficient bounds of the classesMw
b,s(δ) and Rw

s,d(δ), we
establish sufficient conditions ensuring that these convolution operators belong to different subclasses
of analytic functions.

3.2. Results on the convolution operators Yp
m(ψ, z) and Ela,c(ψ, z) associated with the classMw

b,s(δ)

The following theorems provide conditions under which the operatorsYp
m(ψ, z) and Ela,c(ψ, z) belong

to the classes Sk,ς
v,u(t, r), k −UCSP(t, r), k − SPp(t, r), k −UCV[X1, X2], and k − ST [X1, X2].

Theorem 3.7. Let a function ψ(z) ∈ A and of the form (1.1). Again if ψ(z) ∈ Mw
b,s(δ) and satisfies the

following condition, then Yp
m(ψ, z) ∈ Sk,ς

v,u(t, r).

(k + 1)vY ′m−1(p) + [(k + 1)((ς + r + 1)v + u) + (1 + r)v]Y ′m−2(p) + [(k + 1)(ς + r + 1)u + (1 + r)u]Ym−2(p)

< (1 + r + (k + 1)(ς + r + 2))(v + u) + (u − λ(u + v))
(s − 2b)

2(1 − δ)|w|
.

Proof. Substituting Eq (1.5) in (3.1), as the sufficient condition for the class Sk,ς
v,u(t, r), we get the

following expression:

∞∑
j=2

[(k + 1)
(
j( j − 1)v + j((ς + r + 1)v + u) + (ς + r + 1)u

)
+ (1 + r)(u + jv)]

p j−1( j − 1)m

( j − 1)!
e−p|x j|

< u − ς(u + v). (3.14)

From the denominator of (2.6), j + j(2b − s) + j2(s − 3b) + j3b ≥ ( j − 1)2(s − 2b), and then (2.6) is

|x j| ≤
2(1 − δ)|w|

( j − 1)2(s − 2b)
, j = 2, 3, · · · . (3.15)
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Substituting this upper bound from (3.15) into the inequality (3.14), we have

∞∑
j=2

[(k + 1)
(
j( j − 1)v + j((ς + r + 1)v + u) + (ς + r + 1)u

)
+ (1 + r)(u + jv)]

p j−1( j − 1)m

( j − 1)!
e−p|x j|

≤

∞∑
j=2

[(k + 1)
(
j( j − 1)v + j((ς + r + 1)v + u) + (ς + r + 1)u

)
+ (1 + r)(u + jv)]

p j−1( j − 1)m

( j − 1)!
e−p 2(1 − δ)|w|

( j − 1)2(s − 2b)

=
2(1 − δ)|w|

(s − 2b)

(k + 1)v
∞∑
j=2

p j−1( j − 1)m−1

( j − 1)!
e−p j

+ [(k + 1)((ς + r + 1)v + u) + (1 + r)v]
∞∑
j=2

p j−1( j − 1)m−2

( j − 1)!
e−p j

+ [(k + 1)(ς + r + 1)u + (1 + r)u]
∞∑
j=2

p j−1( j − 1)m−2

( j − 1)!
e−p

 . (3.16)

Now, applying (1.3) and (1.4) into Eq (3.16), and then using the result in (3.14), we conclude

(k + 1)v(Y ′m−1(p) − 1) + [(k + 1)((ς + r + 1)v + u) + (1 + r)v](Y ′m−2(p) − 1)
+ [(k + 1)(ς + r + 1)u + (1 + r)u](Ym−2(p) − 1)

< (u − ς(u + v))
(s − 2b)

2(1 − δ)|w|
. (3.17)

Hence, the required result is obtained from (3.17), completing the proof. �

Remark 3.1. If we take b = 0, s = 0, ς = 1, v = 0, u = 1, k = 0, r = 0, and t = 0 in Theorem 3.7, this

result reduces to Theorem 4.3 of [25] when λ = 0, B = 1, and A = 1 +
2ω(1 − δ)

τ
.

Theorem 3.8. Let a function ψ(z) ∈ A and of the form (1.1). Again if ψ(z) ∈ Mw
b,s(δ) and satisfies the

following condition, then Yp
m(ψ, z) ∈ k −UCSP(t, r).

2kY ′m−1(p) + (cos t − r)Y ′m−2(p) ≤ 2k + (cos t − r)
(
1 +

(s − 2b)
2(1 − δ)|w|

)
.

Proof. Substituting Eq (1.5) in (3.4), as the sufficient condition for the class k − UCSP(t, r), we get
the following expression:

∞∑
j=2

(2k( j − 1) + cos t − r) j
p j−1( j − 1)m

( j − 1)!
e−p|x j| ≤ cos t − r. (3.18)
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Applying (3.15) in (3.18), we have

∞∑
j=2

(2k( j − 1) + cos t − r) j
p j−1( j − 1)m

( j − 1)!
e−p 2(1 − δ)|w|

( j − 1)2(s − 2b)
≤ cos t − r.

Further simplifying, we get

2k
∞∑
j=2

j
p j−1( j − 1)m−1

( j − 1)!
e−p + (cos t − r)

∞∑
j=2

j
p j−1( j − 1)m−2

( j − 1)!
e−p ≤ (cos t − r)

(s − 2b)
2(1 − δ)|w|

. (3.19)

Now, applying (1.4) into Eq (3.19), we conclude

2k(Y ′m−1(p) − 1) + (cos t − r)(Y ′m−2(p) − 1) ≤ (cos t − r)
(s − 2b)

2(1 − δ)|w|
. (3.20)

Hence, the required result is obtained from (3.20), completing the proof. �

Theorem 3.9. Let a function ψ(z) ∈ A and of the form (1.1). Again if ψ(z) ∈ Mw
b,s(δ) and satisfies the

following condition, then Yp
m(ψ, z) ∈ k − SPp(t, r).

2kY ′m−2(p) + (cos t − 2k − r)Ym−2(p) ≤ (cos t − r)
(
1 +

(s − 2b)
2(1 − δ)|w|

)
.

Proof. Substituting Eq (1.5) in (3.7), as the sufficient condition for the class k − SPp(t, r), we get the
following expression:

∞∑
j=2

(2k( j − 1) + cos t − r)
p j−1( j − 1)m

( j − 1)!
e−p|x j| ≤ cos t − r. (3.21)

Applying (3.15) in (3.21), we have

∞∑
j=2

(2k j + cos t − 2k − r)
p j−1( j − 1)m

( j − 1)!
e−p 2(1 − δ)|w|

( j − 1)2(s − 2b)
≤ cos t − r.

Further simplifying, we get

2k
∞∑
j=2

j
p j−1( j − 1)m−2

( j − 1)!
e−p + (cos t − 2k − r)

∞∑
j=2

p j−1( j − 1)m−2

( j − 1)!
e−p ≤ (cos t − r)

(s − 2b)
2(1 − δ)|w|

. (3.22)

Now, applying (1.4) into Eq (3.22), we conclude

2k(Y ′m−2(p) − 1) + (cos t − 2k − r)(Ym−2(p) − 1) ≤ (cos t − r)
(s − 2b)

2(1 − δ)|w|
. (3.23)

The desired result follows directly from (3.23), which completes the proof. �
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Theorem 3.10. Let ψ(z) ∈ A. Again if ψ(z) ∈ Mw
b,s(δ) and satisfies the following condition, then

Y
p
m(ψ, z) ∈ k −UCV[X1, X2].

(2(k + 1) + |X2 + 1|) Y ′m−1(p) + (|X1 + 1| + |X2 + 1|) Y ′m−2(p)

≤ 2(k + 1) + 2|X2 + 1| + |X1 + 1| +
(s − 2b)|X2 − X1|

2(1 − δ)|w|
.

Proof. Substituting Eq (1.5) in (2.7), applying (3.15), and following as in the above theorem, we get
the following expression:

∞∑
j=2

j
[
2(k + 1)( j − 1) + j|(X2 + 1)| + |(X1 + 1)|

] p j−1( j − 1)m

( j − 1)!
e−p 2(1 − δ)|w|

( j − 1)2(s − 2b)

≤ |X2 − X1|. (3.24)

Now, applying (1.3) in (3.24), we conclude

(2(k + 1) + |(X2 + 1)|) (Y ′m−1(p) − 1) + (|(X1 + 1)| + |(X2 + 1)|) (Y ′m−2(p) − 1) ≤
(s − 2b)|X2 − X1|

2(1 − δ)|w|
.

(3.25)

From (3.25), we obtain the required result. �

Theorem 3.11. Let ψ(z) ∈ A. Again if ψ(z) ∈ Mw
b,s(δ) and satisfies the following condition, then

Y
p
m(ψ, z) ∈ k − ST [X1, X2].

2(k + 1)Ym−1(p) + |X2 + 1|Y ′m−1(p) + |X1 + 1|Ym−2(p) ≤ 2(k + 1) + |X2 + 1| + |X1 + 1| + |X2 − X1|
(s − 2b)

2(1 − δ)|w|
.

Proof. Substituting Eq (1.5) in (2.8), applying (3.15), and following as in the above theorem, we get
the following expression:

∞∑
j=2

[
2(k + 1)( j − 1) + j|(X2 + 1)| + |(X1 + 1)|

] p j−1( j − 1)m

( j − 1)!
e−p 2(1 − δ)|w|

( j − 1)2(s − 2b)

≤ |X2 − X1|. (3.26)

Now applying (1.3) and (1.4) in (3.26), we get

2(k + 1)(Ym−1(p) − 1) + |(X2 + 1)|(Y ′m−1(p) − 1) + |(X1 + 1)|(Ym−2(p) − 1) ≤ |X2 − X1|
(s − 2b)

2(1 − δ)|w|
.

(3.27)

Hence, the required result is obtained from (3.27), completing the proof. �

Theorem 3.12. Let ψ(z) ∈ A. Again, if ψ(z) ∈ Mw
b,s(δ) and the following condition is met, then

Ela,c(ψ, z) ∈ Sk,ς
v,u(t, r).

(k + 1)vGa(1) + [(k + 1)((ς + r − 1)v + u) + (1 + r)v]
(
4(1 − la)

c

)
Ga−1(1)
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+ [(k + 1)(2v − u) + (1 + r)(u − v)]
(
16(la − 2)2

c2

)
Ga−2(1)

+ [(k + 1)((ς + r − 1)v + u) + (1 + r)v]
(
4(la − 1)

c
− 1

)
+ [(k + 1)(2v − u) + (1 + r)(u − v)]

(
16(la − 2)2

c2

) (
c

4(la − 2)
− 1

)
< (k + 1)(3v − u) + (1 + r)(u − v) + [u − ς(u + v)]

(s − 3b)
2(1 − δ)|w|

.

Proof. Substituting Eq (1.11) in (3.1), as the sufficient condition for the class Sk,ς
v,u(t, r), we get the

following expression:
∞∑
j=2

[(k + 1)
(
j( j − 1)v + j((ς + r + 1)v + u) + (ς + r + 1)u

)
+ (1 + r)(u + jv)]

(−c/4) j−1

(la) j−1( j − 1)!
|x j|

< u − ς(u + v). (3.28)

From the denominator of (2.6), j + j(2b − s) + j2(s − 3b) + j3ρ ≥ j( j + 1)(s − 3b), and then (2.6)
can be written as

|x j| ≤
2(1 − δ)|w|

j( j + 1)(s − 3b)
. (3.29)

Substituting this upper bound from (3.29) into the inequality (3.28), we get

∞∑
j=2

[(k + 1)v j( j + 1) + ( j + 1)[(k + 1)((ς + r − 1)v + u) + (1 + r)v]

+ (k + 1)(2v − u) + (1 + r)(u − v)]
(−c/4) j−1

(la) j−1( j − 1)!
2(1 − δ)|w|

j( j + 1)(s − 3b)
< u − ς(u + v). (3.30)

Now applying (1.6) in (3.30), we get

(k + 1)v(Ga(1) − 1)

+ [(k + 1)((ς + r − 1)v + u) + (1 + r)v]
(
4(1 − la)

c

) (
Ga−1(1) − 1 +

c
4(la − 1)

)
+ [(k + 1)(2v − u) + (1 + r)(u − v)]

(
16(la − 2)2

c2

(
Ga−2(1) − 1 +

c
4(la − 2)

)
− 1

)
< [u − ς(u + v)]

(s − 3b)
2(1 − δ)|w|

. (3.31)

The desired result follows directly from (3.31), which completes the proof. �

Theorem 3.13. Let a function ψ(z) ∈ A and of the form (1.1). Again if ψ(z) ∈ Mw
b,s(δ) and satisfies the

following condition, then Ela,c(ψ, z) ∈ k −UCSP(t, r).

2kcGa(1) − 4(la − 1)(cos t − 2k − r)Ga−1(1) − 8k(la − 1) ≤ (cos t − r)
(
c − 4(la − 1) +

c(s − 3b)
2(1 − δ)|w|

)
.
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Proof. Substituting Eq (1.11) in (3.4), as the sufficient condition for the class k − UCSP(t, r), we get
the following expression:

∞∑
j=2

(2k( j − 1) + cos t − r) j
(−c/4) j−1

(la) j−1( j − 1)!
|x j| ≤ cos t − r. (3.32)

From the denominator of (2.6), j + j(2b − s) + j2(s − 3b) + j3b ≥ j2(s − 3b), and then (2.6) can be
written as

|x j| ≤
2(1 − δ)|w|
j2(s − 3b)

, j = 2, 3, · · · . (3.33)

Applying (3.33) in (3.32), we have

∞∑
j=2

(2k j + cos t − 2k − r) j
(−c/4) j−1

(la) j−1( j − 1)!
2(1 − δ)|w|
j2(s − 3b)

≤ cos t − r. (3.34)

Simplifying (3.34), we get

2k
∞∑
j=1

(−c/4) j

(la) j( j)!
+ (cos t − 2k − r)

−4(la − 1)
c

∞∑
j=2

(−c/4) j

(la − 1) j( j)!
≤ (cos t − r)

(s − 3b)
2(1 − δ)|w|

. (3.35)

Now, applying (1.6) into equation (3.35), we conclude

2k(Ga(1) − 1) − (cos t − 2k − r)
4(la − 1)

c

(
Ga−1(1) − 1 +

(c/4)
(la − 1)

)
≤ (cos t − r)

(s − 3b)
2(1 − δ)|w|

. (3.36)

From (3.36), we obtain the required result. �

Theorem 3.14. Let a function ψ(z) ∈ A and of the form (1.1). Again if ψ(z) ∈ Mw
b,s(δ) and satisfies the

following condition, then Ela,c(ψ, z) ∈ k − SPp(t, r).

8kc(1 − la)Ga−1(1) + 16(cos t − 4k − r)(la − 2)2Ga−2(1)

+ 16(cos t − 4k − r)(la − 2)2

(
c

4(la − 2)
− 1

)
+ 8kc(la − 1) + 2kc2

≤ (cos t − r)c2
(
1 +

(s − 3b)
2(1 − δ)|w|

)
.

Proof. Substituting Eq (1.11) in (3.7), as the sufficient condition for the class k − SPp(t, r), we get the
following expression:

∞∑
j=2

(2k( j − 1) + cos t − r)
(−c/4) j−1

(la) j−1( j − 1)!
|x j| ≤ cos t − r. (3.37)

Applying (3.29) in (3.37), we have

∞∑
j=2

(2k( j + 1) + cos t − 4k − r)
(−c/4) j−1

(la) j−1( j − 1)!
2(1 − δ)|w|

j( j + 1)(s − 3b)
≤ cos t − r.
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Further simplifying, we get

2k
−4(la − 1)

c

∞∑
j=2

(−c/4) j

(la − 1) j( j)!
+ (cos t − 4k − r)

42(la − 2)2

c2

∞∑
j=2

(−c/4) j+1

(la − 2) j+1( j + 1)!

≤ (cos t − r)
(s − 3b)

2(1 − δ)|w|
. (3.38)

Now, applying (1.6) into equation (3.38), we conclude

2k
4(la − 1)

c

(
Ga−1(1) − 1 +

(c/4)
(la − 1)

)
+ (cos t − 4k − r)

42(la − 2)2

c2

(
Ga−2(1) − 1 +

c
4(la − 2)

−
c2

16(la − 2)2

)
≤ (cos t − r)

(s − 3b)
2(1 − δ)|w|

. (3.39)

Hence, the required result is obtained from (3.39), completing the proof. �

Theorem 3.15. Let ψ(z) ∈ A. Again if ψ(z) ∈ Mw
b,s(δ) and satisfies the following condition, then

Ela,c(ψ, z) ∈ k −UCV[X1, X2].

(2(k + 1) + |X2 + 1|)Ga(1) + [|X1 + 1| − 2(k + 1)]
(
4(1 − la)

c

)
Ga−1(1)

+ [|X1 + 1| − 2(k + 1)]
(
4(1 − la)

c

) (
c

4(la − 1)
− 1

)
≤ 2(k + 1) + |X2 + 1| + |X2 − X1|

(s − 3b)
2(1 − δ)|w|

.

Proof. Substituting Eq (1.11) in (2.7), applying (3.33), and following as in the above theorem, we get
the following expression:

∞∑
j=2

j
[
2(k + 1)( j − 1) + j|X2 + 1| + |X1 + 1|

] (−c/4) j−1

(la) j−1( j − 1)!
2(1 − δ)|w|
j2(s − 3b)

≤ |X2 − X1|. (3.40)

Now applying (1.7) and (1.6) in (3.40), we get

(2(k + 1) + |X2 + 1|) (Ga(1) − 1)

+ [|X1 + 1| − 2(k + 1)]
(
4(1 − la)

c

) (
Ga−1(1) − 1 +

(c/4)
(la − 1)

)
≤ |X2 − X1|

(s − 3b)
2(1 − δ)|w|

. (3.41)

The desired result follows directly from (3.41), which completes the proof. �
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Theorem 3.16. Let a function ψ(z) ∈ A and of the form (1.1). Again if ψ(z) ∈ Mw
b,s(δ) and satisfies the

following condition, then Ela,c(ψ, z) ∈ k − ST [X1, X2].

(2(k + 1) + |X2 + 1|)
(
4(1 − la)

c

)
Ga−1(1)

+ (|X1 + 1| − |X2 + 1| − 4(k + 1))
(
16(la − 1)2

c2

)
Ga−2(1)

+ (2(k + 1) + |X2 + 1|)
(
4(1 − la)

c

) (
c

4(la − 1)
− 1

)
+ (|X1 + 1| − |X2 + 1| − 4(k + 1))

(
16(la − 1)2

c2

) (
c

4(la − 2)
− 1

)
≤ |X2 − X1|

(s − 3b)
2(1 − δ)|w|

.

Proof. Substituting Eq (1.11) in (2.8), applying (3.29), and following as in the above theorem, we get
the following expression:

∞∑
j=2

[
2(k + 1) j − 2(k + 1) + |X2 + 1| j + |X1 + 1|

] (−c/4) j−1

(la) j−1( j − 1)!
2(1 − δ)|w|

j( j + 1)(s − 3b)
≤ |X2 − X1|. (3.42)

Now applying (1.6) in (3.42), we get

(2(k + 1) + |X2 + 1|)
(
4(1 − la)

c

) (
Ga−1(1) +

c
4(la − 1)

− 1
)

+ (|X1 + 1| − |X2 + 1| − 4(k + 1))
(
16(la − 1)2

c2

) (
Ga−2(1) +

c
4(la − 2)

− 1
)

≤ |X2 − X1|
(s − 3b)

2(1 − δ)|w|
. (3.43)

We will get the required result from (3.43). This completes the proof. �

3.3. Results on the convolution operators Yp
m(ψ, z) and Ela,c(ψ, z) associated with the class Rw

s,d(δ)

Theorem 3.17. Let ψ(z) ∈ A. Again if ψ(z) ∈ Rw
s,d(δ) and satisfies the following condition, then

Y
p
m(ψ, z) ∈ Sk,ς

v,u(t, r).

(k + 1)vY ′m(p) + [(k + 1)((ς + r + 1)v + u) + (1 + r)v]Y ′m−1(p)
+ [(k + 1)(ς + r + 1)u + (1 + r)u]Ym−1(p)
− (k + 1)((ς + r + 2)(u + v) − (1 + r)(u + v)

< [(k + 1)((ς + r + 2) + (1 + r)](u + v) +
(d − 2s)

2(1 − δ)|w|
(u − ς(u + v)).

Proof. Substituting Eq (1.5) in (3.1), as the sufficient condition for the class Sk,ς
v,u(t, r), we get the

following expression:
∞∑
j=2

[(k + 1)
(
j( j − 1)v + j((ς + r + 1)v + u) + (ς + r + 1)u

)
+ (1 + r)(u + jv)]

p j−1( j − 1)m

( j − 1)!
e−p|x j|
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< u − ς(u + v). (3.44)

Since 1 + ( j − 1)(d − 2s + js) ≥ ( j − 1)(d − 2s), the inequality from (2.4) can be written as

|x j| ≤
2(1 − δ)|w|

( j − 1)(d − 2s)
, j = 2, 3, · · · . (3.45)

Using the bound from (3.45) in the inequality (3.44), we obtain

∞∑
j=2

[(k + 1)
(
j( j − 1)v + j((ς + r + 1)v + u) + (ς + r + 1)u

)
+ (1 + r)(u + jv)]

p j−1( j − 1)m

( j − 1)!
e−p 2|w|(1 − δ)

( j − 1)(d − 2s)
< u − ς(u + v). (3.46)

Now applying (1.3) and (1.4) in (3.46), and then using the result in (3.44), we get

(k + 1)v(Y ′m(p) − 1) + (k + 1)((ς + r + 1)v + u)(Y ′m−1(p) − 1)
+ (k + 1)(ς + r + 1)u(Ym−1(p) − 1)
+ (1 + r)u(Ym−1(p) − 1) + (1 + r)v(Y ′m−1(p) − 1)

<
(d − 2s)

2|w|(1 − δ)
(u − ς(u + v)). (3.47)

From (3.47), we obtain the required result. �

Remark 3.2. If we take d = 1, s = 0, ς = 1, v = 0, u = 1, k = 0, r = 0, and t = 0 in Theorem 3.17,

then it reduces to Theorem 4.3 of [25] for λ = 0, B = 1, and A = 1 +
2ω(1 − δ)

τ
.

Theorem 3.18. Let a function ψ(z) ∈ A and of the form (1.1). Again if ψ(z) ∈ Rw
s,d(δ) and satisfies the

following condition, then Yp
m(ψ, z) ∈ k −UCSP(t, r).

2kY ′m(p) + (cos t − r)Y ′m−1(p) ≤ 2k + (cos t − r)
(
1 +

(d − 2s)
2(1 − δ)|w|

)
.

Proof. Substituting Eq (1.5) in (3.4), as the sufficient condition for the class k − UCSP(t, r), we get
the following expression:

∞∑
j=2

(2k( j − 1) + cos t − r) j
p j−1( j − 1)m

( j − 1)!
e−p|x j| ≤ cos t − r. (3.48)

Applying (3.45) in (3.48), we have

∞∑
j=2

(2k( j − 1) + cos t − r) j
p j−1( j − 1)m

( j − 1)!
e−p 2(1 − δ)|w|

( j − 1)(d − 2s)
≤ cos t − r.
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Further simplifying, we get

2k
∞∑
j=2

j
p j−1( j − 1)m

( j − 1)!
e−p + (cos t − r)

∞∑
j=2

j
p j−1( j − 1)m−1

( j − 1)!
e−p ≤ (cos t − r)

(d − 2s)
2(1 − δ)|w|

. (3.49)

Now, applying (1.4) into Eq (3.49), we conclude

2k(Y ′m(p) − 1) + (cos t − r)(Y ′m−1(p) − 1) ≤ (cos t − r)
(d − 2s)

2(1 − δ)|w|
. (3.50)

Hence, the required result is obtained from (3.50), completing the proof. �

Theorem 3.19. Let a function ψ(z) ∈ A and of the form (1.1). Again if ψ(z) ∈ Rw
s,d(δ) and satisfies the

following condition, then Yp
m(ψ, z) ∈ k − SPp(t, r).

2kY ′m−1(p) + (cos t − 2k − r)Ym−1(p) ≤ (cos t − r)
(
1 +

d − 2s
2(1 − δ)|w|

)
.

Proof. Substituting Eq (1.5) in (3.7), as the sufficient condition for the class k − SPp(t, r), we get the
following expression:

∞∑
j=2

(2k( j − 1) + cos t − r)
p j−1( j − 1)m

( j − 1)!
e−p|x j| ≤ cos t − r. (3.51)

Applying (3.15) in (3.51), we have

∞∑
j=2

(2k j + cos t − 2k − r)
p j−1( j − 1)m

( j − 1)!
e−p 2(1 − δ)|w|

( j − 1)(d − 2s)
≤ cos t − r.

Further simplifying, we get

2k
∞∑
j=2

j
p j−1( j − 1)m−1

( j − 1)!
e−p + (cos t − 2k − r)

∞∑
j=2

p j−1( j − 1)m−1

( j − 1)!
e−p

≤ (cos t − r)
(d − 2s)

2(1 − δ)|w|
. (3.52)

Now, applying (1.4) into Eq (3.52), we conclude

2k(Y ′m−1(p) − 1) + (cos t − 2k − r)(Ym−1(p) − 1) ≤ (cos t − r)
(d − 2s)

2(1 − δ)|w|
. (3.53)

By virtue of (3.53), the desired conclusion is achieved, and the proof is thereby finalized. �

Theorem 3.20. Let ψ(z) ∈ A. Again if ψ(z) ∈ Rw
s,d(δ) and satisfies the following condition, then

Y
p
m(ψ, z) ∈ k −UCV[X1, X2].

(2(k + 1) + |X2 + 1|) Ym+1(p) + (|X1 + 1| + |X2 + 1|) Ym(p)

≤ 2(k + 1) + 2|X2 + 1| + |X1 + 1| +
(d − 3s)|X2 − X1|

2(1 − δ)|w|
.
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Proof. From the denominator of (2.4), 1 + ( j−1)(d−2s + js) ≥ j(d−3s), and then (2.4) can be written
as

|x j| ≤
2(1 − δ)|w|
j(d − 3s)

, j = 2, 3, · · · . (3.54)

Substituting Eq (1.5) in (2.7), applying (3.54), and following as in the above theorem, we get the
following expression:

∞∑
j=2

j
[
2(k + 1)( j − 1) + j|X2 + 1| + |X1 + 1|

] p j−1( j − 1)m

( j − 1)!
e−p 2(1 − δ)|w|

j(d − 3s)
|X2 − X1|. (3.55)

Now applying (1.3) in (3.55), we get

(2(k + 1) + |X2 + 1|) (Ym+1(p) − 1) + (|X1 + 1| + |X2 + 1|) (Ym(p) − 1) ≤
(d − 3s)|X2 − X1|

2(1 − δ)|w|
. (3.56)

We will get the required result from (3.56). This completes the proof. �

Theorem 3.21. Let ψ(z) ∈ A. Again if ψ(z) ∈ Rw
s,d(δ) and satisfies the following condition, then

Y
p
m(ψ, z) ∈ k − ST [X1, X2].

2(k + 1)Ym(p) + |X2 + 1|Y ′m−1(p) + |X1 + 1|Ym−1(p)

≤ 2(k + 1) + |X2 + 1| + |X1 + 1| +
(d − 2s)|X2 − X1|

2(1 − δ)|w|
.

Proof. Substituting Eq (1.5) in (2.8), applying (3.45), and following as in the above theorem, we get
the following expression:

∞∑
j=2

[
2(k + 1)( j − 1) + j|X2 + 1| + |X1 + 1|

] p j−1( j − 1)m

( j − 1)!
e−p 2(1 − δ)|w|

( j − 1)(d − 2s)
≤ |X2 − X1|. (3.57)

Now applying (1.3) and (1.4) in (3.57), we get

2(k + 1)(Ym(p) − 1) + |X2 + 1|(Y ′m−1(p) − 1) + |X1 + 1|(Ym−1(p) − 1) ≤
(d − 2s)|X2 − X1|

2(1 − δ)|w|
. (3.58)

From (3.58), we obtain the required result. �

Theorem 3.22. Let ψ(z) ∈ A. Again if ψ(z) ∈ Rw
s,d(δ) and satisfies the following condition, then

Ela,c(ψ, z) ∈ Sk,ς
v,u(t, r).

[(k + 1)((ς + r + 1)v + u) + (1 + r)v]Ga(1) −
c(k + 1)v

4la
Ga+1(1)

−

(
4u(la − 1)[(k + 1)(ς + r + 1) + 1 + r]

c

)
Ga−1(1)

−

(
4u(la − 1)[(k + 1)(ς + r + 1) + 1 + r]

c

) (
c

4(la − 1)
− 1

)
< [(k + 1)((ς + r + 1)v + u) + (1 + r)v] + [u − ς(u + v)]

(d − 3s)
2(1 − δ)|w|

.
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Proof. Substituting Eq (1.11) in (3.1), as the sufficient condition for the class Sk,ς
v,u(t, r), we get the

following expression:

∞∑
j=2

[(k + 1)
(
j( j − 1)v + j((ς + r + 1)v + u) + (ς + r + 1)u

)
+ (1 + r)(u + jv)]

(−c/4) j−1

(la) j−1( j − 1)!
|x j|

< u − ς(u + v). (3.59)

Applying (3.54) on the left side of (3.59), we have

∞∑
j=2

[(k + 1)
(
j( j − 1)v + j((ς + r + 1)v + u) + (ς + r + 1)u

)
+ (1 + r)(u + jv)]

(−c/4) j−1

(la) j−1( j − 1)!
2(1 − δ)|w|
j(d − 3s)

< u − ς(u + v). (3.60)

Now applying (1.6) in (3.60), we get

(k + 1)v
(
−c
4la

)
Ga+1(1)

+ [(k + 1)((ς + r + 1)v + u) + (1 + r)v](Ga(1) − 1)

+ [(k + 1)(ς + r + 1)u + (1 + r)u]
(
−4(la − 1)

c

) (
Ga−1(1) − 1 +

c
4(la − 1)

)
< [u − ς(u + v)]

(d − 3s)
2(1 − δ)|w|

. (3.61)

Hence, the required result is obtained from (3.61), completing the proof. �

Theorem 3.23. Let a function ψ(z) ∈ A and of the form (1.1). Again if ψ(z) ∈ Rw
s,d(δ) and satisfies the

following condition, then Ela,c(ψ, z) ∈ k −UCSP(t, r).

2kG′a(1) − (cos t − r)Ga(1) ≤ (cos t − r)
(

d − 3s
2(1 − δ)|w|

− 1
)
.

Proof. Substituting Eq (1.11) in (3.4), as the sufficient condition for the class k − UCSP(t, r), we get
the following expression:

∞∑
j=2

(2k( j − 1) + cos t − r) j
(−c/4) j−1

(la) j−1( j − 1)!
|x j| ≤ cos t − r. (3.62)

Applying (3.54) in (3.62), we have

∞∑
j=2

(2k( j − 1) + cos t − r) j
(−c/4) j−1

(la) j−1( j − 1)!
2(1 − δ)|w|
j(d − 3s)

≤ cos t − r. (3.63)
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Simplifying (3.63), we get

2k
∞∑
j=1

(−c/4) j

(la) j( j − 1)!
+ (cos t − r)

∞∑
j=1

(−c/4) j

(la) j( j)!
≤ (cos t − r)

(d − 3s)
2(1 − δ)|w|

. (3.64)

Now, applying (1.6) and (1.7) into Eq (3.35), we conclude

2kG′a(1) − (cos t − r) (Ga(1) − 1) ≤ (cos t − r)
(d − 3s)

2(1 − δ)|w|
. (3.65)

The desired result follows directly from (3.65), which completes the proof. �

Theorem 3.24. Let a function ψ(z) ∈ A and of the form (1.1). Again if ψ(z) ∈ Rw
s,d(δ) and satisfies the

following condition, then Ela,c(ψ, z) ∈ k − SPp(t, r).

kcGa(1) − 2(cos t − 2k − r)(la − 1)Ga−1(1) + 2(cos t − 2k − r)(la − 1)

≤ 2kc + (cos t − r)
c
2

(
1 +

(d − 3s)
2(1 − δ)|w|

)
.

Proof. Substituting Eq (1.11) in (3.7), as the sufficient condition for the class k − SPp(t, r), we get the
following expression:

∞∑
j=2

(2k( j − 1) + cos t − r)
(−c/4) j−1

(la) j−1( j − 1)!
|x j| ≤ cos t − r. (3.66)

Applying (3.54) in (3.66), we have

∞∑
j=2

(2k j + cos t − 2k − r)
(−c/4) j−1

(la) j−1( j − 1)!
2(1 − δ)|w|
j(d − 3s)

≤ cos t − r.

Further simplifying, we get

2k
∞∑
j=1

(−c/4) j

(la) j( j)!
+ (cos t − 2k − r)

−4(la − 1)
c

∞∑
j=2

(−c/4) j

(la − 1) j( j)!
≤ (cos t − r)

(d − 3s)
2(1 − δ)|w|

. (3.67)

Now, applying (1.6) into Eq (3.67), we conclude

2k(Ga(1) − 1) + (cos t − 2k − r)
−4(la − 1)

c

(
Ga−1(1) − 1 +

c
4(la − 1)

)
≤ (cos t − r)

(d − 3s)
2(1 − δ)|w|

. (3.68)

From (3.68), we obtain the required result. �

Theorem 3.25. Let ψ(z) ∈ A. Again if ψ(z) ∈ Rw
s,d(δ) and satisfies the following condition, then

Ela,c(ψ, z) ∈ k −UCV[X1, X2].

(2(k + 1) + |X2 + 1|)G′a(1) + (|X1 + 1| + |X2 + 1|)Ga(1)

≤ |X1 + 1| + |X2 + 1| + |X2 − X1|
(d − 3s)

2(1 − δ)|w|
.
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Proof. Substituting Eq (1.11) in (2.7), applying (3.54), and following as in the above theorem, we get
the following expression:

∞∑
j=2

j
[
2(k + 1)( j − 1) + j|(X2 + 1)| + |(X1 + 1)|

] (−c/4) j−1

(la) j−1( j − 1)!
2(1 − δ)|w|
j(d − 3s)

≤ |X2 − X1|. (3.69)

Now applying (1.7) and (1.6) in (3.69), we get

(2(k + 1) + |X2 + 1|)G′a(1) + (|X1 + 1| + |X2 + 1|) (Ga(1) − 1) ≤ |X2 − X1|
(d − 3s)

2(1 − δ)|w|
. (3.70)

Hence, the required result is obtained from (3.70), completing the proof. �

Theorem 3.26. Let ψ(z) ∈ A. Again if ψ(z) ∈ Rw
s,d(δ) and satisfies the following condition, then

Ela,c(ψ, z) ∈ k − ST [X1, X2].

(2(k + 1) + |X2 + 1|)Ga(1) + (|X1 + 1| − 2(k + 1))Ga−1(1)

≤ |X2 + 1| + |X1 + 1| + |X2 − X1|
(d − 3s)

2(1 − δ)|w|
.

Proof. Substituting Eq (1.11) in (2.8), applying (3.54), and following as in the above theorem, we get
the following expression:

∞∑
j=2

[
2(k + 1) j + j|X2 + 1| + |X1 + 1| − 2(k + 1)

] (−c/4) j−1

(la) j−1( j − 1)!
2(1 − δ)|w|
j(d − 3s)

≤ |X2 − X1|. (3.71)

Now applying (1.6) in (3.71), we get

(2(k + 1) + |X2 + 1|) (Ga(1) − 1) + (|X1 + 1| − 2(k + 1)) (Ga−1(1) − 1) ≤ |X2 − X1|
(d − 3s)

2(1 − δ)|w|
. (3.72)

The desired result follows directly from (3.72), which completes the proof. �

3.4. Geometric properties of the integral operator Ym(p, z)

The integral operator Ym(p, z) is defined, for all z ∈ D, by

Ym(p, z) =

∫ z

0

Ym(p, θ)
θ

dθ = z +

∞∑
j=2

p j−1( j − 1)m

( j)!
e−pz j. (3.73)

Theorem 3.27. Let ψ(z) ∈ A. If ψ(z) satisfies the following condition:

2kY ′m(p) + (cos t − 2k − r)Ym(p) ≤ 2(cos t − r),

then Ym(p, z) ∈ k −UCSP(t, r).

Proof. The proof is similar to the preceding theorems. In particular, the sufficient condition in
Theorem 3.27 is identical to that given in Theorem 3.4. �
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A convolution operator Yp
m(ψ, z) is defined, for ψ(z) ∈ A and z ∈ D, by

Y
p
m(ψ, z) = Ym(p, z) ∗ ψ(z) = z +

∞∑
j=2

p j−1( j − 1)m

( j)!
e−px jz j, (3.74)

where ∗ denotes the Hadamard product.

Theorem 3.28. Let a function ψ(z) ∈ A and of the form (1.1). Again if ψ(z) ∈ Mw
b,s(δ) and satisfies the

following condition, then Yp
m(ψ, z) ∈ k −UCSP(t, r).

2kY ′m−2(p) + (cos t − 2k − r)Ym−2(p) ≤ (cos t − r)
(
1 +

(s − 2b)
2(1 − δ)|w|

)
.

Theorem 3.29. Let ψ(z) ∈ A. Again if ψ(z) ∈ Mw
b,s(δ) and satisfies the following condition, then

Y
p
m(ψ, z) ∈ k −UCV[X1, X2].

2(k + 1)Ym−1(p) + |X2 + 1|Y ′m−1(p) + |X1 + 1|Ym−2(p)

≤ 2(k + 1) + |X2 + 1| + |X1 + 1| + |X2 − X1|
(s − 2b)

2(1 − δ)|w|
.

Theorem 3.30. Let a function ψ(z) ∈ A and of the form (1.1). Again if ψ(z) ∈ Rw
s,d(δ) and satisfies the

following condition, then Yp
m(ψ, z) ∈ k −UCSP(t, r).

2kY ′m−1(p) + (cos t − 2k − r)Ym−1(p) ≤ (cos t − r)
(
1 +

d − 2s
2(1 − δ)|w|

)
.

Theorem 3.31. Let ψ(z) ∈ A. Again if ψ(z) ∈ Rw
s,d(δ) and satisfies the following condition, then

Y
p
m(ψ, z) ∈ k −UCV[X1, X2].

2(k + 1)Ym(p) + |X2 + 1|Y ′m−1(p) + |X1 + 1|Ym−1(p)

≤ 2(k + 1) + |X2 + 1| + |X1 + 1| +
(d − 2s)|X2 − X1|

2(1 − δ)|w|
.

Remark 3.3. The conditions stated in Theorems 3.28–3.31 are similar to the sufficient conditions given
in Theorem 3.9, Theorem 3.11, Theorem 3.19, and Theorem 3.21, respectively.

3.5. Geometric properties of the integral operator Ga(z)

An integral operator Ga(z) is defined, for all z ∈ D, by

Ga(z) =

∫ z

0
Ga(θ)dθ = z +

∞∑
j=2

(−c/4) j−1

(la) j−1( j)!
z j. (3.75)

Theorem 3.32. Let ψ(z) ∈ A be a function of the form (1.1). If ψ(z) satisfies the following condition:

[(k + 1)((ς + r + 1)v + u) + (1 + r)v]Ga(1) −
(k + 1)vc

4la
Ga+1(1)

+ [(k + 1)(ς + r + 1)u + (1 + r)u]Ga(1)
< (k + 2)u + ((k + 1)(ς + r + 1) + 1 + r − ς)(v + u),

then Ga(z) ∈ Sk,ς
v,u(t, r).
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Proof. Substituting (3.75) in (3.1), we obtain

∞∑
j=2

[(k + 1)
(
j( j − 1)v + j(ς + r)v + j(u + v) + (ς + r)u + u

)
+ (1 + r)(u + jv)]

(−c/4) j−1

(la) j−1( j)!

< u − ς(u + v).

Applying (1.7) and (1.8) in the above expression, we obtain

(k + 1)v
−c
4la
Ga+1(1) + [(k + 1)((ς + r + 1)v + u)) + (1 + r)v] (Ga(1) − 1)

+ [(k + 1)(ς + r + 1)u + (1 + r)u] (Ga(1) − 1)

< u − ς(u + v). (3.76)

The required result follows directly from (3.76). �

Theorem 3.33. Let ψ(z) ∈ A be a function of the form (1.1). If ψ(z) satisfies the following condition:

2kG′a(1) + (cos t − r)Ga(1) ≤ 2(cos t − r),

then Ga(z) ∈ k −UCSP(t, r).

Proof. Applying (3.75) in (3.4), we obtain

∞∑
j=2

(2k( j − 1) + cos t − r) j
(−c/4) j−1

(la) j−1( j)!
≤ cos t − r.

Simplifying, we get

2k
∞∑
j=2

(−c/4) j−1

(la) j−1( j − 2)!
+ (cos t − r)

∞∑
j=2

(−c/4) j−1

(la) j−1( j − 1)!
≤ cos t − r.

Using (1.7) and (1.6) in the above expression, we obtain

2kG′a(1) + (cos t − r) (Ga(1) − 1) ≤ cos t − r. (3.77)

Hence, the required result is obtained from (3.77), completing the proof. �

Theorem 3.34. Let ψ(z) ∈ A be a function of the form (1.1). If ψ(z) satisfies the following condition:

2kGa(1) + (cos t − 2k − r)Ga(1) ≤ 2(cos t − r),

then Ga(z) ∈ k − SPp(t, r).

Proof. Applying (3.75) in (3.7), we obtain

∞∑
j=2

(2k j + cos t − 2k − r)
(−c/4) j−1

(la) j−1( j)!
≤ cos t − r.
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Simplifying, we have

2k
∞∑
j=2

(−c/4) j−1

(la) j−1( j − 1)!
+ (cos t − 2k − r)

∞∑
j=2

(−c/4) j−1

(la) j−1( j)!
≤ cos t − r.

Using (1.6) and (3.75) in the above expression, we get

2k (Ga(1) − 1) + (cos t − 2k − r) (Ga(1) − 1) ≤ cos t − r. (3.78)

It follows from (3.78) that the required result holds true, which concludes the proof. �

A convolution operator Ela,c(ψ, z) is defined by

Ela,c(ψ, z) = Ga(z) ∗ ψ(z) = z +

∞∑
j=2

(−c/4) j−1

(la) j−1( j)!
x jz j, (3.79)

where ∗ denotes the Hadamard product.

Theorem 3.35. Let ψ(z) ∈ A. Suppose ψ(z) ∈ Mw
b,s(δ) and satisfies the following condition:

8kc(1 − la)Ga−1(1) + 16(cos t − 4k − r)(la − 2)2Ga−2(1)

+ 16(cos t − 4k − r)(la − 2)2

(
c

4(la − 2)
− 1

)
+ 8kc(la − 1)

≤
(cos t − r)c2

2

(
1 +

(s − 3b)
(1 − δ)|w|

)
.

Then Ela,c(ψ, z) ∈ k −UCSP(t, r).

Proof. Substituting (3.79) and (3.29) into (3.4), we obtain
∞∑
j=2

(2k( j + 1) + cos t − 4k − r) j
(−c/4) j−1

(la) j−1( j)!
2(1 − δ)|w|

j( j + 1)(s − 3b)
≤ cos t − r. (3.80)

Simplifying (3.80), we get

2k
−4(la − 1)

c

∞∑
j=2

(−c/4) j

(la − 1) j( j)!
+ (cos t − 4k − r)

16(la − 2)2

c2

∞∑
j=3

(−c/4) j

(la − 2) j( j)!

≤ (cos t − r)
(s − 3b)

2(1 − δ)|w|
. (3.81)

Applying (1.6) to (3.81), we get

2k
−4(la − 1)

c

(
Ga−1(1) − 1 +

c
4(la − 1)

)
+ (cos t − 4k − r)

16(la − 2)2

c2

(
Ga−2(1) − 1 +

c
4(la − 2)

−
c2

32(la − 2)2

)
≤ (cos t − r)

(s − 3b)
2(1 − δ)|w|

. (3.82)

Hence, the required result is obtained from (3.82), completing the proof. �
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Theorem 3.36. Let ψ(z) ∈ A. Suppose ψ(z) ∈ Mw
b,s(δ) and satisfies the following condition:

(4(1 − la)(2(k + 1) + |X2 + 1|)) cGa−1(1)
+ 16(|X1 + 1| − |X2 + 1| − 4(k + 1))(la − 2)2Ga−2(1)

+ 16(|X1 + 1| − |X2 + 1| − 4(k + 1))(la − 2)2

(
c

4(la − 2)
− 1

)
+ (2(k + 1) + |X2 + 1|)c2

(
4(la − 1)

c
− 1

)
− (|X1 + 1| − |X2 + 1| − 4(k + 1))

1
2

≤ |X2 − X1|
(s − 3b)

2(1 − δ)|w|
.

Then Ela,c(ψ, z) ∈ k −UCV[X1, X2].

Proof. Substituting (3.79) in (2.7), and then applying (3.29), we obtain

∞∑
j=2

j
[
(2(k + 1) + |X2 + 1|)( j + 1)

] (−c/4) j−1

(la) j−1( j)!
2(1 − δ)|w|

j( j + 1)(s − 3b)
∞∑
j=2

j
[
|X1 + 1| − |X2 + 1| − 4(k + 1)

] (−c/4) j−1

(la) j−1( j)!
2(1 − δ)|w|

j( j + 1)(s − 3b)

≤ |X2 − X1|. (3.83)

Now applying (1.7) and (1.6) to (3.83), we get

[
2(k + 1) + |X2 + 1|

] (4(1 − la)
c

) (
Ga−1(1) − 1 +

c
4(la − 1)

)
+

[
|X1 + 1| − |X2 + 1| − 4(k + 1)

] (16(la − 2)2

c2

(
Ga−2(1) − 1 +

c
4(la − 2)

)
−

1
2

)
≤ |X2 − X1|

(s − 3b)
2(1 − δ)|w|

. (3.84)

The desired result follows directly from (3.84), which completes the proof. �

Theorem 3.37. Let ψ(z) ∈ A. Suppose ψ(z) ∈ Rw
s,d(δ) and satisfies the following condition:

2kcGa(1) + 4(cos t − 2k − r)(la − 1)Ga−1(1) − 4(cos t − 2k − r)(la − 1)

≤ 4kc + (cos t − r)c
(

(d − 3s)
2(1 − δ)|w|

− 1
)
.

Then Ela,c(ψ, z) ∈ k −UCSP(t, r).

Proof. Substituting (3.79) and (3.54) into (3.4), we obtain

∞∑
j=2

(2k j + cos t − 2k − r) j
(−c/4) j−1

(la) j−1( j)!
2(1 − δ)|w|
j(d − 3s)

≤ cos t − r. (3.85)
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Simplifying (3.85), we get

2k
∞∑
j=1

(−c/4) j

(la) j( j)!
+ (cos t − 2k − r)

∞∑
j=2

(−c/4) j−1

(la) j−1( j)!
≤ (cos t − r)

(d − 3s)
2(1 − δ)|w|

. (3.86)

Applying (1.6) and (1.7) to (3.86), we get

2k(Ga(1) − 1) + (cos t − 2k − r)
4(la − 1)

c

(
Ga−1(1) − 1 +

c
4(la − 1)

)
≤ (cos t − r)

(d − 3s)
2(1 − δ)|w|

. (3.87)

From (3.87), we obtain the required result. �

Theorem 3.38. Let ψ(z) ∈ A. Suppose ψ(z) ∈ Rw
s,d(δ) and satisfies the following condition:

(2(k + 1) + |X2 + 1|)Ga(1) + 4(|X1 + 1| − 2(k + 1))
(1 − la)

c
Ga−1(1)

+ (|X1 + 1| − 2(k + 1))
4(la − 1)

c
− (|X1 + 1| + |X2 + 1|)

≤ |X2 − X1|
(d − 3s)

2(1 − δ)|w|
.

Then Ela,c(ψ, z) ∈ k −UCV[X1, X2].

Proof. Substituting Eq (1.11) in (2.7), applying (3.54), and proceeding as in the previous theorem, we
obtain

∞∑
j=2

j
[
(2(k + 1) + |X2 + 1|) j + |X1 + 1| − 2(k + 1)

] (−c/4) j−1

(la) j−1( j)!
2(1 − δ)|w|
j(d − 3s)

≤ |X2 − X1|. (3.88)

Now, applying (1.7) and (1.6) to (3.88), we get

(2(k + 1) + |X2 + 1|) (Ga(1) − 1) + 4(|X1 + 1| − 2(k + 1))
(1 − la)

c
Ga−1(1)

+ (|X1 + 1| − 2(k + 1))
4(1 − la)

c

(
c

4(la − 1)
− 1

)
≤ |X2 − X1|

(d − 3s)
2(1 − δ)|w|

. (3.89)

Consequently, by using (3.89), we arrive at the required result, thereby concluding the proof. �

4. Conclusions

The findings of this study provide a comprehensive framework for analyzing the geometric behavior
of operators associated with Touchard polynomials and generalized Bessel functions of the first kind.
In this work, we have examined the inclusion properties of the Touchard polynomials Ym(p, z) and
the generalized Bessel functions of the first kind Ga(z), along with their associated convolution and
integral operators, within the analytic function classes Rw

s,d(δ) andMw
b,s(δ). By employing coefficient
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bounds and appropriate parameter constraints, we have derived sufficient conditions ensuring that the
considered operators belong to various subclasses of starlike and convex functions. These findings
not only unify and extend several existing results in geometric function theory but also highlight new
interconnections between special functions and operator theory.

The results presented in this study provide a deeper understanding of how linear operators are
generated by special functions. The inclusion results established among different subclasses contribute
to the broader framework of geometric function theory by offering generalized criteria that can be
applied to a wide range of operators. Overall, this work enriches the theory of analytic and univalent
functions, providing the way for future investigations involving more generalized operators, fractional
calculus approaches, and other well-known special functions such as Struve functions, error functions,
hypergeometric functions, and q−analogues of special functions.
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http://doi.org/10.21136/CPMF.1933.121951

12. R. J. Libera, Univalent α−spiral functions, Canad. J. Math., 19 (1967), 449–456.
https://doi.org/10.4153/CJM-1967-038-0

13. C. Selvaraj, R. Geetha, On subclasses of uniformly convex spirallike functions and corresponding
class of spirallike functions, Int. J. Contemp. Math. Sci., 5 (2010), 1845–1854. Available from:
https://www.m-hikari.com/ijcms-2010/37-40-2010/index.html.

14. V. Ravichandran, C. Selvaraj, R. Rajalakshmi, On uniformly convex spiral functions and uniformly
spirallike functions, Soochow J. Math., 29 (2003), 393–406. Available from:
https://www.researchgate.net/publication/233841914.

15. S. R. Mondal, M. K. Giri, R. Kondooru, Sufficient conditions for linear operators related to
confluent hypergeometric function and generalized Bessel function of the first kind to belong to
a certain class of analytic functions, Symmetry, 16 (2024). https://doi.org/10.3390/sym16060662

16. M. K. Giri, R. Kondooru, Exploring the inclusion properties of integral operators related to the
Pascal distribution series in certain subclasses of univalent functions, Sahand Commun. Math.
Anal., 22 (2025), 261–289. https://doi.org/10.22130/scma.2024.2022462.1920

17. K. Raghavendar, A. Swaminathan, Integral transforms of functions to be in certain class defined
by the combination of starlike and convex functions, Comput. Math. Appl., 63 (2012), 1296–1304.
https://doi.org/10.1016/j.camwa.2011.12.077

18. J. Touchard, Sur les cycles des substitutions, Acta Math., 70 (1939), 243–297.
https://doi.org/10.1007/BF02547349

19. S. Porwal, An application of a Poisson distribution series on certain analytic functions, J. Complex
Anal., 2014 (2014), 3. http://doi.org/10.1155/2014/984135

20. S. Porwal, G. Murugusundaramoorthy, Unified classes of starlike and convex functions associated
with Touchard polynomials, Sci. Tech. Asia, 27 (2022), 207–214. Available from:
https://ph02.tci-thaijo.org/index.php/SciTechAsia/article/view/247908.
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