Research article

Quantitative stability of the principal eigenvalue for mixed local–nonlocal operators under dissipating boundary partitions

  • Published: 01 December 2025
  • MSC : Primary 35P15; Secondary 35R11, 35J20, 47A75

  • Let $ \mathcal{L} = -\Delta+(-\Delta)^s $ with $ s\in(0, 1) $ on a bounded $ C^{1, 1} $ domain $ \Omega\subset \mathbb{R}^n $, under a partition of the exterior $ \mathbb{R}^n\!\setminus\!\overline\Omega $ into disjoint open sets $ D $ (Dirichlet) and $ N $ (nonlocal Neumann). Building on the mixed local–nonlocal framework, we obtain explicit, provable upper bounds for the variation of the principal eigenvalue $ \lambda_1(D) $ along families of partitions in which the Neumann set $ N $ or the Dirichlet set $ D $ dissipates. When $ N $ dissipates, we bound $ \lambda_1^{\mathrm{Dir}}-\lambda_1(D) $ by integrals of the Dirichlet kernel over $ N $ plus a boundary term and a standard fractional tail. When $ D $ dissipates and $ 0 < s < \tfrac12 $, we bound $ \lambda_1(D) $ by integrals of the geometric kernel over $ D $ and the same tail; for $ s\ge\tfrac12 $ we give a separated-Dirichlet variant. The proofs use only the weak formulation, the basic spectral theory for the mixed problem, $ L^\infty $ bounds for principal eigenfunctions, and two cross-testing identities, with all constants and dependencies made explicit. Consequences include quantitative continuity of $ \lambda_1 $ under weak set convergence and a controlled shift of asymptotically linear bifurcation thresholds. All constants depend only on $ (n, s, \Omega) $ and, in the separated-Dirichlet variant, also on a fixed separation $ \delta > 0 $.

    Citation: Chatchawan Panraksa. Quantitative stability of the principal eigenvalue for mixed local–nonlocal operators under dissipating boundary partitions[J]. AIMS Mathematics, 2025, 10(12): 28115-28128. doi: 10.3934/math.20251236

    Related Papers:

  • Let $ \mathcal{L} = -\Delta+(-\Delta)^s $ with $ s\in(0, 1) $ on a bounded $ C^{1, 1} $ domain $ \Omega\subset \mathbb{R}^n $, under a partition of the exterior $ \mathbb{R}^n\!\setminus\!\overline\Omega $ into disjoint open sets $ D $ (Dirichlet) and $ N $ (nonlocal Neumann). Building on the mixed local–nonlocal framework, we obtain explicit, provable upper bounds for the variation of the principal eigenvalue $ \lambda_1(D) $ along families of partitions in which the Neumann set $ N $ or the Dirichlet set $ D $ dissipates. When $ N $ dissipates, we bound $ \lambda_1^{\mathrm{Dir}}-\lambda_1(D) $ by integrals of the Dirichlet kernel over $ N $ plus a boundary term and a standard fractional tail. When $ D $ dissipates and $ 0 < s < \tfrac12 $, we bound $ \lambda_1(D) $ by integrals of the geometric kernel over $ D $ and the same tail; for $ s\ge\tfrac12 $ we give a separated-Dirichlet variant. The proofs use only the weak formulation, the basic spectral theory for the mixed problem, $ L^\infty $ bounds for principal eigenfunctions, and two cross-testing identities, with all constants and dependencies made explicit. Consequences include quantitative continuity of $ \lambda_1 $ under weak set convergence and a controlled shift of asymptotically linear bifurcation thresholds. All constants depend only on $ (n, s, \Omega) $ and, in the separated-Dirichlet variant, also on a fixed separation $ \delta > 0 $.



    加载中


    [1] N. Abatangelo, V. Felli, C. Noris, On simple eigenvalues of the fractional Laplacian under removal of small fractional capacity sets, Commun. Contemp. Math., 25 (2020), 1950071. https://doi.org/10.1142/S0219199719500718 doi: 10.1142/S0219199719500718
    [2] N. Aldeghi, J. Rohleder, On the first eigenvalue and eigenfunction of the Laplacian with mixed boundary conditions, preprint paper, 2024. http://doi.org/10.48550/arXiv.2403.17717
    [3] J. A. Apaza, M. de Souza, Renormalized solutions for quasilinear elliptic equations with Robin boundary conditions, lower-order terms, and L¹ data, preprint paper, 2024. https://doi.org/10.48550/arXiv.2401.12399
    [4] D. Boffi, F. Gardini, L. Gastaldi, Approximation of PDE eigenvalue problems involving parameter dependent matrices, Calcolo, 57 (2020), 14. https://doi.org/10.1007/s10092-020-00390-6 doi: 10.1007/s10092-020-00390-6
    [5] L. Brasco, E. Parini, The second eigenvalue of the fractional p-Laplacian, Adv. Calc. Var., 9 (2016), 323–355. http://doi.org/10.1515/acv-2015-0007 doi: 10.1515/acv-2015-0007
    [6] L. Brasco, G. Franzina, Convexity properties of Dirichlet integrals and Picone-type inequalities, Kodai Math. J., 37 (2014), 769–799. http://doi.org/10.2996/kmj/1414674621 doi: 10.2996/kmj/1414674621
    [7] A. D. Castro, T. Kuusi, G. Palatucci, Nonlocal Harnack inequalities, J. Funct. Anal., 267 (2014), 1807–1836. http://doi.org/10.1016/j.jfa.2014.05.023 doi: 10.1016/j.jfa.2014.05.023
    [8] C. Cowan, H. El Smaily, P. Feulefack, The principal eigenvalue of a mixed local and nonlocal operator with drift, J. Diff. Equ., 383 (2025), 203–239. https://doi.org/10.1016/j.jde.2025.113480 doi: 10.1016/j.jde.2025.113480
    [9] L. M. Del Pezzo, A. Quaas, A Hopf's lemma and a strong minimum principle for the fractional p-Laplacian, J. Diff. Equ., 263 (2017), 765–778. http://doi.org/10.1016/j.jde.2017.02.051 doi: 10.1016/j.jde.2017.02.051
    [10] S. Dipierro, E. Proietti Lippi, E. Valdinoci, (Non)local logistic equations with Neumann conditions, AIHPC, 40 (2023), 1093–1166. http://doi.org/10.4171/aihpc/57 doi: 10.4171/aihpc/57
    [11] V. Felli, B. Noris, R. Ognibene, Eigenvalues of the Laplacian with moving mixed boundary conditions: The case of disappearing Neumann region, J. Differ. Equ., 320 (2022), 247–315. https://doi.org/10.1016/j.jde.2022.02.052 doi: 10.1016/j.jde.2022.02.052
    [12] G. Franzina, G. Palatucci, Fractional p-eigenvalues, Riv. Mate. Uni. Parma, 5 (2014), 373–386.
    [13] J. Giacomoni, T. Mukherjee, L. Sharma, On an eigenvalue problem associated with mixed operators under mixed boundary conditions, Discr. Contin. Dyn. Syst., 45 (2025), 2895–2920. http://doi.org/10.3934/dcds.2025095 doi: 10.3934/dcds.2025095
    [14] A. Iannizzotto, S. Mosconi, M. Squassina, Global Hölder regularity for the fractional p-Laplacian, Rev. Mate. Iberoamer., 32 (2016), 1353–1392. http://doi.org/10.4171/RMI/921 doi: 10.4171/RMI/921
    [15] G. R. Lakshmi, D. D. Giri, N. Ghosh, A weighted eigenvalue problem for mixed local and nonlocal p-Laplacian operators, preprint paper, 2024. http://doi.org/10.48550/arXiv.2409.01349
    [16] T. Leonori, I. Peral, A. Primo, F. Soria, Basic estimates for solutions of a class of nonlocal elliptic and parabolic equations, Discr. Contin. Dyn. Syst., 35 (2015), 6031–6068. http://doi.org/10.3934/dcds.2015.35.6031 doi: 10.3934/dcds.2015.35.6031
    [17] E. Lindgren, P. Lindqvist, Fractional eigenvalues, Calc. Var. PDE, 49 (2014), 795–826. http://doi.org/10.1007/s00526-013-0600-1 doi: 10.1007/s00526-013-0600-1
    [18] A. L. Masiello, G. Paoli, Rigidity results for the p-Laplacian Poisson problem with Robin boundary conditions, J. Optim. Theory Appl., 202 (2024), 628–648. http://doi.org/10.1007/s10957-024-02442-1 doi: 10.1007/s10957-024-02442-1
    [19] E. D. Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521–573. http://doi.org/10.1016/j.bulsci.2011.12.004 doi: 10.1016/j.bulsci.2011.12.004
    [20] R. Servadei, E. Valdinoci, The Brezis-Nirenberg result for the fractional Laplacian, Trans. Amer. Math. Soc., 367 (2015), 67–102. http://doi.org/10.1090/S0002-9947-2014-05884-4 doi: 10.1090/S0002-9947-2014-05884-4
    [21] L. Sharma, Brezis Nirenberg type results for local non-local problems under mixed boundary conditions, Commun. Anal. Mech., 6 (2024), 872–895. http://doi.org/10.3934/cam.2024038 doi: 10.3934/cam.2024038
    [22] K. Stempak, The Laplacian with mixed Dirichlet-Neumann boundary conditions on Weyl chambers, J. Differ. Equ., 329 (2022), 348–370. https://doi.org/10.1016/j.jde.2022.05.005 doi: 10.1016/j.jde.2022.05.005
    [23] M. Warma, The fractional Neumann and Robin type boundary conditions for the regional fractional p-Laplacian, Nonlinear Diff. Equ. Appl., 23 (2016), 1. http://doi.org/10.1007/s00030-016-0354-5 doi: 10.1007/s00030-016-0354-5
    [24] M. Warma, The p-Laplace operator with the nonlocal Robin boundary conditions on arbitrary open sets, Ann. Mate. Pura Appl., 193 (2014), 203–235. http://doi.org/10.1007/s10231-012-0273-y doi: 10.1007/s10231-012-0273-y
    [25] M. Warma, The fractional relative capacity and the fractional Laplacian with Neumann and Robin boundary conditions on open sets, Potent. Anal., 42 (2015), 499–547. http://doi.org/10.1007/s11118-014-9443-4 doi: 10.1007/s11118-014-9443-4
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(730) PDF downloads(54) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog