
Research article

Quantitative stability of the principal eigenvalue for mixed local–nonlocal operators under dissipating boundary partitions

Chatchawan Panraksa*

Applied Mathematics Program, Mahidol University International College, Mahidol University, 999 Phutthamonthon 4 Road Salaya, Nakhonpathom 73170, Thailand

* **Correspondence:** Email: chatchawan.pan@mahidol.ac.th.

Abstract: Let $\mathcal{L} = -\Delta + (-\Delta)^s$ with $s \in (0, 1)$ on a bounded $C^{1,1}$ domain $\Omega \subset \mathbb{R}^n$, under a partition of the exterior $\mathbb{R}^n \setminus \overline{\Omega}$ into disjoint open sets D (Dirichlet) and N (nonlocal Neumann). Building on the mixed local–nonlocal framework, we obtain explicit, provable upper bounds for the variation of the principal eigenvalue $\lambda_1(D)$ along families of partitions in which the Neumann set N or the Dirichlet set D *dissipates*. When N dissipates, we bound $\lambda_1^{\text{Dir}} - \lambda_1(D)$ by integrals of the Dirichlet kernel over N plus a boundary term and a standard fractional tail. When D dissipates and $0 < s < \frac{1}{2}$, we bound $\lambda_1(D)$ by integrals of the geometric kernel over D and the same tail; for $s \geq \frac{1}{2}$ we give a separated-Dirichlet variant. The proofs use only the weak formulation, the basic spectral theory for the mixed problem, L^∞ bounds for principal eigenfunctions, and two cross-testing identities, with all constants and dependencies made explicit. Consequences include quantitative continuity of λ_1 under weak set convergence and a controlled shift of asymptotically linear bifurcation thresholds. All constants depend only on (n, s, Ω) and, in the separated-Dirichlet variant, also on a fixed separation $\delta > 0$.

Keywords: mixed local–nonlocal operator; fractional Laplacian; mixed boundary conditions; principal eigenvalue; stability

Mathematics Subject Classification: Primary 35P15; Secondary 35R11, 35J20, 47A75

1. Introduction

Let $\Omega \subset \mathbb{R}^n$ be a bounded $C^{1,1}$ domain, and fix $s \in (0, 1)$. We study the mixed local–nonlocal operator

$$\mathcal{L} := -\Delta + (-\Delta)^s,$$

subject to mixed boundary conditions posed on a partition of the exterior into disjoint open sets D (Dirichlet) and N (nonlocal Neumann), with $D, N \subset \mathbb{R}^n \setminus \overline{\Omega}$, $\overline{D \cup N} = \mathbb{R}^n \setminus \overline{\Omega}$, and $\Omega \cup N$ bounded. In

the nonlocal part we adopt the fractional Neumann derivative

$$N_s u(x) := C_{n,s} \int_{\Omega} \frac{u(x) - u(y)}{|x - y|^{n+2s}} dy, \quad x \in \mathbb{R}^n \setminus \overline{\Omega},$$

and consider the eigenvalue problem

$$\begin{cases} \mathcal{L}u = \lambda u, & u > 0 \quad \text{in } \Omega, \\ u = 0 & \text{in } D \cup (\partial\Omega \cap \overline{D}), \\ N_s u = 0 & \text{in } N, \\ \partial_\nu u = 0 & \text{in } \partial\Omega \cap \overline{N}. \end{cases} \quad (1.1)$$

Background. The spectral theory for (1.1) has been recently developed in the mixed local–nonlocal setting; in particular, existence of a principal eigenvalue, simplicity, positivity of the corresponding eigenfunction, regularity, and qualitative asymptotics under boundary-set perturbations are established in [13]. Related ingredients come from the pure fractional literature on eigenvalues and regularity [14, 17, 19], from mixed Dirichlet–Neumann problems in the local case [2, 22], and from nonlocal/Neumann frameworks [7, 10, 23]. Convexity properties of Dirichlet integrals and Picone-type inequalities, which underpin several variational arguments in this context, are developed in [5, 6, 12], while Hopf-type and Brezis–Nirenberg-type results for the fractional Laplacian can be found [1, 9, 20]. For mixed local–nonlocal variants with drift or weights, see [8, 15]; see also [16] for estimates in fractional mixed problems and [3, 18, 21] for adjacent directions, as well as [4] for parameter-dependent eigenvalue approximations.

Scope and contribution. Our goal is modest and entirely quantitative: we complement the qualitative limits in [13] by deriving *explicit upper bounds* for the variation of the principal eigenvalue when the boundary partition dissipates. Concretely, let $\lambda_1(D)$ denote the principal eigenvalue of (1.1), and write λ_1^{Dir} for the principal eigenvalue in the full exterior Dirichlet case ($N = \emptyset$) and $\lambda_1^{\text{Neu}} = 0$ for the full Neumann case ($D = \emptyset$). For a sequence of admissible partitions (D_k, N_k) , we set $\lambda_{1,k} := \lambda_1(D_k)$. We obtain quantitative estimates (here “dissipates” is in the sense of Definition 2.7 below).

Theorem A (Neumann dissipation: quantitative bound). *Assume N_k dissipates (Definition 2.7), i.e., $|N_k \cap B_R| \rightarrow 0$ for every $R > 0$ and $\mathcal{H}^{n-1}(\Gamma_{N_k}) \rightarrow 0$, with $\Omega \cup N_k$ bounded and $u_{1,k} > 0$ the $L^2(\Omega)$ -normalized principal eigenfunction for (D_k, N_k) (here $\Gamma_{N_k} := \partial\Omega \cap \overline{N_k}$; see §2). Then, for every $R > 0$,*

$$0 \leq \lambda_1^{\text{Dir}} - \lambda_{1,k} \leq \frac{M_\infty}{\alpha_k} \left(\int_{\Gamma_{N_k}} |\partial_\nu \phi_1| d\sigma + \int_{N_k \cap B_R} \Psi(x) dx + C_{n,s,\Omega} R^{-2s} \right),$$

where ϕ_1 is the $L^2(\Omega)$ -normalized Dirichlet ground state, $\Psi(x) = \int_{\Omega} \phi_1(y) |x - y|^{-n-2s} dy$, $\alpha_k = \int_{\Omega} \phi_1 u_{1,k} dx > 0$, and $M_\infty = \sup_k \|u_{1,k}\|_{L^\infty(\Omega)} < \infty$. All constants are explicit in the proof.

Theorem B (Dirichlet dissipation: quantitative bound). *Assume $0 < s < \frac{1}{2}$ and D_k dissipates (Definition 2.7), i.e., $|D_k \cap B_R| \rightarrow 0$ for every $R > 0$ and $\mathcal{H}^{n-1}(\Gamma_{D_k}) \rightarrow 0$ (with $\Gamma_{D_k} := \partial\Omega \cap \overline{D_k}$; see §2). Let $u_{1,k} > 0$ be L^2 -normalized. Then, for every $R > 0$,*

$$0 \leq \lambda_{1,k} \leq \frac{M_\infty}{\beta_k} \left(\int_{D_k \cap B_R} \Upsilon(x) dx + C_{n,s,\Omega} R^{-2s} \right),$$

where $\Upsilon(x) = \int_{\Omega} |x - y|^{-n-2s} dy$ and $\beta_k = |\Omega|^{-1/2} \int_{\Omega} u_{1,k} dx > 0$. For $s \geq \frac{1}{2}$ an analogous bound holds under $\text{dist}(D_k, \Omega) \geq \delta > 0$, in which case Υ is uniformly bounded on D_k and the right-hand side depends on $|D_k \cap B_R|$ and the tail R^{-2s} .

The proofs are short: they rely on the weak formulation in the mixed framework, the L^∞ bounds and compactness for principal eigenfunctions, and testing identities that compare eigenpairs across boundary configurations. The bounds expose only geometric/integral data of the dissipating sets and a standard tail term, thereby turning the qualitative limits into quantitative ones. No new regularity theory is required.

Scope note. Throughout we assume $D, N \subset \mathbb{R}^n \setminus \overline{\Omega}$ are disjoint open sets with $\overline{D \cup N} = \mathbb{R}^n \setminus \Omega$ and $\Omega \cup N$ bounded. Thus, $D \neq \emptyset$, and the pure Neumann configuration ($D = \emptyset$) falls outside our admissible class. References to the Neumann ground state $\psi_1 \equiv |\Omega|^{-1/2}$ or to $\lambda_1^{\text{Neu}} = 0$ are used only as comparisons implemented via admissible cut-offs (see §2).

Example (Ball with bounded N). Let $\Omega = B_R(0) \subset \mathbb{R}^n$. Define

$$N := \{x \in \mathbb{R}^n : R < |x| < R + 1\} \quad (\text{open annulus}), \quad D := (\mathbb{R}^n \setminus \Omega) \setminus N = \{x \in \mathbb{R}^n : |x| > R + 1\}.$$

Then $D, N \subset \mathbb{R}^n \setminus \Omega$ are disjoint open sets and

$$\overline{D \cup N} = \{x : |x| \geq R\} = \mathbb{R}^n \setminus \Omega.$$

Moreover, $\Omega \cup N \subset B_{R+1}(0)$ is bounded. The boundary portions for the mixed problem are $\partial\Omega \cap \overline{N} = \partial\Omega$ (Neumann) and $\partial\Omega \cap \overline{D} = \emptyset$ (Dirichlet), so the boundary conditions in (1.1) read

$$u = 0 \text{ in } D \cup (\partial\Omega \cap \overline{D}) = \{x : |x| > R + 1\}, \quad \partial_\nu u = 0 \text{ in } \partial\Omega \cap \overline{N} = \partial\Omega.$$

Organization. Section 2 fixes the functional setting (spaces, integration by parts, Poincaré-type inequality) and records the testing identities and tail estimates we use. Section 3 contains the proofs of Theorems A and B. Section 4 discusses consequences (e.g. continuity of λ_1 under weak set convergence), the separated case for $s \geq \frac{1}{2}$, and a brief application to bifurcation thresholds.

2. Preliminaries and functional setup

Global conventions (partition and boundary slices). Let $\Omega \subset \mathbb{R}^n$ be a bounded $C^{1,1}$ domain and $s \in (0, 1)$. Throughout we fix disjoint open sets $D, N \subset \mathbb{R}^n \setminus \overline{\Omega}$ with $\overline{D \cup N} = \mathbb{R}^n \setminus \Omega$ and $\Omega \cup N$ bounded. We define the boundary slices

$$\Gamma_D := \partial\Omega \cap \overline{D}, \quad \Gamma_N := \partial\Omega \cap \overline{N}.$$

Boundary terms will be taken over Γ_D or Γ_N . We write $d\sigma$ for the $(n-1)$ -dimensional Hausdorff measure on $\partial\Omega$, i.e.,

$$d\sigma := d\mathcal{H}^{n-1}|_{\partial\Omega},$$

and we reserve $\mathcal{H}^{n-1}(E)$ for the $(n-1)$ -measure of $E \subset \partial\Omega$. All subsequent occurrences of “ $\partial\Omega \cap N$ ” or “ $\partial\Omega \cap D$ ” are to be understood as Γ_N or Γ_D , respectively.

We consider the mixed local–nonlocal operator

$$\mathcal{L} := -\Delta + (-\Delta)^s, \quad (-\Delta)^s u(x) = C_{n,s} \text{P.V.} \int_{\mathbb{R}^n} \frac{u(x) - u(y)}{|x - y|^{n+2s}} dy,$$

together with a partition of the exterior into disjoint open sets $D, N \subset \mathbb{R}^n \setminus \overline{\Omega}$ with $\overline{D \cup N} = \mathbb{R}^n \setminus \Omega$ and $\Omega \cup N$ bounded. The nonlocal Neumann derivative is

$$N_s u(x) := C_{n,s} \int_{\Omega} \frac{u(x) - u(y)}{|x - y|^{n+2s}} dy, \quad x \in \mathbb{R}^n \setminus \overline{\Omega}.$$

Definition 2.1 (Dirichlet and Neumann regions). *Let $\Omega \subset \mathbb{R}^n$ be a bounded $C^{1,1}$ domain. A pair (D, N) is an admissible exterior partition if*

$$D, N \subset \mathbb{R}^n \setminus \Omega \quad \text{are open, disjoint, and} \quad \overline{D \cup N} = \mathbb{R}^n \setminus \Omega.$$

We call D the Dirichlet region and N the (nonlocal) Neumann region. The corresponding boundary portions are

$$\partial\Omega_D := \partial\Omega \cap \overline{D}, \quad \partial\Omega_N := \partial\Omega \cap \overline{N}.$$

On these sets, the mixed boundary conditions for (1.1) are imposed as

$$u = 0 \text{ in } D \cup \partial\Omega_D, \quad N_s u = 0 \text{ in } N, \quad \partial_\nu u = 0 \text{ in } \partial\Omega_N.$$

When required in the sequel, we additionally assume $\Omega \cup N$ is bounded.

Energy space, seminorm, and weak formulation. Define

$$\Gamma_D := \partial\Omega \cap \overline{D}, \quad \Gamma_N := \partial\Omega \cap \overline{N},$$

$$U := \Omega \cup N \cup \Gamma_N, \quad U^c := D \cup \Gamma_D,$$

and

$$X_D^{1,2}(U) := \{u \in H^1(\mathbb{R}^n) : u|_U \in H_0^1(U), u \equiv 0 \text{ a.e. in } U^c\}.$$

We integrate on $\partial\Omega$ with $d\sigma := d\mathcal{H}^{n-1}|_{\partial\Omega}$, while $\mathcal{H}^{n-1}(E)$ denotes the $(n-1)$ -measure of a set $E \subset \partial\Omega$.

Let

$$Q := \mathbb{R}^{2n} \setminus (\Omega^c \times \Omega^c), \quad [u]_s^2 := \iint_Q \frac{|u(x) - u(y)|^2}{|x - y|^{n+2s}} dx dy.$$

We use the energy

$$\eta(u)^2 := \int_{\Omega} |\nabla u|^2 dx + [u]_s^2, \quad u \in X_D^{1,2}(U),$$

which defines a Hilbert norm on $X_D^{1,2}(U)$ and controls the $L^2(\Omega)$ norm via the Poincaré-type estimate

$$\|u\|_{L^2(\Omega)}^2 \leq C(\Omega, n, s) \left(\int_{\Omega} |\nabla u|^2 dx + [u]_s^2 \right) \quad \forall u \in X_D^{1,2}(U). \quad (2.1)$$

The set-up (2.1) is standard in this mixed framework; see [13, Prop. 2.1] and, for fractional Sobolev background, [19].

Proposition 2.2 (Integration by parts). *For $u, v \in C_c^\infty(U)$,*

$$\int_{\Omega} v L u \, dx = \int_{\Omega} \nabla u \cdot \nabla v \, dx + \iint_Q \frac{(u(x) - u(y))(v(x) - v(y))}{|x - y|^{n+2s}} \, dx \, dy - \int_{\Gamma_N} v \partial_\nu u \, d\sigma - \int_N v N_s u \, dx,$$

and the identity extends to $u, v \in X_D^{1,2}(U)$ by density [13, Prop. 2.2].

Remark 2.3 (Uniformity of the Poincaré constant). *The constant $C(\Omega, n, s)$ can be chosen independently of the admissible partition as long as $\Omega \cup N$ is bounded. Indeed, the proof uses only that $u \equiv 0$ a.e. on $U^c = D \cup \Gamma_D$ and that the double integral runs over Q ; no geometric feature of N beyond boundedness of U enters the estimate. Hence, $C = C(\Omega, n, s)$ is uniform across all admissible (D, N) .*

Corollary 2.4 (Density and extension to $X_D^{1,2}(U)$). *Since $C_c^\infty(U)$ is dense in $X_D^{1,2}(U)$, the integration-by-parts identity of Proposition 2.2 extends to all $u, v \in X_D^{1,2}(U)$ by approximation. We invoke this extension in Lemmas 2.8–2.11, where the test functions are realized in $X_D^{1,2}(U)$ via cut-offs.*

Definition 2.5 (Weak eigenpairs). *We say $u \in X_D^{1,2}(U)$ solves*

$$\begin{cases} Lu = \lambda u, & u > 0 \quad \text{in } \Omega, \\ u = 0 & \text{in } U^c, \\ N_s u = 0 & \text{in } N, \\ \partial_\nu u = 0 & \text{in } \Gamma_N, \end{cases}$$

if for all $\phi \in X_D^{1,2}(U)$,

$$\int_{\Omega} \nabla u \cdot \nabla \phi \, dx + \iint_Q \frac{(u(x) - u(y))(\phi(x) - \phi(y))}{|x - y|^{n+2s}} \, dx \, dy = \lambda \int_{\Omega} u \phi \, dx. \quad (2.2)$$

The principal eigenvalue is given by the Rayleigh quotient

$$\lambda_1(D) := \inf_{\substack{u \in X_D^{1,2}(U) \setminus \{0\} \\ \|u\|_{L^2(\Omega)} = 1}} \eta(u)^2, \quad (2.3)$$

and is achieved by a strictly positive eigenfunction u_1 . Moreover, $\lambda_1(D)$ is simple. [13, Sec. 3]

Remark 2.6 (Regularity and orthogonality). *Eigenfunctions are bounded and Hölder continuous, $u \in L^\infty(U) \cap C^{0,\beta}(\mathbb{R}^n)$ for some $\beta \in (0, 1)$; eigenfunctions associated with different eigenvalues are $L^2(\Omega)$ -orthogonal and orthogonal with respect to the energy inner product. See [13, Props. 3.3–3.4]. For related fractional regularity and Harnack-type estimates in the nonlocal literature, cf. [7, 14].*

2.1. Dissipating sequences of boundary sets

We adopt the qualitative notion used in [13, Thms. 2.7–2.8].

Definition 2.7 (Dissipation). *Let (D_k, N_k) be admissible partitions with $\Omega \cup N_k$ bounded and let $\lambda_{1,k} := \lambda_1(D_k)$. With the boundary slices*

$$\Gamma_{D_k} := \partial\Omega \cap \overline{D_k}, \quad \Gamma_{N_k} := \partial\Omega \cap \overline{N_k} \quad (\text{see } \S 2 \text{ conventions}),$$

we say:

- N_k dissipates if, for every $R > 0$, $|N_k \cap B_R| \rightarrow 0$ and $\mathcal{H}^{n-1}(\Gamma_{N_k}) \rightarrow 0$ as $k \rightarrow \infty$;
- D_k dissipates if, for every $R > 0$, $|D_k \cap B_R| \rightarrow 0$ and $\mathcal{H}^{n-1}(\Gamma_{D_k}) \rightarrow 0$ as $k \rightarrow \infty$.

Then the qualitative limits of [13, Thms. 2.7–2.8] hold verbatim: if N_k dissipates, then $\lambda_{1,k} \rightarrow \lambda_1(\mathbb{R}^n \setminus \overline{\Omega})$; if $0 < s < \frac{1}{2}$ and D_k dissipates, then $\lambda_{1,k} \rightarrow 0$ (for $s \geq \frac{1}{2}$, convergence holds under $\text{dist}(D_k, \Omega) \geq \delta > 0$), cf. [13, Prop. 4.5].

Notation. On $\partial\Omega$ we integrate with $d\sigma = d\mathcal{H}^{n-1}|_{\partial\Omega}$; we reserve $\mathcal{H}^{n-1}(E)$ for the $(n-1)$ -measure of a set $E \subset \partial\Omega$ [13, Thms. 2.7–2.8, Prop. 4.8].

2.2. Two cross-testing identities

The quantitative bounds in §3 start from two identities obtained by testing the weak formulations for different boundary configurations; compare [13, (4.1.4),(4.2.2)].

Lemma 2.8 (Testing against the Dirichlet ground state). *Let ϕ_1 be the $L^2(\Omega)$ -normalized first eigenfunction for the full exterior Dirichlet problem ($N = \emptyset$), and let $(\lambda_{1,k}, u_{1,k})$ be the $L^2(\Omega)$ -normalized principal eigenpair for (D_k, N_k) . Then*

$$(\lambda_1^{\text{Dir}} - \lambda_{1,k}) \int_{\Omega} \phi_1 u_{1,k} dx = - \int_{\Gamma_{N_k}} u_{1,k} \partial_{\nu} \phi_1 d\sigma + \iint_{N_k \times \Omega} \frac{\phi_1(y) u_{1,k}(x)}{|x - y|^{n+2s}} dy dx, \quad (2.4)$$

where $\Gamma_{N_k} := \partial\Omega \cap \overline{N_k}$.

Remark 2.9 (On the space of test functions). *The identity is obtained by testing in $X_D^{1,2}(U)$ and using Corollary 2.4 to pass from $C_c^\infty(U)$ to the cut-off realizations of ϕ_1 (resp. ψ_1) described above.*

Lemma 2.10 (Boundary regularity for the Dirichlet ground state). *Let ϕ_1 solve $L\phi_1 = \lambda_1^{\text{Dir}}\phi_1$ in Ω with $\phi_1 = 0$ in $\mathbb{R}^n \setminus \Omega$. If Ω is $C^{1,1}$, then $\phi_1 \in C^{1,\alpha}(\overline{\Omega})$ for some $\alpha \in (0, 1)$; in particular $\|\partial_{\nu}\phi_1\|_{L^\infty(\partial\Omega)} < \infty$.*

Reference. This is the regularity asserted in [13, Lemma 4.5], obtained from the mixed local–nonlocal structure with $C^{1,1}$ boundary; see also their Appendix A for $W^{2,p}$ estimates implying $C^{1,\alpha}$ up to $\partial\Omega$. \square

Lemma 2.11 (Testing against the Neumann ground state via cut-off). *Let $(\lambda_{1,k}, u_{1,k})$ be the $L^2(\Omega)$ -normalized principal eigenpair for (D_k, N_k) and let $\psi_1 \equiv |\Omega|^{-1/2}$. Then*

$$\lambda_{1,k} \int_{\Omega} \psi_1 u_{1,k} dx = - \int_{\Gamma_{D_k}} u_{1,k} \partial_{\nu} \psi_1 d\sigma + \iint_{D_k \times \Omega} \frac{\psi_1(x) u_{1,k}(y)}{|x - y|^{n+2s}} dy dx, \quad (2.5)$$

where $\Gamma_{D_k} := \partial\Omega \cap \overline{D_k}$. Since ψ_1 is constant, $\partial_{\nu}\psi_1 \equiv 0$.

Proof. Fix k . Choose a standard cut-off $\eta_{\varepsilon} \in C_c^\infty(U_k)$ such that $0 \leq \eta_{\varepsilon} \leq 1$, $\eta_{\varepsilon} \equiv 1$ on Ω , $\eta_{\varepsilon} \rightarrow 1$ pointwise on U_k , and $\eta_{\varepsilon} \equiv 0$ on a shrinking neighborhood of $U_k^c = D_k \cup \Gamma_{D_k}$. Set $v_{\varepsilon} := \psi_1 \eta_{\varepsilon} \in X_{D_k}^{1,2}(U_k)$. Testing the weak formulation (2.2) for $(\lambda_{1,k}, u_{1,k})$ with $\varphi = v_{\varepsilon}$ (cf. Proposition 2.2) gives

$$\lambda_{1,k} \int_{\Omega} \psi_1 \eta_{\varepsilon} u_{1,k} dx = \int_{\Omega} \nabla u_{1,k} \cdot \nabla(\psi_1 \eta_{\varepsilon}) dx + \iint_{Q_k} \frac{(u_{1,k}(x) - u_{1,k}(y))(\psi_1 \eta_{\varepsilon}(x) - \psi_1 \eta_{\varepsilon}(y))}{|x - y|^{n+2s}} dx dy,$$

where $Q_k = \mathbb{R}^{2n} \setminus (\Omega^c \times \Omega^c)$. Since ψ_1 is constant and $\eta_\varepsilon \equiv 1$ on Ω , we have $\nabla(\psi_1 \eta_\varepsilon) \equiv 0$ on Ω ; hence, the local term is zero. Thus,

$$\lambda_{1,k} \int_{\Omega} \psi_1 u_{1,k} dx = \psi_1 \iint_{Q_k} \frac{(u_{1,k}(x) - u_{1,k}(y))(\eta_\varepsilon(x) - \eta_\varepsilon(y))}{|x - y|^{n+2s}} dx dy, \quad (2.6)$$

because $\eta_\varepsilon \equiv 1$ on Ω .

We now pass to the limit $\varepsilon \downarrow 0$ on the right-hand side. By construction, $\eta_\varepsilon(x) - \eta_\varepsilon(y) \rightarrow \mathbf{1}_\Omega(x)\mathbf{1}_{D_k}(y) - \mathbf{1}_{D_k}(x)\mathbf{1}_\Omega(y)$ pointwise, and $|\eta_\varepsilon(x) - \eta_\varepsilon(y)| \leq 1$. Using $u_{1,k} \equiv 0$ in D_k and the tail estimate from §2.4, the integrand is dominated by

$$\frac{|u_{1,k}(x)| \mathbf{1}_\Omega(x)\mathbf{1}_{D_k}(y) + |u_{1,k}(y)| \mathbf{1}_{D_k}(x)\mathbf{1}_\Omega(y)}{|x - y|^{n+2s}},$$

which is integrable on Q_k (the inner integrals in $y \in D_k$ are finite for each $x \in \Omega$ by the kernel's integrability, and the tail is $O(R^{-2s})$). Therefore, by dominated convergence,

$$\iint_{Q_k} \frac{(u_{1,k}(x) - u_{1,k}(y))(\eta_\varepsilon(x) - \eta_\varepsilon(y))}{|x - y|^{n+2s}} dx dy \rightarrow \iint_{D_k \times \Omega} \frac{u_{1,k}(y)}{|x - y|^{n+2s}} dx dy,$$

where we used symmetry to write the cross-terms in the oriented form $D_k \times \Omega$.

Plugging this limit into (2.6) yields (2.5). This argument uses only the mixed integration-by-parts identity and the weak formulation in our space, as in [13, Prop. 2.2]. \square

Remark 2.12 (On the role of the pure Neumann profile). *Under our standing hypothesis $\Omega \cup N$ bounded, the configuration $D = \emptyset$ is excluded (so $N = \mathbb{R}^n \setminus \Omega$ is not allowed). In particular, while the pure Neumann model has $\lambda_1^{\text{Neu}} = 0$ and normalized ground state $\psi_1 \equiv |\Omega|^{-1/2}$ (see, e.g., [13, Thm. 4.1]), we do not use ψ_1 as a test function in $X_D^{1,2}(U)$. Instead, Lemma 2.11 justifies the cross-testing identity rigorously by approximating ψ_1 with admissible cut-offs $v_\varepsilon = \psi_1 \eta_\varepsilon \in X_D^{1,2}(U)$ and letting $\varepsilon \downarrow 0$. All subsequent uses of ψ_1 refer to this admissible realization.*

2.3. Compactness and uniform bounds

We record compactness and L^∞ –Hölder bounds for principal eigenfunctions along admissible partitions:

Standing hypothesis and admissible scope. We always work with disjoint open sets $D, N \subset \mathbb{R}^n \setminus \overline{\Omega}$ satisfying $D \cup N = \mathbb{R}^n \setminus \Omega$ and $\Omega \cup N$ bounded. Consequently, $D \neq \emptyset$, the pure Neumann case ($D = \emptyset$) is excluded in our admissible class. Any use of the constant Neumann ground state $\psi_1 \equiv |\Omega|^{-1/2}$ is purely as a comparison profile implemented by the cut-off functions $v_\varepsilon = \psi_1 \eta_\varepsilon \in X_D^{1,2}(U)$; cf. Lemma 2.11.

Proposition 2.13 (Compactness). *Let $(\lambda_{1,k}, u_{1,k})$ be principal eigenpairs. Then, up to a subsequence,*

$$u_{1,k} \rightharpoonup u_* \text{ in } X_D^{1,2}(U), \quad u_{1,k} \rightarrow u_* \text{ in } L^2_{\text{loc}}(\mathbb{R}^n), \quad u_{1,k} \rightarrow u_* \text{ a.e. in } \mathbb{R}^n,$$

refer to [13, Prop. 4.2].

In what follows, we write u_* for any subsequential limit of $u_{1,k}$ given by Proposition 2.13; by the limit mixed problem (cf. [18]) one has $u_* > 0$ in U_* .

Lemma 2.14 (Alignment factors stay positive along convergent subsequences). *Let $(\lambda_{1,k}, u_{1,k})$ be the $L^2(\Omega)$ -normalized principal eigenpairs for admissible (D_k, N_k) . Suppose $u_{1,k} \rightarrow u_*$ in $L^2_{\text{loc}}(\mathbb{R}^n)$ and a.e. in \mathbb{R}^n , with u_* solving the limit problem and $u_* > 0$ in U_* . Then*

$$\alpha_k := \int_{\Omega} \phi_1 u_{1,k} dx \rightarrow \int_{\Omega} \phi_1 u_* dx > 0, \quad \beta_k := \int_{\Omega} \psi_1 u_{1,k} dx \rightarrow \int_{\Omega} \psi_1 u_* dx > 0,$$

where ϕ_1 is the Dirichlet ground state and $\psi_1 \equiv |\Omega|^{-1/2}$.

Proof. The compactness $u_{1,k} \rightharpoonup u_*$ in $X_D^{1,2}(U)$ and $u_{1,k} \rightarrow u_*$ in L^2_{loc} follows from the energy bound and the compact embedding (cf. [13, Prop. 4.2]). The strong maximum principle yields $u_* > 0$ in U_* (cf. [13, Lem. 3.1]); hence, both limit overlaps are strictly positive. \square

Proposition 2.15 (Uniform L^∞ and Hölder bounds on U). *Let $(\lambda_{1,k}, u_{1,k})$ be the $L^2(\Omega)$ -normalized principal eigenpairs for admissible partitions (D_k, N_k) with $\Omega \cup N_k$ bounded. Then there exists $M_\infty > 0$ such that $0 < u_{1,k}(x) \leq M_\infty$ for a.e. $x \in U_k$, $U_k := \Omega \cup N_k \cup \Gamma_{N_k}$. Moreover, up to a subsequence, $u_{1,k} \in C^{0,\beta}(\mathbb{R}^n)$ with a uniform Hölder exponent $\beta \in (0, 1)$ and $C^{0,\beta}$ -seminorms locally bounded in \mathbb{R}^n .*

Proof sketch. First, by the weak formulation and $L^2(\Omega)$ -normalization,

$$\int_{\Omega} |\nabla u_{1,k}|^2 dx + [u_{1,k}]_s^2 = \lambda_{1,k} \leq \lambda_1^{\text{Dir}},$$

hence the energies are uniformly bounded. The standard Moser/De Giorgi iteration for the mixed operator on Ω gives $\|u_{1,k}\|_{L^\infty(\Omega)} \leq C(n, s, \Omega)$ (see the iteration around (3.0.3)–(3.0.12) in [13, Prop. 3.3(1)]). For $x \in N_k$, the nonlocal Neumann condition yields

$$0 = N_s u_{1,k}(x) = C_{n,s} \int_{\Omega} \frac{u_{1,k}(x) - u_{1,k}(y)}{|x - y|^{n+2s}} dy \Rightarrow u_{1,k}(x) = \frac{\int_{\Omega} \frac{u_{1,k}(y)}{|x - y|^{n+2s}} dy}{\int_{\Omega} \frac{1}{|x - y|^{n+2s}} dy},$$

so $|u_{1,k}(x)| \leq \sup_{\Omega} |u_{1,k}|$. Hence, $\|u_{1,k}\|_{L^\infty(N_k)} \leq \|u_{1,k}\|_{L^\infty(\Omega)}$, and continuity up to $\partial\Omega \cap N_k$ follows from the regularity quoted in [13, Sec. 3 & App. A]. This proves the claim with $M_\infty = \sup_k \|u_{1,k}\|_{L^\infty(\Omega)}$. \square

Remark 2.16 (On using L^2 in place of L^∞ on U_k). *One can avoid the pointwise bound on U_k by using Cauchy–Schwarz on near-field terms and the identity $N_s u = 0$ on N_k (or $u = 0$ on D_k) to rewrite $u(x)$ outside Ω as a weighted average of values in Ω . Since our Proposition 2.15 yields a k -uniform $L^\infty(U_k)$ bound with a shorter argument, we keep the proofs of Theorems A–B in that form.*

2.4. Kernel potentials and tail estimate

Given ϕ_1 as above, set

$$\Psi(x) := \int_{\Omega} \frac{\phi_1(y)}{|x - y|^{n+2s}} dy, \quad x \in \mathbb{R}^n \setminus \Omega,$$

and for Dirichlet-dissipation considerations,

$$\Upsilon(x) := \int_{\Omega} \frac{1}{|x - y|^{n+2s}} dy.$$

Both belong to $L^1(\mathbb{R}^n \setminus \Omega)$; moreover, for all $R > 0$,

$$\int_{|x|>R} \Psi(x) dx \leq C(\Omega, n, s) R^{-2s}, \quad \int_{|x|>R} \Upsilon(x) dx \leq C(\Omega, n, s) R^{-2s}. \quad (2.7)$$

Proof of (2.7). If $|x| > R$ and $y \in \Omega$ (bounded), then $|x - y| \geq |x|/2$, so $\Psi(x) \leq 2^{n+2s} \|\phi_1\|_{L^1(\Omega)} |x|^{-n-2s}$ and similarly for Υ . Integration over $\{|x| > R\}$ gives R^{-2s} decay. \square

2.5. Separated-Dirichlet variant for $s \geq \frac{1}{2}$

When $\text{dist}(D_k, \Omega) \geq \delta > 0$, one has $\Upsilon(x) \leq C(\delta, n, s)$ on D_k , which will be used in §3 to quantify $\lambda_{1,k} \rightarrow 0$ for $s \in [\frac{1}{2}, 1)$ under Dirichlet dissipation with separation; cf. [13, Sec. 4.2]. For local/fractional mixed background, related to boundary conditions and capacities, see also [16, 24, 25].

Remark 2.17 (On the interaction set Q and cross-terms). *Recall $Q = \mathbb{R}^{2n} \setminus (\Omega^c \times \Omega^c) = (\Omega \times \Omega) \cup (\Omega \times \Omega^c) \cup (\Omega^c \times \Omega)$. Thus, the Gagliardo term comprises the interior part $\Omega \times \Omega$ and both cross-interactions between Ω and its exterior. This is the origin of the Dirichlet and Neumann integrals that appear in the cross-testing identities of Lemmas 2.8–2.11.*

3. Main results: quantitative bounds

In this section, we prove the quantitative estimates announced in the Introduction. We retain the notation from §2. In particular, ϕ_1 is the $L^2(\Omega)$ -normalized ground state for the full exterior Dirichlet problem (thus $\mathcal{L}\phi_1 = \lambda_1^{\text{Dir}}\phi_1$ in Ω , $\phi_1 = 0$ in $\mathbb{R}^n \setminus \Omega$), while $\psi_1 \equiv |\Omega|^{-1/2}$ is the normalized ground state for the pure Neumann problem. For each admissible partition (D_k, N_k) we denote by $(\lambda_{1,k}, u_{1,k})$ the positive $L^2(\Omega)$ -normalized principal eigenpair.

From Lemmas 2.8–2.11, the cross-testing identities read

$$(\lambda_1^{\text{Dir}} - \lambda_{1,k}) \int_{\Omega} \phi_1 u_{1,k} dx = - \int_{\Gamma_{N_k}} u_{1,k} \partial_{\nu} \phi_1 d\sigma + \int_{N_k} \int_{\Omega} \frac{\phi_1(y) u_{1,k}(x)}{|x - y|^{n+2s}} dy dx, \quad (3.1)$$

$$\lambda_{1,k} \int_{\Omega} \psi_1 u_{1,k} dx = - \int_{\Gamma_{D_k}} u_{1,k} \partial_{\nu} \psi_1 d\sigma + \int_{D_k} \int_{\Omega} \frac{\psi_1(x) u_{1,k}(y)}{|x - y|^{n+2s}} dy dx, \quad (3.2)$$

where $\Gamma_{N_k} := \partial\Omega \cap \overline{N_k}$ and $\Gamma_{D_k} := \partial\Omega \cap \overline{D_k}$ (see §2), and $\partial_{\nu} \psi_1 \equiv 0$. We also use the potentials from §2.4:

$$\Psi(x) = \int_{\Omega} \frac{\phi_1(y)}{|x - y|^{n+2s}} dy, \quad \Upsilon(x) = \int_{\Omega} \frac{1}{|x - y|^{n+2s}} dy,$$

and the tail estimate $\int_{|x|>R} \Psi(x) dx, \int_{|x|>R} \Upsilon(x) dx \leq C_{n,s,\Omega} R^{-2s}$, cf. (2.7).

Finally, by Proposition 2.15, there exists $M_{\infty} > 0$, independent of k , such that

$$0 < u_{1,k}(x) \leq M_{\infty} \quad \text{for a.e. } x \in U_k := \Omega \cup N_k \cup \Gamma_{N_k}.$$

3.1. Neumann dissipation: Proof of Theorem A

Set $\alpha_k := \int_{\Omega} \phi_1 u_{1,k} dx > 0$ and use (3.1):

$$(\lambda_1^{\text{Dir}} - \lambda_{1,k}) \alpha_k = - \int_{N_k \cap \partial\Omega} u_{1,k} \partial_{\nu} \phi_1 d\sigma + \int_{N_k} \Psi(x) u_{1,k}(x) dx.$$

With $u_{1,k} \leq M_\infty$ on U_k we obtain

$$0 \leq \lambda_1^{\text{Dir}} - \lambda_{1,k} \leq \frac{M_\infty}{\alpha_k} \left(\int_{N_k \cap \partial\Omega} |\partial_\nu \phi_1| d\sigma + \int_{N_k} \Psi(x) dx \right). \quad (3.3)$$

Split $\int_{N_k} \Psi = \int_{N_k \cap B_R} \Psi + \int_{N_k \setminus B_R} \Psi$ and use the tail bound $\int_{|x|>R} \Psi \leq C_{n,s,\Omega} R^{-2s}$. This yields exactly the estimate stated in Theorem A.

Choice of R . Fix $\varepsilon > 0$ and pick $R(\varepsilon) := (2C_{n,s,\Omega}/\varepsilon)^{1/(2s)}$, so that $C_{n,s,\Omega}R(\varepsilon)^{-2s} \leq \varepsilon/2$. Then use the dissipation hypothesis (Definition 2.6) to choose k large so that the remaining near-field terms over $N_k \cap B_{R(\varepsilon)}$ (resp. $D_k \cap B_{R(\varepsilon)}$) and the boundary slice $\mathcal{H}^{n-1}(\Gamma_{N_k})$ (resp. $\mathcal{H}^{n-1}(\Gamma_{D_k})$) are each $< \varepsilon/2$. This yields a constructive modulus of continuity for $\lambda_{1,k}$.

3.2. Dirichlet dissipation ($0 < s < \frac{1}{2}$): Proof of Theorem B

Let $\psi_1 \equiv |\Omega|^{-1/2}$ and $\beta_k := \int_{\Omega} \psi_1 u_{1,k} dx = |\Omega|^{-1/2} \int_{\Omega} u_{1,k} dx > 0$. From (2.5),

$$\lambda_{1,k} \beta_k = |\Omega|^{-1/2} \int_{D_k} \int_{\Omega} \frac{u_{1,k}(y)}{|x-y|^{n+2s}} dy dx \leq \frac{M_\infty}{|\Omega|^{1/2}} \int_{D_k} \Upsilon(x) dx,$$

hence

$$0 \leq \lambda_{1,k} \leq \frac{M_\infty}{\beta_k} \int_{D_k} \Upsilon(x) dx \leq \frac{M_\infty}{\beta_k} \left(\int_{D_k \cap B_R} \Upsilon(x) dx + C_{n,s,\Omega} R^{-2s} \right), \quad (3.4)$$

and Theorem B follows because $\Upsilon \in L^1_{\text{loc}}$ up to $\partial\Omega$ when $0 < s < \frac{1}{2}$.

Choice of R . Fix $\varepsilon > 0$ and pick

$$R(\varepsilon) := \left(\frac{2C_{n,s,\Omega}}{\varepsilon} \right)^{1/(2s)} \Rightarrow C_{n,s,\Omega} R(\varepsilon)^{-2s} \leq \frac{\varepsilon}{2}.$$

Then use the dissipation hypothesis to choose k large so that the remaining near-field terms over $N_k \cap B_{R(\varepsilon)}$ (resp. $D_k \cap B_{R(\varepsilon)}$) and the boundary slice are each $< \varepsilon/2$. This yields a constructive modulus of continuity for $\lambda_{1,k}$.

3.3. Variant for $s \geq \frac{1}{2}$ with separated Dirichlet sets

Assume $\text{dist}(D_k, \Omega) \geq \delta > 0$. Then $\Upsilon(x) \leq C(\delta, n, s)$ on D_k , so (3.4) gives

$$0 \leq \lambda_{1,k} \leq \frac{M_\infty}{\beta_k} \left(C(\delta, n, s) |D_k \cap B_R| + C_{n,s,\Omega} R^{-2s} \right),$$

and the stated convergence follows.

Explicit constant. If $\text{dist}(D_k, \Omega) \geq \delta > 0$, then for $x \in D_k$ and $y \in \Omega$ we have $|x-y| \geq \delta$, hence

$$\Upsilon(x) = \int_{\Omega} \frac{1}{|x-y|^{n+2s}} dy \leq |\Omega| \delta^{-(n+2s)}.$$

Therefore

$$0 \leq \lambda_{1,k} \leq \frac{M_\infty}{\beta_k} \left(|\Omega| \delta^{-(n+2s)} |D_k \cap B_R| + C_{n,s,\Omega} R^{-2s} \right),$$

which is the stated bound with $C(\delta, n, s) = |\Omega| \delta^{-(n+2s)}$.

4. Consequences, examples, and extensions

We collect corollaries of Theorems A and B, give quantitative rates under mild geometric control, and note an application to asymptotically linear bifurcation thresholds.

4.1. Quantitative continuity of the principal eigenvalue

Corollary 4.1 (Neumann sets dissipating). *Let (D_k, N_k) be admissible partitions with $\Omega \cup N_k$ bounded and N_k dissipating. Let $(\lambda_{1,k}, u_{1,k})$ be the L^2 -normalized principal eigenpairs and let $\alpha_k = \int_{\Omega} \phi_1 u_{1,k} > 0$, where ϕ_1 is the Dirichlet ground state. Then, for every $R > 0$,*

$$0 \leq \lambda_1^{\text{Dir}} - \lambda_{1,k} \leq \frac{M_{\infty}}{\alpha_k} \left(\|\partial_{\nu} \phi_1\|_{L^{\infty}(\partial\Omega)} \mathcal{H}^{n-1}(\Gamma_{N_k}) + \int_{N_k \cap B_R} \Upsilon + C_{n,s,\Omega} R^{-2s} \right).$$

If, along a subsequence, $\inf \alpha_k > 0$, then $\lambda_{1,k} \rightarrow \lambda_1^{\text{Dir}}$. Moreover, for any $\varepsilon > 0$ choose $R = R(\varepsilon)$ with $C_{n,s,\Omega} R^{-2s} < \varepsilon$, and then choose k so large that the remaining terms are $< \varepsilon$ by N_k -dissipation, which yields a constructive modulus of continuity.

Proof. This is Theorem A with $\int_{N_k \cap \partial\Omega} |\partial_{\nu} \phi_1| \leq \|\partial_{\nu} \phi_1\|_{L^{\infty}} \mathcal{H}^{n-1}(N_k \cap \partial\Omega)$ and the tail estimate $\int_{|x| > R} \Upsilon \leq C_{n,s,\Omega} R^{-2s}$. The modulus-of-continuity statement follows by first fixing R and then using N_k -dissipation. \square

Corollary 4.2 (Dirichlet sets dissipating). *Assume $0 < s < \frac{1}{2}$ and D_k dissipates. Let $\beta_k = |\Omega|^{-1/2} \int_{\Omega} u_{1,k} > 0$. Then, for every $R > 0$,*

$$0 \leq \lambda_{1,k} \leq \frac{M_{\infty}}{\beta_k} \left(\int_{D_k \cap B_R} \Upsilon + C_{n,s,\Omega} R^{-2s} \right).$$

If, along a subsequence, $\inf \beta_k > 0$, then $\lambda_{1,k} \rightarrow 0$; for $s \geq \frac{1}{2}$ the same conclusion holds provided $\text{dist}(D_k, \Omega) \geq \delta > 0$.

4.2. Rates under geometric control near $\partial\Omega$

We single out a simple geometric regime that turns the integrals in Theorem B into explicit powers of a thickness parameter.

Lemma 4.3 (Tubular estimate for Υ). *Let $0 < s < \frac{1}{2}$ and $T_{\delta} := \{x \in \mathbb{R}^n \setminus \Omega : \text{dist}(x, \partial\Omega) < \delta\}$ with $\delta \in (0, 1)$. There exists $C = C(\Omega, n, s)$ such that*

$$\int_{T_{\delta} \cap B_R} \Upsilon(x) dx \leq C \delta^{1-2s} \mathcal{H}^{n-1}(\partial\Omega \cap B_{R+\delta}) + C |B_R|,$$

and, for any measurable $E \subset T_{\delta} \cap B_R$,

$$\int_E \Upsilon(x) dx \leq C \delta^{1-2s} \mathcal{H}^{n-1}(\partial\Omega \cap B_{R+\delta}).$$

Proof (sketch). In tubular coordinates $(y, \rho) \in \partial\Omega \times (0, \delta)$ with $x = y + \rho v(y)$ (valid since $\partial\Omega$ is $C^{1,1}$), one has $dx \approx J(y, \rho) d\rho d\sigma(y)$ with J uniformly bounded above and below. For fixed (y, ρ) and $z \in \Omega$, $|x - z| \geq c \rho$ with $c > 0$, hence $\Upsilon(x) \leq C \int_{\Omega} \rho^{-n-2s} dz \leq C \rho^{-2s}$. Integrating ρ^{-2s} from 0 to δ gives $\delta^{1-2s}/(1 - 2s)$, and integration over $\partial\Omega \cap B_{R+\delta}$ yields the first inequality. The second follows by monotonicity. \square

Orientation. In tubular coordinates $x = y + \rho v(y)$, the Jacobian $J(y, \rho)$ is bounded above/below on $0 < \rho < \delta$ for $C^{1,1}$ domains, and the kernel behaves like ρ^{-n-2s} . After integrating in $z \in \Omega$, this leaves the main singularity ρ^{-2s} , which is integrable near $\rho = 0$ iff $s < \frac{1}{2}$.

Corollary 4.4 (Rates from thin Dirichlet layers). *Assume $0 < s < \frac{1}{2}$ and $D_k \subset T_{\delta_k}$ with $\delta_k \downarrow 0$. Then, along any subsequence with $\inf \beta_k > 0$,*

$$\lambda_{1,k} \leq \frac{M_\infty}{\beta_k} \left(C \delta_k^{1-2s} \mathcal{H}^{n-1}(\partial\Omega \cap B_{R+1}) + C_{n,s,\Omega} R^{-2s} \right) \quad (R \geq 1).$$

Optimizing R at the scale of the external mass of D_k yields an $o(1)$ rate controlled by δ_k^{1-2s} plus the tail term.

Remark 4.5 (Boundary terms on the Neumann side). *Since $\phi_1 \in C^{1,\alpha}(\Omega)$ for some $\alpha \in (0, 1)$, $\|\partial_\nu \phi_1\|_{L^\infty(\partial\Omega)} < \infty$. Thus, the boundary contribution in Theorem A is $O(\mathcal{H}^{n-1}(\Gamma_{N_k}))$, whereas the nonlocal mass over $N_k \cap B_R$ is controlled by the L^1 -absolute continuity of Ψ and the tail R^{-2s} ; compare Lemma 4.3 with Ψ in place of Υ when N_k concentrates near $\partial\Omega$.*

4.3. Application: Bifurcation thresholds in asymptotically linear problems

Let $h(t) = \theta t + f(t)$ with f bounded and $\lim_{t \rightarrow 0^+} h(t)/t = a > 0$. In the notation of [13], the bifurcation-from-zero parameter is $\lambda_0 = \lambda_1(D)/a$. The quantitative eigenvalue bounds give the following immediate consequence.

Corollary 4.6 (Quantitative control of λ_0). *Let $\lambda_{0,k} = \lambda_1(D_k)/a$.*

- *If N_k dissipates (Definition 2.6) and $\inf \alpha_k > 0$, then for every $R > 0$,*

$$0 \leq \frac{\lambda_1^{\text{Dir}}}{a} - \lambda_{0,k} \leq \frac{M_\infty}{a \alpha_k} \left(\|\partial_\nu \phi_1\|_{L^\infty(\partial\Omega)} \mathcal{H}^{n-1}(\Gamma_{N_k}) + \int_{N_k \cap B_R} \Psi + C_{n,s,\Omega} R^{-2s} \right).$$

- *If $0 < s < \frac{1}{2}$ and D_k dissipates with $\inf \beta_k > 0$, then for every $R > 0$,*

$$0 \leq \lambda_{0,k} \leq \frac{M_\infty}{a \beta_k} \left(\int_{D_k \cap B_R} \Upsilon + C_{n,s,\Omega} R^{-2s} \right),$$

and the same bound holds for $s \geq \frac{1}{2}$ assuming $\text{dist}(D_k, \Omega) \geq \delta > 0$.

Consequently, the bifurcation threshold moves in tandem with the geometric measures entering Theorems A and B.

4.4. Comparison with local and pure nonlocal settings

In the purely local mixed DN Laplacian, quantitative dependence of λ_1 on boundary partitions is well studied; see, e.g., [11]. In nonlocal frameworks, integrability near $\partial\Omega$ dictates how the fractional kernel accumulates when Dirichlet mass approaches the boundary; cf. regularity and kernel estimates in [7, 14, 19]. Our bounds adapt these ideas to the mixed local–nonlocal operator without requiring new regularity beyond [13]. They also dovetail with variants where drifts or weights are present [8, 15], though a careful re-derivation would be needed there (we do not pursue it here).

Use of Generative-AI tools declaration

The author declares that he has not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

This work was supported by Mahidol University International College (MUIC) under Grant No. 5/2025. The author thanks the anonymous reviewers for their helpful comments that improved the presentation.

Conflict of interest

The author declares that he has no conflict of interest.

References

1. N. Abatangelo, V. Felli, C. Noris, On simple eigenvalues of the fractional Laplacian under removal of small fractional capacity sets, *Commun. Contemp. Math.*, **25** (2020), 1950071. <https://doi.org/10.1142/S0219199719500718>
2. N. Aldeghi, J. Rohleder, On the first eigenvalue and eigenfunction of the Laplacian with mixed boundary conditions, preprint paper, 2024. <http://doi.org/10.48550/arXiv.2403.17717>
3. J. A. Apaza, M. de Souza, Renormalized solutions for quasilinear elliptic equations with Robin boundary conditions, lower-order terms, and L^1 data, preprint paper, 2024. <https://doi.org/10.48550/arXiv.2401.12399>
4. D. Boffi, F. Gardini, L. Gastaldi, Approximation of PDE eigenvalue problems involving parameter dependent matrices, *Calcolo*, **57** (2020), 14. <https://doi.org/10.1007/s10092-020-00390-6>
5. L. Brasco, E. Parini, The second eigenvalue of the fractional p -Laplacian, *Adv. Calc. Var.*, **9** (2016), 323–355. <http://doi.org/10.1515/acv-2015-0007>
6. L. Brasco, G. Franzina, Convexity properties of Dirichlet integrals and Picone-type inequalities, *Kodai Math. J.*, **37** (2014), 769–799. <http://doi.org/10.2996/kmj/1414674621>
7. A. D. Castro, T. Kuusi, G. Palatucci, Nonlocal Harnack inequalities, *J. Funct. Anal.*, **267** (2014), 1807–1836. <http://doi.org/10.1016/j.jfa.2014.05.023>
8. C. Cowan, H. El Smaily, P. Feulefack, The principal eigenvalue of a mixed local and nonlocal operator with drift, *J. Diff. Equ.*, **383** (2025), 203–239. <https://doi.org/10.1016/j.jde.2025.113480>
9. L. M. Del Pezzo, A. Quaas, A Hopf's lemma and a strong minimum principle for the fractional p -Laplacian, *J. Diff. Equ.*, **263** (2017), 765–778. <http://doi.org/10.1016/j.jde.2017.02.051>
10. S. Dipierro, E. Proietti Lippi, E. Valdinoci, (Non)local logistic equations with Neumann conditions, *AIHPC*, **40** (2023), 1093–1166. <http://doi.org/10.4171/aihpc/57>
11. V. Felli, B. Noris, R. Ognibene, Eigenvalues of the Laplacian with moving mixed boundary conditions: The case of disappearing Neumann region, *J. Differ. Equ.*, **320** (2022), 247–315. <https://doi.org/10.1016/j.jde.2022.02.052>

12. G. Franzina, G. Palatucci, Fractional p-eigenvalues, *Riv. Mat. Uni. Parma*, **5** (2014), 373–386.

13. J. Giacomoni, T. Mukherjee, L. Sharma, On an eigenvalue problem associated with mixed operators under mixed boundary conditions, *Discr. Contin. Dyn. Syst.*, **45** (2025), 2895–2920. <http://doi.org/10.3934/dcds.2025095>

14. A. Iannizzotto, S. Mosconi, M. Squassina, Global Hölder regularity for the fractional p-Laplacian, *Rev. Mat. Iberoamer.*, **32** (2016), 1353–1392. <http://doi.org/10.4171/RMI/921>

15. G. R. Lakshmi, D. D. Giri, N. Ghosh, A weighted eigenvalue problem for mixed local and nonlocal p-Laplacian operators, preprint paper, 2024. <http://doi.org/10.48550/arXiv.2409.01349>

16. T. Leonori, I. Peral, A. Primo, F. Soria, Basic estimates for solutions of a class of nonlocal elliptic and parabolic equations, *Discr. Contin. Dyn. Syst.*, **35** (2015), 6031–6068. <http://doi.org/10.3934/dcds.2015.35.6031>

17. E. Lindgren, P. Lindqvist, Fractional eigenvalues, *Calc. Var. PDE*, **49** (2014), 795–826. <http://doi.org/10.1007/s00526-013-0600-1>

18. A. L. Masiello, G. Paoli, Rigidity results for the p-Laplacian Poisson problem with Robin boundary conditions, *J. Optim. Theory Appl.*, **202** (2024), 628–648. <http://doi.org/10.1007/s10957-024-02442-1>

19. E. D. Nezza, G. Palatucci, E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, *Bull. Sci. Math.*, **136** (2012), 521–573. <http://doi.org/10.1016/j.bulsci.2011.12.004>

20. R. Servadei, E. Valdinoci, The Brezis-Nirenberg result for the fractional Laplacian, *Trans. Amer. Math. Soc.*, **367** (2015), 67–102. <http://doi.org/10.1090/S0002-9947-2014-05884-4>

21. L. Sharma, Brezis Nirenberg type results for local non-local problems under mixed boundary conditions, *Commun. Anal. Mech.*, **6** (2024), 872–895. <http://doi.org/10.3934/cam.2024038>

22. K. Stempak, The Laplacian with mixed Dirichlet-Neumann boundary conditions on Weyl chambers, *J. Differ. Equ.*, **329** (2022), 348–370. <https://doi.org/10.1016/j.jde.2022.05.005>

23. M. Warma, The fractional Neumann and Robin type boundary conditions for the regional fractional p-Laplacian, *Nonlinear Diff. Equ. Appl.*, **23** (2016), 1. <http://doi.org/10.1007/s00030-016-0354-5>

24. M. Warma, The p-Laplace operator with the nonlocal Robin boundary conditions on arbitrary open sets, *Ann. Mat. Pura Appl.*, **193** (2014), 203–235. <http://doi.org/10.1007/s10231-012-0273-y>

25. M. Warma, The fractional relative capacity and the fractional Laplacian with Neumann and Robin boundary conditions on open sets, *Potent. Anal.*, **42** (2015), 499–547. <http://doi.org/10.1007/s11118-014-9443-4>

AIMS Press

© 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (<https://creativecommons.org/licenses/by/4.0/>)