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Abstract: Let L = −∆ + (−∆)s with s ∈ (0, 1) on a bounded C1,1 domain Ω ⊂ Rn, under a partition
of the exterior Rn\Ω into disjoint open sets D (Dirichlet) and N (nonlocal Neumann). Building on the
mixed local–nonlocal framework, we obtain explicit, provable upper bounds for the variation of the
principal eigenvalue λ1(D) along families of partitions in which the Neumann set N or the Dirichlet
set D dissipates. When N dissipates, we bound λDir

1 − λ1(D) by integrals of the Dirichlet kernel over N
plus a boundary term and a standard fractional tail. When D dissipates and 0 < s < 1

2 , we bound λ1(D)
by integrals of the geometric kernel over D and the same tail; for s ≥ 1

2 we give a separated-Dirichlet
variant. The proofs use only the weak formulation, the basic spectral theory for the mixed problem, L∞

bounds for principal eigenfunctions, and two cross-testing identities, with all constants and dependencies
made explicit. Consequences include quantitative continuity of λ1 under weak set convergence and a
controlled shift of asymptotically linear bifurcation thresholds. All constants depend only on (n, s,Ω)
and, in the separated-Dirichlet variant, also on a fixed separation δ > 0.
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1. Introduction

Let Ω ⊂ Rn be a bounded C1,1 domain, and fix s ∈ (0, 1). We study the mixed local–nonlocal operator

L := −∆ + (−∆)s,

subject to mixed boundary conditions posed on a partition of the exterior into disjoint open sets D
(Dirichlet) and N (nonlocal Neumann), with D,N ⊂ Rn \Ω, D ∪ N = Rn \Ω, and Ω ∪ N bounded. In
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the nonlocal part we adopt the fractional Neumann derivative

Nsu(x) := Cn,s

∫
Ω

u(x) − u(y)
|x − y|n+2s dy, x ∈ Rn \Ω,

and consider the eigenvalue problem
Lu = λu, u > 0 in Ω,
u = 0 in D ∪ (∂Ω ∩ D),
Nsu = 0 in N,

∂νu = 0 in ∂Ω ∩ N.

(1.1)

Background. The spectral theory for (1.1) has been recently developed in the mixed local–nonlocal
setting; in particular, existence of a principal eigenvalue, simplicity, positivity of the
corresponding eigenfunction, regularity, and qualitative asymptotics under boundary-set perturbations
are established in [13]. Related ingredients come from the pure fractional literature on eigenvalues and
regularity [14, 17, 19], from mixed Dirichlet–Neumann problems in the local case [2, 22], and from
nonlocal/Neumann frameworks [7, 10, 23]. Convexity properties of Dirichlet integrals and Picone-type
inequalities, which underpin several variational arguments in this context, are developed in [5, 6, 12],
while Hopf-type and Brezis–Nirenberg-type results for the fractional Laplacian can be found [1, 9, 20].
For mixed local–nonlocal variants with drift or weights, see [8, 15]; see also [16] for estimates in
fractional mixed problems and [3, 18, 21] for adjacent directions, as well as [4] for parameter-dependent
eigenvalue approximations.

Scope and contribution. Our goal is modest and entirely quantitative: we complement the qualitative
limits in [13] by deriving explicit upper bounds for the variation of the principal eigenvalue when the
boundary partition dissipates. Concretely, let λ1(D) denote the principal eigenvalue of (1.1), and write
λDir

1 for the principal eigenvalue in the full exterior Dirichlet case (N = ∅) and λNeu
1 = 0 for the full

Neumann case (D = ∅). For a sequence of admissible partitions (Dk,Nk), we set λ1,k := λ1(Dk). We
obtain quantitative estimates (here “dissipates” is in the sense of Definition 2.7 below).

Theorem A (Neumann dissipation: quantitative bound). Assume Nk dissipates (Definition 2.7), i.e., |Nk∩

BR| → 0 for every R > 0 andHn−1(ΓNk)→ 0, with Ω ∪ Nk bounded and u1,k > 0 the L2(Ω)–normalized
principal eigenfunction for (Dk,Nk) (here ΓNk := ∂Ω ∩ Nk; see §2). Then, for every R > 0,

0 ≤ λDir
1 − λ1,k ≤

M∞
αk

( ∫
ΓNk

|∂νϕ1| dσ +
∫

Nk∩BR

Ψ(x) dx + Cn,s,Ω R−2s

)
,

where ϕ1 is the L2(Ω)-normalized Dirichlet ground state, Ψ(x) =
∫
Ω
ϕ1(y)|x − y|−n−2s dy,

αk =
∫
Ω
ϕ1u1,k dx > 0, and M∞ = supk ∥u1,k∥L∞(Ω) < ∞. All constants are explicit in the proof.

Theorem B (Dirichlet dissipation: quantitative bound). Assume 0 < s < 1
2 and Dk dissipates

(Definition 2.7), i.e., |Dk ∩ BR| → 0 for every R > 0 andHn−1(ΓDk)→ 0 (with ΓDk := ∂Ω ∩ Dk; see §2).
Let u1,k > 0 be L2-normalized. Then, for every R > 0,

0 ≤ λ1,k ≤
M∞
βk

( ∫
Dk∩BR

Υ(x) dx + Cn,s,Ω R−2s

)
,
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where Υ(x) =
∫
Ω
|x − y|−n−2s dy and βk = |Ω|

−1/2
∫
Ω

u1,k dx > 0. For s ≥ 1
2 an analogous bound holds

under dist(Dk,Ω) ≥ δ > 0, in which case Υ is uniformly bounded on Dk and the right-hand side depends
on |Dk ∩ BR| and the tail R−2s.

The proofs are short: they rely on the weak formulation in the mixed framework, the L∞ bounds
and compactness for principal eigenfunctions, and testing identities that compare eigenpairs across
boundary configurations. The bounds expose only geometric/integral data of the dissipating sets and a
standard tail term, thereby turning the qualitative limits into quantitative ones. No new regularity theory
is required.

Scope note. Throughout we assume D,N ⊂ Rn \Ω are disjoint open sets with D ∪ N = Rn \Ω and
Ω∪N bounded. Thus, D , ∅, and the pure Neumann configuration (D = ∅) falls outside our admissible
class. References to the Neumann ground state ψ1 ≡ |Ω|

−1/2 or to λNeu
1 = 0 are used only as comparisons

implemented via admissible cut-offs (see §2).

Example (Ball with bounded N). Let Ω = BR(0) ⊂ Rn. Define

N := {x ∈ Rn : R < |x| < R + 1} (open annulus), D := (Rn \Ω) \ N = {x ∈ Rn : |x| > R + 1}.

Then D,N ⊂ Rn \Ω are disjoint open sets and

D ∪ N = {x : |x| ≥ R} = Rn \Ω.

Moreover, Ω∪N ⊂ BR+1(0) is bounded. The boundary portions for the mixed problem are ∂Ω∩N = ∂Ω
(Neumann) and ∂Ω ∩ D = ∅ (Dirichlet), so the boundary conditions in (1.1) read

u = 0 in D ∪ (∂Ω ∩ D) = {x : |x| > R + 1}, ∂νu = 0 in ∂Ω ∩ N = ∂Ω.

Organization. Section 2 fixes the functional setting (spaces, integration by parts, Poincaré-type
inequality) and records the testing identities and tail estimates we use. Section 3 contains the proofs of
Theorems A and B. Section 4 discusses consequences (e.g. continuity of λ1 under weak set convergence),
the separated case for s ≥ 1

2 , and a brief application to bifurcation thresholds.

2. Preliminaries and functional setup

Global conventions (partition and boundary slices). Let Ω ⊂ Rn be a bounded C1,1 domain and
s ∈ (0, 1). Throughout we fix disjoint open sets D,N ⊂ Rn \Ω with D ∪ N = Rn \Ω and Ω∪N bounded.
We define the boundary slices

ΓD := ∂Ω ∩ D, ΓN := ∂Ω ∩ N.

Boundary terms will be taken over ΓD or ΓN . We write dσ for the (n−1)-dimensional Hausdorff measure
on ∂Ω, i.e.,

dσ := dHn−1
∣∣∣
∂Ω
,

and we reserveHn−1(E) for the (n−1)-measure of E ⊂ ∂Ω. All subsequent occurrences of “∂Ω ∩ N” or
“∂Ω ∩ D” are to be understood as ΓN or ΓD, respectively.
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We consider the mixed local–nonlocal operator

L := −∆ + (−∆)s, (−∆)su(x) = Cn,s P.V.
∫
Rn

u(x) − u(y)
|x − y|n+2s dy,

together with a partition of the exterior into disjoint open sets D,N ⊂ Rn \Ω with D ∪ N = Rn \ Ω and
Ω ∪ N bounded. The nonlocal Neumann derivative is

Nsu(x) := Cn,s

∫
Ω

u(x) − u(y)
|x − y|n+2s dy, x ∈ Rn \Ω.

Definition 2.1 (Dirichlet and Neumann regions). Let Ω ⊂ Rn be a bounded C1,1 domain. A pair (D,N)
is an admissible exterior partition if

D,N ⊂ Rn \Ω are open, disjoint, and D ∪ N = Rn \Ω.

We call D the Dirichlet region and N the (nonlocal) Neumann region. The corresponding boundary
portions are

∂ΩD := ∂Ω ∩ D, ∂ΩN := ∂Ω ∩ N.

On these sets, the mixed boundary conditions for (1.1) are imposed as

u = 0 in D ∪ ∂ΩD, Nsu = 0 in N, ∂νu = 0 in ∂ΩN.

When required in the sequel, we additionally assume Ω ∪ N is bounded.

Energy space, seminorm, and weak formulation. Define

ΓD := ∂Ω ∩ D, ΓN := ∂Ω ∩ N,

U := Ω ∪ N ∪ ΓN , Uc := D ∪ ΓD,

and
X1,2

D (U) :=
{
u ∈ H1(Rn) : u|U ∈ H1

0(U), u ≡ 0 a.e. in Uc }.
We integrate on ∂Ω with dσ := dHn−1 ↾∂Ω, whileHn−1(E) denotes the (n−1)-measure of a set E ⊂ ∂Ω.

Let

Q := R2n \
(
Ωc ×Ωc), [u]2

s :=
"

Q

|u(x) − u(y)|2

|x − y|n+2s dx dy.

We use the energy

η(u)2 :=
∫
Ω

|∇u|2 dx + [u]2
s , u ∈ X1,2

D (U),

which defines a Hilbert norm on X1,2
D (U) and controls the L2(Ω) norm via the Poincaré-type estimate

∥u∥2L2(Ω) ≤ C(Ω, n, s)
(∫
Ω

|∇u|2 dx + [u]2
s

)
∀ u ∈ X1,2

D (U). (2.1)

The set-up (2.1) is standard in this mixed framework; see [13, Prop. 2.1] and, for fractional Sobolev
background, [19].
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Proposition 2.2 (Integration by parts). For u, v ∈ C∞c (U),∫
Ω

v Lu dx =
∫
Ω

∇u · ∇v dx +
"

Q

(u(x) − u(y))(v(x) − v(y))
|x − y|n+2s dx dy −

∫
ΓN

v ∂νu dσ −
∫

N
v Nsu dx,

and the identity extends to u, v ∈ X1,2
D (U) by density [13, Prop. 2.2].

Remark 2.3 (Uniformity of the Poincaré constant). The constant C(Ω, n, s) can be chosen independently
of the admissible partition as long as Ω ∪ N is bounded. Indeed, the proof uses only that u ≡ 0 a.e. on
Uc = D ∪ ΓD and that the double integral runs over Q; no geometric feature of N beyond boundedness
of U enters the estimate. Hence, C = C(Ω, n, s) is uniform across all admissible (D,N).

Corollary 2.4 (Density and extension to X1,2
D (U)). Since C∞c (U) is dense in X1,2

D (U), the integration-by-
parts identity of Proposition 2.2 extends to all u, v ∈ X1,2

D (U) by approximation. We invoke this extension
in Lemmas 2.8–2.11, where the test functions are realized in X1,2

D (U) via cut-offs.

Definition 2.5 (Weak eigenpairs). We say u ∈ X1,2
D (U) solves

Lu = λu, u > 0 in Ω,

u = 0 in Uc,

Nsu = 0 in N,

∂νu = 0 in ΓN ,

if for all ϕ ∈ X1,2
D (U),∫

Ω

∇u · ∇ϕ dx +
"

Q

(u(x) − u(y))(ϕ(x) − ϕ(y))
|x − y|n+2s dx dy = λ

∫
Ω

uϕ dx. (2.2)

The principal eigenvalue is given by the Rayleigh quotient

λ1(D) := inf
u∈X1,2

D (U)\{0}
∥u∥L2(Ω)=1

η(u)2, (2.3)

and is achieved by a strictly positive eigenfunction u1. Moreover, λ1(D) is simple. [13, Sec. 3]

Remark 2.6 (Regularity and orthogonality). Eigenfunctions are bounded and Hölder continuous,
u ∈ L∞(U) ∩ C0,β(Rn) for some β ∈ (0, 1); eigenfunctions associated with different eigenvalues are
L2(Ω)-orthogonal and orthogonal with respect to the energy inner product. See [13, Props. 3.3–3.4].
For related fractional regularity and Harnack-type estimates in the nonlocal literature, cf. [7, 14].

2.1. Dissipating sequences of boundary sets

We adopt the qualitative notion used in [13, Thms. 2.7–2.8].

Definition 2.7 (Dissipation). Let (Dk,Nk) be admissible partitions with Ω ∪ Nk bounded and let
λ1,k := λ1(Dk). With the boundary slices

ΓDk := ∂Ω ∩ Dk, ΓNk := ∂Ω ∩ Nk (see §2 conventions),

we say:
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• Nk dissipates if, for every R > 0, |Nk ∩ BR| → 0 andHn−1(ΓNk)→ 0 as k → ∞;

• Dk dissipates if, for every R > 0, |Dk ∩ BR| → 0 andHn−1(ΓDk)→ 0 as k → ∞.

Then the qualitative limits of [13, Thms. 2.7–2.8] hold verbatim: if Nk dissipates, then λ1,k → λ1(Rn \Ω);
if 0 < s < 1

2 and Dk dissipates, then λ1,k → 0 (for s ≥ 1
2 , convergence holds under dist (Dk ,Ω) ≥ δ > 0),

cf. [13, Prop. 4.5].

Notation. On ∂Ω we integrate with dσ = dHn−1 ↾∂Ω; we reserveHn−1(E) for the (n−1)–measure of a
set E ⊂ ∂Ω [13, Thms. 2.7–2.8, Prop. 4.8].

2.2. Two cross-testing identities

The quantitative bounds in §3 start from two identities obtained by testing the weak formulations for
different boundary configurations; compare [13, (4.1.4),(4.2.2)].

Lemma 2.8 (Testing against the Dirichlet ground state). Let ϕ1 be the L2(Ω)–normalized first
eigenfunction for the full exterior Dirichlet problem (N = ∅), and let (λ1,k, u1,k) be the
L2(Ω)–normalized principal eigenpair for (Dk,Nk). Then

(λDir
1 − λ1,k)

∫
Ω

ϕ1u1,k dx = −
∫
ΓNk

u1,k ∂νϕ1 dσ +
"

Nk×Ω

ϕ1(y)u1,k(x)
|x − y|n+2s dy dx, (2.4)

where ΓNk := ∂Ω ∩ Nk.

Remark 2.9 (On the space of test functions). The identity is obtained by testing in X1,2
D (U) and using

Corollary 2.4 to pass from C∞c (U) to the cut-off realizations of ϕ1 (resp. ψ1) described above.

Lemma 2.10 (Boundary regularity for the Dirichlet ground state). Let ϕ1 solve Lϕ1 = λ
Dir
1 ϕ1 in Ω with

ϕ1 = 0 in Rn \Ω. If Ω is C1,1, then ϕ1 ∈ C1,α(Ω) for some α ∈ (0, 1); in particular ∥∂νϕ1∥L∞(∂Ω) < ∞.

Reference. This is the regularity asserted in [13, Lemma 4.5], obtained from the mixed local–nonlocal
structure with C1,1 boundary; see also their Appendix A for W2,p estimates implying C1,α up to ∂Ω. □

Lemma 2.11 (Testing against the Neumann ground state via cut-off). Let (λ1,k, u1,k) be the
L2(Ω)–normalized principal eigenpair for (Dk,Nk) and let ψ1 ≡ |Ω|

−1/2. Then

λ1,k

∫
Ω

ψ1u1,k dx = −
∫
ΓDk

u1,k ∂νψ1 dσ +
"

Dk×Ω

ψ1(x)u1,k(y)
|x − y|n+2s dy dx, (2.5)

where ΓDk := ∂Ω ∩ Dk. Since ψ1 is constant, ∂νψ1 ≡ 0.

Proof. Fix k. Choose a standard cut-off ηε ∈ C∞c (Uk) such that 0 ≤ ηε ≤ 1, ηε ≡ 1 on Ω, ηε → 1
pointwise on Uk, and ηε ≡ 0 on a shrinking neighborhood of Uc

k = Dk ∪ ΓDk . Set vε := ψ1 ηε ∈ X1,2
Dk

(Uk).
Testing the weak formulation (2.2) for (λ1,k, u1,k) with φ = vε (cf. Proposition 2.2) gives

λ1,k

∫
Ω

ψ1ηε u1,k dx =
∫
Ω

∇u1,k · ∇(ψ1ηε) dx +
"

Qk

(
u1,k(x) − u1,k(y)

)(
ψ1ηε(x) − ψ1ηε(y)

)
|x − y|n+2s dx dy,
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where Qk = R
2n \ (Ωc ×Ωc). Since ψ1 is constant and ηε ≡ 1 on Ω, we have ∇(ψ1ηε) ≡ 0 on Ω; hence,

the local term is zero. Thus,

λ1,k

∫
Ω

ψ1 u1,k dx = ψ1

"
Qk

(
u1,k(x) − u1,k(y)

)(
ηε(x) − ηε(y)

)
|x − y|n+2s dx dy, (2.6)

because ηε ≡ 1 on Ω.
We now pass to the limit ε ↓ 0 on the right-hand side. By construction, ηε(x)−ηε(y)→ 1Ω(x)1Dk(y)−

1Dk(x)1Ω(y) pointwise, and |ηε(x) − ηε(y)| ≤ 1. Using u1,k ≡ 0 in Dk and the tail estimate from §2.4, the
integrand is dominated by

|u1,k(x)| 1Ω(x)1Dk(y) + |u1,k(y)| 1Dk(x)1Ω(y)
|x − y|n+2s ,

which is integrable on Qk (the inner integrals in y ∈ Dk are finite for each x ∈ Ω by the kernel’s
integrability, and the tail is O(R−2s)). Therefore, by dominated convergence,"

Qk

(
u1,k(x) − u1,k(y)

)(
ηε(x) − ηε(y)

)
|x − y|n+2s dx dy −→

"
Dk×Ω

u1,k(y)
|x − y|n+2s dx dy,

where we used symmetry to write the cross-terms in the oriented form Dk ×Ω.
Plugging this limit into (2.6) yields (2.5). This argument uses only the mixed integration-by-parts

identity and the weak formulation in our space, as in [13, Prop. 2.2]. □

Remark 2.12 (On the role of the pure Neumann profile). Under our standing hypothesis Ω∪N bounded,
the configuration D = ∅ is excluded (so N = Rn \ Ω is not allowed). In particular, while the pure
Neumann model has λNeu

1 = 0 and normalized ground state ψ1 ≡ |Ω|
−1/2 (see, e.g., [13, Thm. 4.1]), we

do not use ψ1 as a test function in X1,2
D (U). Instead, Lemma 2.11 justifies the cross–testing identity

rigorously by approximating ψ1 with admissible cut-offs vε = ψ1ηε ∈ X1,2
D (U) and letting ε ↓ 0. All

subsequent uses of ψ1 refer to this admissible realization.

2.3. Compactness and uniform bounds

We record compactness and L∞–Hölder bounds for principal eigenfunctions along admissible
partitions:

Standing hypothesis and admissible scope. We always work with disjoint open sets D,N ⊂ Rn \Ω

satisfying D ∪ N = Rn \ Ω and Ω ∪ N bounded. Consequently, D , ∅, the pure Neumann case (D = ∅)
is excluded in our admissible class. Any use of the constant Neumann ground state ψ1 ≡ |Ω|

−1/2 is purely
as a comparison profile implemented by the cut-off functions vε = ψ1ηε ∈ X1,2

D (U); cf. Lemma 2.11.

Proposition 2.13 (Compactness). Let (λ1,k, u1,k) be principal eigenpairs. Then, up to a subsequence,

u1,k ⇀ u∗ in X1,2
D (U), u1,k → u∗ in L2

loc(R
n), u1,k → u∗ a.e. in Rn,

refer to [13, Prop. 4.2].

In what follows, we write u∗ for any subsequential limit of u1,k given by Proposition 2.13; by the
limit mixed problem (cf. [18]) one has u∗ > 0 in U∗.

AIMS Mathematics Volume 10, Issue 12, 28115–28128.
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Lemma 2.14 (Alignment factors stay positive along convergent subsequences). Let (λ1,k, u1,k) be the
L2(Ω)-normalized principal eigenpairs for admissible (Dk,Nk). Suppose u1,k → u∗ in L2

loc(R
n) and a.e.

in Rn, with u∗ solving the limit problem and u∗ > 0 in U∗. Then

αk :=
∫
Ω

ϕ1u1,k dx →
∫
Ω

ϕ1u∗ dx > 0, βk :=
∫
Ω

ψ1u1,k dx →
∫
Ω

ψ1u∗ dx > 0,

where ϕ1 is the Dirichlet ground state and ψ1 ≡ |Ω|
−1/2.

Proof. The compactness u1,k ⇀ u∗ in X1,2
D (U) and u1,k → u∗ in L2

loc follows from the energy bound
and the compact embedding (cf. [13, Prop. 4.2]). The strong maximum principle yields u∗ > 0 in U∗
(cf. [13, Lem. 3.1]); hence, both limit overlaps are strictly positive. □

Proposition 2.15 (Uniform L∞ and Hölder bounds on U). Let (λ1,k, u1,k) be the L2(Ω)-normalized
principal eigenpairs for admissible partitions (Dk,Nk) with Ω ∪ Nk bounded. Then there exists M∞ > 0
such that 0 < u1,k(x) ≤ M∞ for a.e. x ∈ Uk, Uk := Ω ∪ Nk ∪ ΓNk . Moreover, up to a subsequence,
u1,k ∈ C0,β(Rn) with a uniform Hölder exponent β ∈ (0, 1) and C0,β-seminorms locally bounded in Rn.

Proof sketch. First, by the weak formulation and L2(Ω)-normalization,∫
Ω

|∇u1,k|
2 dx + [u1,k]2

s = λ1,k ≤ λ
Dir
1 ,

hence the energies are uniformly bounded. The standard Moser/De Giorgi iteration for the mixed
operator on Ω gives ∥u1,k∥L∞(Ω) ≤ C(n, s,Ω) (see the iteration around (3.0.3)–(3.0.12)
in [13, Prop. 3.3(1)]). For x ∈ Nk, the nonlocal Neumann condition yields

0 = Nsu1,k(x) = Cn,s

∫
Ω

u1,k(x) − u1,k(y)
|x − y|n+2s dy ⇒ u1,k(x) =

∫
Ω

u1,k(y)
|x−y|n+2s dy∫

Ω

1
|x−y|n+2s dy

,

so |u1,k(x)| ≤ supΩ |u1,k|. Hence, ∥u1,k∥L∞(Nk) ≤ ∥u1,k∥L∞(Ω), and continuity up to ∂Ω ∩ Nk follows from the
regularity quoted in [13, Sec. 3 & App. A]. This proves the claim with M∞ = supk ∥u1,k∥L∞(Ω). □

Remark 2.16 (On using L2 in place of L∞ on Uk). One can avoid the pointwise bound on Uk by using
Cauchy–Schwarz on near-field terms and the identity Nsu = 0 on Nk (or u = 0 on Dk) to rewrite u(x)
outside Ω as a weighted average of values in Ω. Since our Proposition 2.15 yields a k-uniform L∞(Uk)
bound with a shorter argument, we keep the proofs of Theorems A–B in that form.

2.4. Kernel potentials and tail estimate

Given ϕ1 as above, set

Ψ(x) :=
∫
Ω

ϕ1(y)
|x − y|n+2s dy, x ∈ Rn \Ω,

and for Dirichlet-dissipation considerations,

Υ(x) :=
∫
Ω

1
|x − y|n+2s dy.
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Both belong to L1(Rn \Ω); moreover, for all R > 0,∫
|x|>R
Ψ(x) dx ≤ C(Ω, n, s) R−2s,

∫
|x|>R
Υ(x) dx ≤ C(Ω, n, s) R−2s. (2.7)

Proof of (2.7). If |x| > R and y ∈ Ω (bounded), then |x − y| ≥ |x|/2, so Ψ(x) ≤ 2n+2s∥ϕ1∥L1(Ω)|x|−n−2s and
similarly for Υ. Integration over {|x| > R} gives R−2s decay. □

2.5. Separated-Dirichlet variant for s ≥ 1
2

When dist (Dk ,Ω) ≥ δ > 0, one has Υ(x) ≤ C(δ, n, s) on Dk, which will be used in §3 to quantify
λ1,k → 0 for s ∈ [ 1

2 , 1) under Dirichlet dissipation with separation; cf. [13, Sec. 4.2]. For local/fractional
mixed background, related to boundary conditions and capacities, see also [16, 24, 25].

Remark 2.17 (On the interaction set Q and cross-terms). Recall Q = R2n \ (Ωc ×Ωc) = (Ω ×Ω) ∪ (Ω ×
Ωc)∪ (Ωc ×Ω). Thus, the Gagliardo term comprises the interior part Ω×Ω and both cross-interactions
between Ω and its exterior. This is the origin of the Dirichlet and Neumann integrals that appear in the
cross–testing identities of Lemmas 2.8–2.11.

3. Main results: quantitative bounds

In this section, we prove the quantitative estimates announced in the Introduction. We retain the
notation from §2. In particular, ϕ1 is the L2(Ω)-normalized ground state for the full exterior Dirichlet
problem (thus Lϕ1 = λ

Dir
1 ϕ1 in Ω, ϕ1 = 0 in Rn \Ω), while ψ1 ≡ |Ω|

−1/2 is the normalized ground state
for the pure Neumann problem. For each admissible partition (Dk,Nk) we denote by (λ1,k, u1,k) the
positive L2(Ω)-normalized principal eigenpair.

From Lemmas 2.8–2.11, the cross–testing identities read

(λDir
1 − λ1,k)

∫
Ω

ϕ1u1,k dx = −
∫
ΓNk

u1,k ∂νϕ1 dσ +
∫

Nk

∫
Ω

ϕ1(y) u1,k(x)
|x − y|n+2s dy dx, (3.1)

λ1,k

∫
Ω

ψ1u1,k dx = −
∫
ΓDk

u1,k ∂νψ1 dσ +
∫

Dk

∫
Ω

ψ1(x) u1,k(y)
|x − y|n+2s dy dx, (3.2)

where ΓNk := ∂Ω ∩ Nk and ΓDk := ∂Ω∩ Dk (see §2), and ∂νψ1 ≡ 0. We also use the potentials from §2.4:

Ψ(x) =
∫
Ω

ϕ1(y)
|x − y|n+2s dy, Υ(x) =

∫
Ω

1
|x − y|n+2s dy,

and the tail estimate
∫
|x|>R
Ψ(x) dx,

∫
|x|>R
Υ(x) dx ≤ Cn,s,Ω R−2s, cf. (2.7).

Finally, by Proposition 2.15, there exists M∞ > 0, independent of k, such that

0 < u1,k(x) ≤ M∞ for a.e. x ∈ Uk := Ω ∪ Nk ∪ ΓNk .

3.1. Neumann dissipation: Proof of Theorem A

Set αk :=
∫
Ω
ϕ1u1,k dx > 0 and use (3.1):

(λDir
1 − λ1,k)αk = −

∫
Nk∩∂Ω

u1,k ∂νϕ1 dσ +
∫

Nk

Ψ(x) u1,k(x) dx.
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With u1,k ≤ M∞ on Uk we obtain

0 ≤ λDir
1 − λ1,k ≤

M∞
αk

( ∫
Nk∩∂Ω

|∂νϕ1| dσ +
∫

Nk

Ψ(x) dx
)
. (3.3)

Split
∫

Nk
Ψ =

∫
Nk∩BR

Ψ +
∫

Nk\BR
Ψ and use the tail bound

∫
|x|>R
Ψ ≤ Cn,s,ΩR−2s. This yields exactly the

estimate stated in Theorem A.

Choice of R. Fix ε > 0 and pick R(ε) :=
(
2Cn,s,Ω/ε

)1/(2s), so that Cn,s,ΩR(ε)−2s ≤ ε/2. Then use the
dissipation hypothesis (Definition 2.6) to choose k large so that the remaining near-field terms over
Nk ∩ BR(ε) (resp. Dk ∩ BR(ε)) and the boundary sliceHn−1(ΓNk) (resp. Hn−1(ΓDk)) are each < ε/2. This
yields a constructive modulus of continuity for λ1,k.

3.2. Dirichlet dissipation (0 < s < 1
2 ): Proof of Theorem B

Let ψ1 ≡ |Ω|
−1/2 and βk :=

∫
Ω
ψ1u1,k dx = |Ω|−1/2

∫
Ω

u1,k dx > 0. From (2.5),

λ1,k βk = |Ω|
−1/2

∫
Dk

∫
Ω

u1,k(y)
|x − y|n+2s dy dx ≤

M∞
|Ω|1/2

∫
Dk

Υ(x) dx,

hence

0 ≤ λ1,k ≤
M∞
βk

∫
Dk

Υ(x) dx ≤
M∞
βk

( ∫
Dk∩BR

Υ(x) dx +Cn,s,ΩR−2s

)
, (3.4)

and Theorem B follows because Υ ∈ L1
loc up to ∂Ω when 0 < s < 1

2 .

Choice of R. Fix ε > 0 and pick

R(ε) :=
(

2 Cn,s,Ω

ε

)1/(2s)
⇒ Cn,s,ΩR(ε)−2s ≤ ε

2 .

Then use the dissipation hypothesis to choose k large so that the remaining near-field terms over
Nk ∩ BR(ε) (resp. Dk ∩ BR(ε)) and the boundary slice are each < ε/2. This yields a constructive modulus
of continuity for λ1,k.

3.3. Variant for s ≥ 1
2 with separated Dirichlet sets

Assume dist(Dk,Ω) ≥ δ > 0. Then Υ(x) ≤ C(δ, n, s) on Dk, so (3.4) gives

0 ≤ λ1,k ≤
M∞
βk

(
C(δ, n, s) |Dk ∩ BR| +Cn,s,ΩR−2s

)
,

and the stated convergence follows.
Explicit constant. If dist(Dk,Ω) ≥ δ > 0, then for x ∈ Dk and y ∈ Ω we have |x − y| ≥ δ, hence

Υ(x) =
∫
Ω

1
|x − y|n+2s dy ≤ |Ω| δ−(n+2s).

Therefore
0 ≤ λ1,k ≤

M∞
βk

(
|Ω| δ−(n+2s) |Dk ∩ BR| +Cn,s,ΩR−2s

)
,

which is the stated bound with C(δ, n, s) = |Ω| δ−(n+2s).
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4. Consequences, examples, and extensions

We collect corollaries of Theorems A and B, give quantitative rates under mild geometric control,
and note an application to asymptotically linear bifurcation thresholds.

4.1. Quantitative continuity of the principal eigenvalue

Corollary 4.1 (Neumann sets dissipating). Let (Dk,Nk) be admissible partitions with Ω ∪ Nk bounded
and Nk dissipating. Let (λ1,k, u1,k) be the L2–normalized principal eigenpairs and let αk =

∫
Ω
ϕ1u1,k > 0,

where ϕ1 is the Dirichlet ground state. Then, for every R > 0,

0 ≤ λDir
1 − λ1,k ≤

M∞
αk

(
∥∂νϕ1∥L∞(∂Ω)H

n−1(ΓNk) +
∫

Nk∩BR

Ψ + Cn,s,Ω R−2s
)
.

If, along a subsequence, inf αk > 0, then λ1,k → λDir
1 . Moreover, for any ε > 0 choose R = R(ε) with

Cn,s,ΩR−2s < ε, and then choose k so large that the remaining terms are < ε by Nk–dissipation, which
yields a constructive modulus of continuity.

Proof. This is Theorem A with
∫

Nk∩∂Ω
|∂νϕ1| ≤ ∥∂νϕ1∥L∞H

n−1(Nk ∩ ∂Ω) and the tail estimate
∫
|x|>R
Ψ ≤

Cn,s,ΩR−2s. The modulus-of-continuity statement follows by first fixing R and then using Nk–dissipation.
□

Corollary 4.2 (Dirichlet sets dissipating). Assume 0 < s < 1
2 and Dk dissipates. Let βk = |Ω|

−1/2
∫
Ω

u1,k >

0. Then, for every R > 0,

0 ≤ λ1,k ≤
M∞
βk

( ∫
Dk∩BR

Υ +Cn,s,ΩR−2s
)
.

If, along a subsequence, inf βk > 0, then λ1,k → 0; for s ≥ 1
2 the same conclusion holds provided

dist(Dk,Ω) ≥ δ > 0.

4.2. Rates under geometric control near ∂Ω

We single out a simple geometric regime that turns the integrals in Theorem B into explicit powers
of a thickness parameter.

Lemma 4.3 (Tubular estimate for Υ). Let 0 < s < 1
2 and Tδ := {x ∈ Rn \ Ω : dist(x, ∂Ω) < δ} with

δ ∈ (0, 1). There exists C = C(Ω, n, s) such that∫
Tδ∩BR

Υ(x) dx ≤ C δ1−2sHn−1(∂Ω ∩ BR+δ) + C |BR|,

and, for any measurable E ⊂ Tδ ∩ BR,∫
E
Υ(x) dx ≤ C δ1−2sHn−1(∂Ω ∩ BR+δ).

Proof (sketch). In tubular coordinates (y, ρ) ∈ ∂Ω × (0, δ) with x = y + ρν(y) (valid since ∂Ω is C1,1),
one has dx ≈ J(y, ρ) dρ dσ(y) with J uniformly bounded above and below. For fixed (y, ρ) and z ∈ Ω,
|x − z| ≥ c ρ with c > 0, hence Υ(x) ≤ C

∫
Ω
ρ−n−2s dz ≤ Cρ−2s. Integrating ρ−2s from 0 to δ gives

δ1−2s/(1 − 2s), and integration over ∂Ω ∩ BR+δ yields the first inequality. The second follows by
monotonicity. □
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Orientation. In tubular coordinates x = y + ρν(y), the Jacobian J(y, ρ) is bounded above/below on
0 < ρ < δ for C1,1 domains, and the kernel behaves like ρ−n−2s. After integrating in z ∈ Ω, this leaves
the main singularity ρ−2s, which is integrable near ρ = 0 iff s < 1

2 .

Corollary 4.4 (Rates from thin Dirichlet layers). Assume 0 < s < 1
2 and Dk ⊂ Tδk with δk ↓ 0. Then,

along any subsequence with inf βk > 0,

λ1,k ≤
M∞
βk

(
C δ1−2s

k Hn−1(∂Ω ∩ BR+1) + Cn,s,Ω R−2s
)

(R ≥ 1).

Optimizing R at the scale of the external mass of Dk yields an o(1) rate controlled by δ 1−2s
k plus the tail

term.

Remark 4.5 (Boundary terms on the Neumann side). Since ϕ1 ∈ C1,α(Ω) for some α ∈ (0, 1),
∥∂νϕ1∥L∞(∂Ω) < ∞. Thus, the boundary contribution in Theorem A is O

(
Hn−1(ΓNk)

)
, whereas the

nonlocal mass over Nk ∩ BR is controlled by the L1–absolute continuity of Ψ and the tail R−2s; compare
Lemma 4.3 with Ψ in place of Υ when Nk concentrates near ∂Ω.

4.3. Application: Bifurcation thresholds in asymptotically linear problems

Let h(t) = θt+ f (t) with f bounded and limt→0+ h(t)/t = a > 0. In the notation of [13], the bifurcation-
from-zero parameter is λ0 = λ1(D)/a. The quantitative eigenvalue bounds give the following immediate
consequence.

Corollary 4.6 (Quantitative control of λ0). Let λ0,k = λ1(Dk)/a.

• If Nk dissipates (Definition 2.6) and inf αk > 0, then for every R > 0,

0 ≤
λDir

1

a
− λ0,k ≤

M∞
aαk

(
∥∂νϕ1∥L∞(∂Ω)H

n−1(ΓNk) +
∫

Nk∩BR

Ψ + Cn,s,Ω R−2s
)
.

• If 0 < s < 1
2 and Dk dissipates with inf βk > 0, then for every R > 0,

0 ≤ λ0,k ≤
M∞
a βk

( ∫
Dk∩BR

Υ + Cn,s,Ω R−2s
)
,

and the same bound holds for s ≥ 1
2 assuming dist(Dk,Ω) ≥ δ > 0.

Consequently, the bifurcation threshold moves in tandem with the geometric measures entering
Theorems A and B.

4.4. Comparison with local and pure nonlocal settings

In the purely local mixed DN Laplacian, quantitative dependence of λ1 on boundary partitions is
well studied; see, e.g., [11]. In nonlocal frameworks, integrability near ∂Ω dictates how the fractional
kernel accumulates when Dirichlet mass approaches the boundary; cf. regularity and kernel estimates
in [7, 14, 19]. Our bounds adapt these ideas to the mixed local–nonlocal operator without requiring
new regularity beyond [13]. They also dovetail with variants where drifts or weights are present [8, 15],
though a careful re-derivation would be needed there (we do not pursue it here).
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