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Abstract: Let £ = —A + (=A)* with s € (0, 1) on a bounded C"*! domain Q c R”, under a partition
of the exterior R"\Q into disjoint open sets D (Dirichlet) and N (nonlocal Neumann). Building on the
mixed local-nonlocal framework, we obtain explicit, provable upper bounds for the variation of the
principal eigenvalue A,(D) along families of partitions in which the Neumann set N or the Dirichlet
set D dissipates. When N dissipates, we bound AP" — 4,(D) by integrals of the Dirichlet kernel over N
plus a boundary term and a standard fractional tail. When D dissipates and 0 < s < %, we bound 4;(D)
by integrals of the geometric kernel over D and the same tail; for s > % we give a separated-Dirichlet
variant. The proofs use only the weak formulation, the basic spectral theory for the mixed problem, L™
bounds for principal eigenfunctions, and two cross-testing identities, with all constants and dependencies
made explicit. Consequences include quantitative continuity of A; under weak set convergence and a
controlled shift of asymptotically linear bifurcation thresholds. All constants depend only on (7, s, €2)
and, in the separated-Dirichlet variant, also on a fixed separation ¢ > 0.
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1. Introduction
Let Q Cc R" be a bounded C!! domain, and fix s € (0, 1). We study the mixed local-nonlocal operator
L :=-A+(-A)°,

subject to mixed boundary conditions posed on a partition of the exterior into disjoint open sets D
(Dirichlet) and N (nonlocal Neumann), with D,N Cc R"\ Q, DUN =R"\ Q, and Q U N bounded. In
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the nonlocal part we adopt the fractional Neumann derivative
Nyu(x) := Cn,sf M dy, xeR"\Q,
o |x — y|n+ s

and consider the eigenvalue problem

Lu=Au, u>0 inQ,
u=0 in D U (6Q N D),
Nau=0 1inN,

du=0 indQNN.

(1.1

Background. The spectral theory for (1.1) has been recently developed in the mixed local-nonlocal
setting; 1in particular, existence of a principal eigenvalue, simplicity, positivity of the
corresponding eigenfunction, regularity, and qualitative asymptotics under boundary-set perturbations
are established in [13]. Related ingredients come from the pure fractional literature on eigenvalues and
regularity [14, 17, 19], from mixed Dirichlet—-Neumann problems in the local case [2,22], and from
nonlocal/Neumann frameworks [7, 10,23]. Convexity properties of Dirichlet integrals and Picone-type
inequalities, which underpin several variational arguments in this context, are developed in [5, 6, 12],
while Hopf-type and Brezis—Nirenberg-type results for the fractional Laplacian can be found [1,9, 20].
For mixed local-nonlocal variants with drift or weights, see [8, 15]; see also [16] for estimates in
fractional mixed problems and [3, 18,21] for adjacent directions, as well as [4] for parameter-dependent
eigenvalue approximations.

Scope and contribution. Our goal is modest and entirely quantitative: we complement the qualitative
limits in [13] by deriving explicit upper bounds for the variation of the principal eigenvalue when the
boundary partition dissipates. Concretely, let A;(D) denote the principal eigenvalue of (1.1), and write
AP for the principal eigenvalue in the full exterior Dirichlet case (N = @) and A7 = 0 for the full
Neumann case (D = @). For a sequence of admissible partitions (Dy, Ny), we set Ay := A1(Dy). We
obtain quantitative estimates (here “dissipates” is in the sense of Definition 2.7 below).

Theorem A (Neumann dissipation: quantitative bound). Assume Ny dissipates (Definition 2.7), i.e., NN
Bg| — 0 for every R > 0 and H"™'(T'y,) = 0, with Q U Ni bounded and uy ;. > 0 the L*(Q)-normalized
principal eigenfunction for (Dy, Ny) (here Iy, := 0Q N Ny; see §2). Then, for every R > 0,

. M,
0< /111)lr — /l]’k < —( f |8V¢1|d0' + f Y(x) dx + Cn’s’Q R—2s ),
a Ty, NyNBg

k k

where ¢, is the L*(Q)-normalized Dirichlet ground state, W(x) = fggbl(y)lx — Y2 dy,
g = foﬁlul,k dx > 0, and M, = sup, |lu; s|lz=) < oo. All constants are explicit in the proof.
Theorem B (Dirichlet dissipation: quantitative bound). Assume 0 < s < % and Dy dissipates

(Definition 2.7), i.e., |Dy N Bg| — 0 for every R > 0 and H"'(I'p,) — 0 (withTp, := QN Dy; see §2).
Let uy; > 0 be L*>-normalized. Then, for every R > 0,

M., .
0< /ll,k < —( f T(x) dx + Cn’s,g R_z“ N
ﬁk DyNBg
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where Y(x) = fQ Ix —y|""">dy and B = |Q7'/? fg udx > 0. For s > % an analogous bound holds
under dist(Dy, Q) > 6 > 0, in which case (" is uniformly bounded on Dy and the right-hand side depends
on |Dy N Bg| and the tail R™%°.

The proofs are short: they rely on the weak formulation in the mixed framework, the L* bounds
and compactness for principal eigenfunctions, and testing identities that compare eigenpairs across
boundary configurations. The bounds expose only geometric/integral data of the dissipating sets and a
standard tail term, thereby turning the qualitative limits into quantitative ones. No new regularity theory
is required.

Scope note. Throughout we assume D, N c R" \ Q are disjoint open sets with D UN = R” \ Q and
QU N bounded. Thus, D # @, and the pure Neumann configuration (D = @) falls outside our admissible
class. References to the Neumann ground state ¢ = |Q|™"/2 or to A" = 0 are used only as comparisons
implemented via admissible cut-offs (see §2).

Example (Ball with bounded N). Let Q = Bz(0) c R". Define
N:={xeR":R<|x| <R+ 1} (open annulus), D =R"'"\Q\N = {xeR":|x| >R+ 1}.
Then D, N c R"\ Q are disjoint open sets and
DUN = {x:|x|>R} = R"\ Q.

Moreover, QUN C Bg,1(0) is bounded. The boundary portions for the mixed problem are QNN =4Q
(Neumann) and 0Q2 N D = @ (Dirichlet), so the boundary conditions in (1.1) read

u=0inDU@BGQND) = {x:|x >R+ 1}, du=0indQNN = 9Q.

Organization. Section 2 fixes the functional setting (spaces, integration by parts, Poincaré-type
inequality) and records the testing identities and tail estimates we use. Section 3 contains the proofs of
Theorems A and B. Section 4 discusses consequences (e.g. continuity of 4; under weak set convergence),
the separated case for s > %, and a brief application to bifurcation thresholds.

2. Preliminaries and functional setup

Global conventions (partition and boundary slices). Let Q C R” be a bounded C"' domain and
s € (0, 1). Throughout we fix disjoint open sets D, N C R"\ Q with DU N = R"\ Q and Q U N bounded.
We define the boundary slices

Ip:=dQND, [y :=dQNN.

Boundary terms will be taken over I'p, or I'y. We write do for the (n—1)-dimensional Hausdorft measure
on 0Q, i.e.,
do = dH" |

and we reserve H" ! (E) for the (n—1)-measure of E C dQ. All subsequent occurrences of “0Q N N” or
“0Q N D” are to be understood as I'y or I'p, respectively.

o’
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We consider the mixed local-nonlocal operator

Li=-A+(-D, (A u(x) = C,,PV. f ulx) — uQ)

R X — Y[t

2

together with a partition of the exterior into disjoint open sets D, N c R" \ Q with DUN = R" \ Q and
Q U N bounded. The nonlocal Neumann derivative is

Nyu(x) 1= Cp g f ux) — uQ) dy, xeR"\ Q.
Q

|x _ y|n+2s

Definition 2.1 (Dirichlet and Neumann regions). Let Q C R" be a bounded C'*' domain. A pair (D, N)
is an admissible exterior partition if

D,N c R"\ Q are open, disjoint, and D UN =R"\ Q.

We call D the Dirichlet region and N the (nonlocal) Neumann region. The corresponding boundary

portions are B B
0Qp :=0QND, 0Qy :=0QNN.

On these sets, the mixed boundary conditions for (1.1) are imposed as
u=0in DUOIQp, N, =0in N, o,u=0in Q.
When required in the sequel, we additionally assume QU N is bounded.
Energy space, seminorm, and weak formulation. Define
Ip:=0QnD, Ty:=0QNN,

U::QUNUFN, UC::DUFD,

and
X7U) :={ueH'®R") : uly € Hy(U), u=0ae.in U}.

We integrate on dQ with do := dH"™! 15, while H" !(E) denotes the (n—1)-measure of a set E C Q.

Let 5
0 := R¥ \ (O x Q), f f ) = w4y,

|X y|n+25

We use the energy
2._ 2 2 12
u)” = fQIVul dx + [uls, u€ X, (U),

which defines a Hilbert norm on X 1D’2(U ) and controls the L*(2) norm via the Poincaré-type estimate
Il ) < CQ 1, 5)( f Vul dx+[ul})  VueX7U). (2.1)
Q

The set-up (2.1) is standard in this mixed framework; see [13, Prop. 2.1] and, for fractional Sobolev
background, [19].
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Proposition 2.2 (Integration by parts). For u,v € C°(U),

vau dx = fVu -Vvdx + ff () = uk)) = vy) dxdy — f vo,udo — f v Nsu dx,
Q Q 0 |x — ylr+2s Ty N

and the identity extends to u,v € XID’Z(U) by density [13, Prop. 2.2].

Remark 2.3 (Uniformity of the Poincaré constant). The constant C(, n, s) can be chosen independently
of the admissible partition as long as Q2 U N is bounded. Indeed, the proof uses only that u = 0 a.e. on
U¢ = D UT'p and that the double integral runs over Q; no geometric feature of N beyond boundedness
of U enters the estimate. Hence, C = C(Q, n, 5) is uniform across all admissible (D, N).

Corollary 2.4 (Density and extension to Xll)’z(U ). Since C°(U) is dense in X 11)’2(U ), the integration-by-
parts identity of Proposition 2.2 extends to all u,v € X 1D’2( U) by approximation. We invoke this extension
in Lemmas 2.8-2.11, where the test functions are realized in X 32( U) via cut-offs.

Definition 2.5 (Weak eigenpairs). We say u € X lD’Z(U ) solves

Lu=du, u>0 inQ,

u=20 inUS,
Nau=0 inN,
avu =0 in FN,
if for all ¢ € X;;*(U),
f Vu-Vodx + ff (u(x) - u(y))(¢(32€) — 60 . dy =2 f ubdx. 2.2)
o 0 |X _ y|n+ s o
The principal eigenvalue is given by the Rayleigh quotient
(D)= inf  fw)? (2.3)
ueX 2 (U\(0)
”u”LZ(Q):l

and is achieved by a strictly positive eigenfunction u,. Moreover, A1(D) is simple. [13, Sec. 3]

Remark 2.6 (Regularity and orthogonality). Eigenfunctions are bounded and Holder continuous,
u € L=(U) N CYR") for some B € (0, 1); eigenfunctions associated with different eigenvalues are
L*(Q)-orthogonal and orthogonal with respect to the energy inner product. See [13, Props. 3.3—-3.4].
For related fractional regularity and Harnack-type estimates in the nonlocal literature, cf. [7, 14].

2.1. Dissipating sequences of boundary sets
We adopt the qualitative notion used in [13, Thms. 2.7-2.8].

Definition 2.7 (Dissipation). Let (Dy, Niy) be admissible partitions with Q U N, bounded and let
A1k = A1 (Dy). With the boundary slices

I'p, :=0Qn Dy, Iy, :=0QN N, (see §2 conventions),

we say:

AIMS Mathematics Volume 10, Issue 12, 28115-28128.
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o N, dissipates if, for every R > 0, |N; N Bg| — 0 and 7‘("‘1(1"Nk) — 0ask — oo
e D, dissipates if, for every R > 0, |D; N Bg| — 0 and ?{”‘1(1“1),() — 0ask — oo.

Then the qualitative limits of [ 13, Thms. 2.7-2.8] hold verbatim: if Ny dissipates, then A, — A;(R" \ﬁ);
ifo<s< % and Dy dissipates, then A, — 0 (for s > % convergence holds under dist (D; ,Q) > 6 > 0),
cf. [13, Prop. 4.5].

Notation. On 0Q we integrate with do- = dH" ' 1o, we reserve H" ' (E) for the (n—1)—measure of a
set E C 0Q [13, Thms. 2.7-2.8, Prop. 4.8].

2.2. Two cross-testing identities

The quantitative bounds in §3 start from two identities obtained by testing the weak formulations for
different boundary configurations; compare [13, (4.1.4),(4.2.2)].

Lemma 2.8 (Testing against the Dirichlet ground state). Let ¢, be the L*(Q)-normalized first

eigenfunction for the full exterior Dirichlet problem (N = @), and let (A4, uix) be the
L*(Q)-normalized principal eigenpair for (D, Ni). Then
(AP~ A1) f G dx = - f 014 0yp) dor + f POWAD) o i (2.4)
Q Iy Nex@ X =y

k
where Ty, := 0Q N N,.

Remark 2.9 (On the space of test functions). The identity is obtained by testing in X 11)’2(U ) and using
Corollary 2.4 to pass from C°(U) to the cut-off realizations of ¢, (resp. 1) described above.

Lemma 2.10 (Boundary regularity for the Dirichlet ground state). Let ¢, solve Ly = A"¢; in Q with
¢ =0inR*"\ Q. IfQis CV, then ¢, € C*(Q) for some a € (0, 1); in particular 10,@1l=60) < .

Reference. This is the regularity asserted in [13, Lemma 4.5], obtained from the mixed local-nonlocal
structure with C"*! boundary; see also their Appendix A for W>” estimates implying C'** up to Q. O

Lemma 2.11 (Testing against the Neumann ground state via cut-off). Let (A4, u1x) be the
L*(Q)-normalized principal eigenpair for (Dy, Ni) and let y, = |Q|™"/2. Then

/11,kf Yy dx = —f Ui 0 d0'+f Mdydx, (2.5)
Q FDk

Dxq X =yt

where I'p, 1= 0Q N Fk Since Y, is constant, 9,y = 0.

Proof. Fix k. Choose a standard cut-off 5, € C°(Uy) such that 0 < n. < 1,n. =1onQ, . — 1
pointwise on Uy, and 77; = 0 on a shrinking neighborhood of U; = Dy UT'p,. Set v, := ¢ 1, € Xll)’kz(Uk).
Testing the weak formulation (2.2) for (4, x, u; ) with ¢ = v, (cf. Proposition 2.2) gives

/h,kf Yine ur g dx = f Vuy - V) dx + f (14(3) = )10 = 17 0) dxdy,
Q Q Ok

|x _ y|n+2s
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where Oy = R?" \ (Q° x Q°). Since y is constant and 17, = 1 on Q, we have V(y,7,) = 0 on Q; hence,
the local term is zero. Thus,

/ll,kf Uyt dx = f (w1 (%) = w1 () (Me(x) = '78()’)) dxdy, 2.6)
Q Ok

|X y|n+2s

because . = 1 on Q.

We now pass to the limit € | 0 on the right-hand side. By construction, 1.(x) = n:(y) = 1a(x)1p,(y) —
1p,(x)1q(y) pointwise, and |r,(x) — 1.(y)| < 1. Using u; ; = 0 in Dy and the tail estimate from §2.4, the
integrand is dominated by

178 k(x)| IQ(X)IDk()’) + |uy k(y)l IDk(X)IQ(‘/)
|X y|n+2s

which is integrable on O (the inner integrals in y € Dy are finite for each x € Q by the kernel’s
integrability, and the tail is O(R%*)). Therefore, by dominated convergence,

f (Ml,k(x)—ul,k(y))(ns(x) Us(Y))d dy —s ff uy k(y) Y e dy,
Ok D,

|)C _ y|n+2s Q) |X y|n+25

where we used symmetry to write the cross-terms in the oriented form Dy X Q.
Plugging this limit into (2.6) yields (2.5). This argument uses only the mixed integration-by-parts
identity and the weak formulation in our space, as in [13, Prop. 2.2]. O

Remark 2.12 (On the role of the pure Neumann profile). Under our standing hypothesis QU N bounded,
the configuration D = @ is excluded (so N = R" \ Q is not allowed). In particular, while the pure
Neumann model has 2Y*" = 0 and normalized ground state y, = Q™' (see, e.g., [13, Thm. 4.1]), we
do not use Y| as a test function in X 11)’2(U ). Instead, Lemma 2.11 justifies the cross—testing identity
rigorously by approximating , with admissible cut-offs v, = ynn, € Xll)’z(U ) and letting € | 0. All
subsequent uses of Y| refer to this admissible realization.

2.3. Compactness and uniform bounds

We record compactness and L*—Holder bounds for principal eigenfunctions along admissible
partitions:

Standing hypothesis and admissible scope. We always work with disjoint open sets D, N C R" \ Q
satisfying DU N = R" \ Q and Q U N bounded. Consequently, D # @, the pure Neumann case (D = @)
is excluded in our admissible class. Any use of the constant Neumann ground state ¢, = |Q|!/? is purely
as a comparison profile implemented by the cut-off functions v, = Y77, € X 11)’2( U); cf. Lemma 2.11.

Proposition 2.13 (Compactness). Let (4, u; ) be principal eigenpairs. Then, up to a subsequence,

)
upp — u, in Xp°(U), wupp — u,in L?

n . n
ch(R )’ I/t],k i u, a.ce.in R .

refer to [13, Prop. 4.2].

In what follows, we write u, for any subsequential limit of u;; given by Proposition 2.13; by the
limit mixed problem (cf. [18]) one has u, > 0 in U..
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Lemma 2.14 (Alignment factors stay positive along convergent subsequences). Let (A;x, u; ) be the
L*(Q)-normalized principal eigenpairs for admissible (Dy, Ny). Suppose u1; — u. in leoc(R”) and a.e.
in R, with u, solving the limit problem and u, > 0 in U,. Then

ay ::fqﬁlul,kdx - f¢1u*dx>0, Bi ::fwlul’kdx - fwlu*dx>0,
Q Q Q Q

where ¢, is the Dirichlet ground state and Y, = |Q|~'/2.

Proof. The compactness u;; — u, in X ll)’z(U ) and u;; — u, in L120c follows from the energy bound
and the compact embedding (cf. [13, Prop. 4.2]). The strong maximum principle yields u, > 0 in U,
(cf. [13, Lem. 3.1]); hence, both limit overlaps are strictly positive. O

Proposition 2.15 (Uniform L* and Holder bounds on U). Let (A, u1;) be the L*(Q)-normalized
principal eigenpairs for admissible partitions (Dy, Ny) with Q U Ny bounded. Then there exists M, > 0
such that 0 < u;x(x) < M for a.e. x € Uy, Uy := QU N, UTy,. Moreover, up to a subsequence,
ur; € CO¥(R™) with a uniform Hélder exponent 3 € (0, 1) and C*-seminorms locally bounded in R".

Proof sketch. First, by the weak formulation and L?(2)-normalization,

2 2 Di
f [Viy ™ dox + [urly = g <A77,
0

hence the energies are uniformly bounded. The standard Moser/De Giorgi iteration for the mixed
operator on Q gives |[ujlli~q < C(n,s,Q) (see the iteration around (3.0.3)—(3.0.12)
in [13, Prop. 3.3(1)]). For x € N, the nonlocal Neumann condition yields

uy k()

0 = Nyuy (x) = Cn,sf up (x) = w1 (y) &y = w0 = = y|n+zc
Q

— y|n+2s ’

|x yl j;) |x— y|n+2_§ dy
SO |uy x(x)| < supg |uy . Hence, |u; il < i1 £ll=(0), and continuity up to 0Q N N, follows from the
regularity quoted in [13, Sec. 3 & App. A]. This proves the claim with M., = sup; |[u; «|lz~q). m|

Remark 2.16 (On using L? in place of L on U). One can avoid the pointwise bound on Uy by using
Cauchy—Schwarz on near-field terms and the identity Nju = 0 on Ny (or u = 0 on Dy) to rewrite u(x)
outside Q as a weighted average of values in Q. Since our Proposition 2.15 yields a k-uniform L*(Uy)
bound with a shorter argument, we keep the proofs of Theorems A—B in that form.

2.4. Kernel potentials and tail estimate

Given ¢; as above, set

‘P(x)::f(pl—(y)dy, xeR"\Q,
Q

|)C _ y|n+2s

and for Dirichlet-dissipation considerations,

1
T(x) ::f—d.
le_y|n+2s Y
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Both belong to L'(R" \ Q); moreover, for all R > 0,

¥(x)dx < C(Q,n, s) R, f Y(x)dx < C(Q,n, s) R>. (2.7)

[x>R |x[>R
Proof of (2.7). If |x| > R and y € Q (bounded), then |x — y| > |x[/2, s0 W(x) < 2"y || 11X~ and
similarly for Y. Integration over {|x| > R} gives R~>* decay. O

2.5. Separated-Dirichlet variant for s > %

When dist (Dy, Q) > 6 > 0, one has T(x) < C(d,n, s) on D;, which will be used in §3 to quantify
Aixg — Oforse [%, 1) under Dirichlet dissipation with separation; cf. [13, Sec. 4.2]. For local/fractional
mixed background, related to boundary conditions and capacities, see also [16,24,25].

Remark 2.17 (On the interaction set Q and cross-terms). Recall Q = R?*\ (Q° x Q°) = (Q x Q) U (Q x
QY U (Q° x Q). Thus, the Gagliardo term comprises the interior part Q X Q and both cross-interactions
between Q and its exterior. This is the origin of the Dirichlet and Neumann integrals that appear in the
cross—testing identities of Lemmas 2.8-2.11.

3. Main results: quantitative bounds

In this section, we prove the quantitative estimates announced in the Introduction. We retain the
notation from §2. In particular, ¢, is the L*(Q)-normalized ground state for the full exterior Dirichlet
problem (thus L¢; = A%"¢; in Q, ¢; = 0in R" \ Q), while y; = |Q[7"/? is the normalized ground state
for the pure Neumann problem. For each admissible partition (Dy, N;) we denote by (4;, u1 ) the
positive L?(Q)-normalized principal eigenpair.

From Lemmas 2.8-2.11, the cross—testing identities read

. u X
(P — 2, f Pruar g dx = — f w15 8,1 do + f f Mﬁgy)dydx, 3.1)

Q Ty, N Ja o e =y
/11,kflﬁ1u1’kdx:—f Uy 0 d0'+f Mlh’fz(y)dydx, (3.2)

Q I'p, Dy JQ |X - y|n s

where I'y, :=9QN N, and I'p, :=0QnN Dy (see §2), and o0, = 0. We also use the potentials from §2.4:

W) = f 0Oy = f Ly,
a |x =y Q |x =y

and the tail estimate f|x|>R Y(x)dx, f|x|>R T(x)dx < Chs0 R7%, cf. (2.7).

Finally, by Proposition 2.15, there exists M., > 0, independent of k, such that

0<ujp(x) <M, forae. xeU;:=QUNUTy,.

3.1. Neumann dissipation: Proof of Theorem A
Set @, := fQ ¢1uydx > 0 and use (3.1):

=) = —f up i 0y do + f W(x) uy 1 (x) dx.
NiNOQ Ni
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With u, ; < M, on Uy we obtain
Dir M‘X’
07" - £ — |0,¢11do + | W(x)dx|. 3.3)
(677 NyNAQ N

Split Jy, ¥ = Jy o5, ¥+ Jyn, ¥ and use the tail bound [ ¥ < C, R This yields exactly the
estimate stated in Theorem A.

Choice of R. Fix ¢ > 0 and pick R(¢) := (2C, 50/ 8)1/ @9 5o that C..s0R()™ < &/2. Then use the
dissipation hypothesis (Definition 2.6) to choose k large so that the remaining near-field terms over
Ni N By (resp. Dy N Bg)) and the boundary slice H"!(T'y,) (resp. H"'(['p,)) are each < /2. This
yields a constructive modulus of continuity for A4, 4.

3.2. Dirichlet dissipation (0 < s < % ): Proof of Theorem B
Letyy = [Q7"2 and By := [[ ¢r1urdx =1Q7 [ uyidx > 0. From (2.5),

) M,
1 Te) 1/2ff Mlk(y Y < fT d
1B = 19" AT _ylnﬂv TOE (x) dx,

M., M, _
0< Ay <=2 f T(x) dx < —( f T(x)dx + Cp R 25), (3.4)
ﬁk Dy, ﬁk DyNBg

hence

and Theorem B follows because Y € L} _up to dQ when 0 < s < %

Choice of R. Fix & > 0 and pick
1/(25) oy s
R(e) 1= (22) = CuoRE > <t
Then use the dissipation hypothesis to choose k large so that the remaining near-field terms over
Ni N By (resp. Dy N Bg()) and the boundary slice are each < £/2. This yields a constructive modulus
of continuity for A, 4.

3.3. Variant for s > % with separated Dirichlet sets
Assume dist(Dy, Q) > 6 > 0. Then Y(x) < C(6,n, s) on Dy, so (3.4) gives

M.
0< Ay < ﬁ—(C(a, n, 5) Dy N Byl + C,isR7™),
k

and the stated convergence follows.
Explicit constant. If dist(Dy, Q) > 6 > 0, then for x € D, and y € Q we have |x — y| > 9, hence

1
T(x) = f ————dy < Q|5
a lx =y

Therefore M
0 < Ay < —=(IQ1 67" 1Dy N Byl + CyeaR ™),
Br

which is the stated bound with C(8, n, §) = |Q] §~"*29).
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4. Consequences, examples, and extensions

We collect corollaries of Theorems A and B, give quantitative rates under mild geometric control,
and note an application to asymptotically linear bifurcation thresholds.

4.1. Quantitative continuity of the principal eigenvalue

Corollary 4.1 (Neumann sets dissipating). Let (Dy, Ni) be admissible partitions with Q U Ny bounded
and Ny, dissipating. Let (A, x,u; ) be the L*-normalized principal eigenpairs and let a; = fQ d1ux >0,
where ¢, is the Dirichlet ground state. Then, for every R > 0,

, M., - N
0 <A~ A < (10, billeon H' ' Tn) + | ¥ + CusaR™).
A NiNBg

If, along a subsequence, inf a; > 0, then A;; — /1]13“. Moreover, for any € > 0 choose R = R(¢) with

C..soR™* < & and then choose k so large that the remaining terms are < & by Ni—dissipation, which

vields a constructive modulus of continuity.

Proof. This is Theorem A with [, . 10,¢1] < [18,¢1llz~ H"™ (N N 9Q) and the tail estimate [ W <

C,.s.oR™%. The modulus-of-continuity statement follows by first fixing R and then using N,—dissipation.
O

Corollary 4.2 (Dirichlet sets dissipating). Assume 0 < s < 1 and Dy dissipates. Let B = |Q|™'/ fg Uy >
0. Then, for every R > 0,

M.,
0< A < —=( f T+ CyyaR ).
Bk DyNBg

If, along a subsequence, inf B, > 0, then A, — 0; for s > % the same conclusion holds provided
dist(Dy, Q) > 6 > 0.

4.2. Rates under geometric control near 02

We single out a simple geometric regime that turns the integrals in Theorem B into explicit powers
of a thickness parameter.

Lemma 4.3 (Tubular estimate for Y). Let 0 < s < % and Ts = {x € R" \ Q : dist(x, 0Q) < 6} with
0 € (0,1). There exists C = C(Q, n, s) such that

f Y(x)dx < C6" H"(OQ N Bgys) + C|Bxgl,
TsNBg

and, for any measurable E C Ts N Bg,

f Y(x)dx < C6" H"(OQ N Bg.s).

E

Proof (sketch). In tubular coordinates (v, p) € dQ X (0,8) with x = y + pv(y) (valid since dQ is C'*!),
one has dx = J(y, p) dp do(y) with J uniformly bounded above and below. For fixed (y, p) and z € Q,
|x — z| > cp with ¢ > 0, hence T(x) < C fQ p "2 dz < Cp~%. Integrating p~2* from 0 to § gives
0'72/(1 — 2s), and integration over Q N Bg,s yields the first inequality. The second follows by
monotonicity. O
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Orientation. In tubular coordinates x = y + pv(y), the Jacobian J(y, p) is bounded above/below on
0 < p < 6 for C""! domains, and the kernel behaves like p™"%*. After integrating in z € Q, this leaves
the main singularity p~2*, which is integrable near p = 0 iff s < %

Corollary 4.4 (Rates from thin Dirichlet layers). Assume 0 < s < % and Dy C Ts, with 6, | 0. Then,
along any subsequence with inf g, > 0,

Moo o o
g < 5_(“}5% H''(0QN Br.t) + CoyaR>)  (R2 D).
k

Optimizing R at the scale of the external mass of Dy yields an o(1) rate controlled by 6,(1‘% plus the tail
term.

Remark 4.5 (Boundary terms on the Neumann side). Since ¢, € C'*(Q) for some a € (0,1),
10,@1llipq) < oo. Thus, the boundary contribution in Theorem A is O(W"_I(FNk)), whereas the
nonlocal mass over Ny N By is controlled by the L'-absolute continuity of ¥ and the tail R™*; compare
Lemma 4.3 with WY in place of T’ when N concentrates near 0€).

4.3. Application: Bifurcation thresholds in asymptotically linear problems

Let h(t) = 6t + f(¢) with f bounded and lim,_,o+ A(¢)/t = a > 0. In the notation of [13], the bifurcation-
from-zero parameter is 4o = 4;(D)/a. The quantitative eigenvalue bounds give the following immediate
consequence.

Corollary 4.6 (Quantitative control of Ay). Let Aoy = 41(Dy)/a.
o [f Ny dissipates (Definition 2.6) and inf a; > 0, then for every R > 0,

lDiI‘ M
0< ; — dox <

(18,1 lloam H (T + f ¥t CraR™)

00
ay NiNBgr

e [f0<s< % and Dy, dissipates with inf 8, > 0, then for every R > 0,

M,
0< g < — f T + CosaR7™),
D,

«NBR
and the same bound holds for s > % assuming dist(Dy, Q) > 6 > 0.

Consequently, the bifurcation threshold moves in tandem with the geometric measures entering
Theorems A and B.

4.4. Comparison with local and pure nonlocal settings

In the purely local mixed DN Laplacian, quantitative dependence of A, on boundary partitions is
well studied; see, e.g., [11]. In nonlocal frameworks, integrability near 02 dictates how the fractional
kernel accumulates when Dirichlet mass approaches the boundary; cf. regularity and kernel estimates
in [7,14,19]. Our bounds adapt these ideas to the mixed local-nonlocal operator without requiring
new regularity beyond [13]. They also dovetail with variants where drifts or weights are present [8, 15],
though a careful re-derivation would be needed there (we do not pursue it here).
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