In this paper, we introduced the strong-controlled Branciari $ b $-distance, a generalized metric structure designed to consolidate disparate fixed point theorems scattered throughout existing literature. Through illustrative examples, we demonstrated how this framework subsumes and extends previous results. We further established the applicability of our theoretical developments by presenting a concrete problem whose solution leverages the properties of strong-controlled Branciari $ b $-distance spaces.
Citation: Dania Santina, Wan Ainun Mior Othman, Kok Bin Wong, Nabil Mlaiki. New developments in fixed point theorems for $ \theta $-Branciari contractions on strong-controlled Branciari $ b $ distance spaces[J]. AIMS Mathematics, 2025, 10(12): 28100-28114. doi: 10.3934/math.20251235
In this paper, we introduced the strong-controlled Branciari $ b $-distance, a generalized metric structure designed to consolidate disparate fixed point theorems scattered throughout existing literature. Through illustrative examples, we demonstrated how this framework subsumes and extends previous results. We further established the applicability of our theoretical developments by presenting a concrete problem whose solution leverages the properties of strong-controlled Branciari $ b $-distance spaces.
| [1] | S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133–181. |
| [2] |
T. Kamran, M. Samreen, Q. Ul Ain, A generalization of b-metric space and some fixed point theorems, Mathematics, 5 (2017), 19. https://doi.org/10.3390/math5020019 doi: 10.3390/math5020019
|
| [3] |
N. Mlaiki, H. Aydi, N. Souayah, T. Abdeljawad, Controlled metric type spaces and the related contraction principle, Mathematics, 6 (2018), 194. https://doi.org/10.3390/math6100194 doi: 10.3390/math6100194
|
| [4] |
D. Santina, W. Mior Othman, K. Wong, N. Mlaiki, New generalization of metric-type spaces—strong controlled, Symmetry, 15 (2023), 416. https://doi.org/10.3390/sym15020416 doi: 10.3390/sym15020416
|
| [5] | A. Branciari, A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math. Debrecen, 57 (2000), 31–37. |
| [6] |
T. Abdeljawad, R. Agarwal, E. Karapınar, P. Kumari, Solutions of the nonlinear integral equation and fractional differential equation using the technique of a fixed point with a numerical experiment in extended b-metric space, Symmetry, 11 (2019), 686. https://doi.org/10.3390/sym11050686 doi: 10.3390/sym11050686
|
| [7] |
W. Shatanawi, Z. Mitrović, N. Hussain, S. Radenović, On generalized Hardy-Rogers type alpha-admissible mappings in cone b-metric spaces over Banach algebras, Symmetry, 12 (2020), 81. https://doi.org/10.3390/sym12010081 doi: 10.3390/sym12010081
|
| [8] |
M. Jleli, B. Samet, A new generalization of the Banach contraction principle, J. Inequal. Appl., 2014 (2014), 38. https://doi.org/10.1186/1029-242X-2014-38 doi: 10.1186/1029-242X-2014-38
|
| [9] | L. Ciric, Generalized contractions and fixed-point theorems, Publ. Inst. Math., 12 (1971), 19–26. |
| [10] |
S. Jiang, Z. Li, B. Damjanović, A note on 'Some fixed point theorems for generalized contractive mappings in complete metric spaces', Fixed Point Theory Appl., 2016 (2016), 62. https://doi.org/10.1186/s13663-016-0539-y doi: 10.1186/s13663-016-0539-y
|
| [11] |
X. Liu, S. Chang, Y. Xiao, L. Zhao, Existence of fixed points for Theta-type contraction and Theta-type Suzuki contraction in complete metric spaces, Fixed Point Theory Appl., 2016 (2016), 8. https://doi.org/10.1186/s13663-016-0496-5 doi: 10.1186/s13663-016-0496-5
|
| [12] |
M. Rossafi, A. Kari, C. Park, J. Lee, New fixed-point theorems for theta-Phi-contraction on bmetric spaces, J. Math. Comput. Sci., 29 (2023), 12–27. https://doi.org/10.22436/jmcs.029.01.02 doi: 10.22436/jmcs.029.01.02
|