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1. Introduction

The Banach contraction principle, introduced in 1922 [1], established the cornerstone methodology
for proving fixed point theorems in metric spaces Msp. This seminal work catalyzed extensive research
in fixed point theory, yielding profound implications across diverse mathematical disciplines. This
has led to significant developments and interests in the field of fixed point theory, which has broad
implications in numerous branches of mathematics. As an extension of Msp, Kamran and Samreen
introduced the notion of extended b−Msp [2]. Abdeljawad then established the concept of controlled b−
Msp [3]. This concept was elaborated upon by Santina et al. who progressed it into strong-controlled b−
Msp [4]. Nevertheless, Branciari introduced the Branciari distance as a generalization of Msp [5]. It is
often referred to as the Branciari metric or the Branciari distance function. Those generalizations open
up new avenues and possibilities, forming a vibrant and developing field marked by ongoing research
projects [6, 7]. The resulting spaces offer fresh and fascinating interpretations on Msp ideas, indicating
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potential for a wide range of uses. Moreover, existence and uniqueness issues are fundamentally
resolved by fixed point theory, especially when dealing with differential and integral equations. It
provides a basic structure for coping with a number of issues, such as integrodifferential equations.
Under diverse contraction conditions, such as the θ-contraction presented by Jleli and Samet [8] in the
framework of Branciari Msp, CRRT−θBC, and interpolative-θBC [9], many researchers have investigated
a variety of b − Msp. When determining the presence and uniqueness of fixed points for mappings
in Msp, the Banach contraction principle—a foundational finding in nonlinear analysis—is essential.
Motivated by the need to unify and extend existing distance notions, we propose the strong-controlled
Branciari b-metric spaces (S CBbd), which combine the flexibility of the strong-controlled b-metric
with the quadrilateral structure of Branciari distances. Building on this framework, we develop new
fixed point results of θ-type and demonstrate their utility through an application to boundary value
problems.

The Banach contraction principle, introduced in 1922 [1], established the cornerstone methodology
for proving fixed point theorems in metric spaces Msp. This seminal work catalyzed extensive research
in fixed point theory, yielding profound implications across diverse mathematical disciplines.

The main contributions of this paper are as follows:

(1) Definition of the (S CBbd) (Section 2). We introduce a new distance structure (S CBbd) controlled
by a function ω(x, y) ≥ 1. This structure generalizes Branciari distance (ω ≡ 1) and we provide
explicit examples to illustrate its validity.

(2) θ-Branciari contraction and fixed point theorem (Section 3, Theorem 3.1). We establish a
θ-type contractive condition in (S CBbd) spaces, proving that every θ-Branciari contraction admits
a unique fixed point. Moreover, we quantify the convergence of the Picard sequence by showing

ϑ
(
S CBbd

(
gp, gp+1

))
≤

[
ϑ (S CBbd (g0, g1))

]tp
.

(3) Ciric-Reich-Rus-type θ-Branciari contraction (CRRT − θBC) (Section 3, Theorem 3.2). We
generalize classical Ciric-Reich-Rus-type conditions to the (S CBbd) setting and prove that such
mappings also possess a unique fixed point, thereby extending known results from rectangular
and Branciari contexts.

(4) Interpolative θ-Branciari contractions (Section 3, Theorem 3.3). We formulate a three-term
interpolative contractive condition with exponents t1, t2, t3 satisfying t1 + t2 + t3 < 1.

(5) Application to a fourth-order boundary value problem (Section 4, Theorem 4.1). We apply
the abstract results to a nonlinear cantilever beam problem, reformulating it via a Green function
into an operator that satisfies our θ-contractive condition. Under suitable growth restrictions on
the nonlinear term g, we prove the existence and uniqueness of a solution, showing the practical
impact of our theoretical framework.

2. Preliminary

We start by defining the Branciari distance (Bd) [5], which is one of the ideas put out to broaden
and generalize the scope of the metric.

Definition 2.1. Let X be a nonempty set and let Br : X × X −→ [0,∞) such that for all g, h ∈ X and
all k , l ∈ X\{g, h},
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(Br1) Br(g, h) = 0 if and only if g = h,
(Br2) Br(g, h) = Br(h, g)(symmetry),
(Br3) Br(g, h) ≤ Br(g, k) + Br(k, l) + Br(l, h).

(2.1)

Then, Branciari defines Br as Bd. Then, the pair (X, Br) is referred to as Bd space.

Now we revisit the notion of θ-contraction that is established by Jleli and Samet [8]. Consider the
set θ that contains all the functions that are continuous and non-decreasing ϑ : (0,∞) → (1,∞) such
that it fulfills the conditions below:
(�) for each sequence {gn} ⊂ (0,∞), limn→∞ ϑ (gn) = 1⇔ limn→∞ gn = 0+;
(4) there exist e ∈ (0, 1) and L ∈ (0,∞) such that limg→0+

ϑ(g)−1
ge = L.

Several fixed-point results have been improved by using this notion (see, e.g., [10–12]).
Recall the notion of controlled strong b − Msp introduced by Santina et al. [4].

Definition 2.2. Let X be a non-empty set and let ω : X × X → [1,∞). The following function
S C : X × X→ [0,∞) is called a strong-controlled b − Msp if
(1) S C(g, h) = 0 iff g = h,
(2) S C(g, h) = S C(h, g),
(3) S C(g, h) ≤ S C(g, l) + ω(l, h)S C(l, h),
for all g, h, l ∈ X. The pair (X, S C ) is called a strong-controlled b − Msp.

We will merge these two concepts, strong-controlled b − Msp and Bd, under the designation of a
S CBbd space according to the following.

Definition 2.3. Consider the set X that contains at least one element and ω : X × X → [1,∞) is a
mapping. Hence, the function S CBbd : X × X → [0,∞) is a strong-controlled Branciari b-distance if
it fulfills:
(i) S CBbd(g, h) = S CBbd(h, g),
(ii) S CBbd(g, h) = 0 if and only if g = h,
(iii) S CBbd(g, h) ≤ S CBbd(g, l) + S CBbd(l, k) + ω(k, h)S CBbd(k, h),
for all g, h ∈ X and all distinct k, l ∈ X\{g, h}. The couple of the symbols (X, S CBbd) denotes S CBbd −

Msp.

Example 2.1. Let X = {10, 11, 12, 13}. Define S CBbd : X × X→ [0,∞) as follows:

S CBbd(t, t) = 0,∀t ∈ X, S CBbd(10, t) = S CBbd(t, 10) = 40,∀t ∈ X − {10},
S CBbd(11, 12) = S CBbd(12, 11) = S CBbd(11, 13) = S CBbd(13, 11) = 211,
S CBbd(13, 12) = S CBbd(12, 13) = 999.

Consider the symmetric function ω : X × X→ [1,∞) with the following characteristics:

ω(t, t) = 10,∀t ∈ X,

ω(10, 11) = 3, ω(10, 12) = 4, ω(10, 13) = ω(11, 12) = 2, ω(11, 13) = 9, ω(12, 13) = 3.

Therefore, (X, S CBbd) is a S CBbd − Msp. In spite of that, we shall observe that
(1) S CBbd(12, 13) = 999 > S CBbd(12, 10) + ω(10, 13)S CBbd(10, 13) = 120.
(2) S CBbd(12,13)=999>ω(12,11)S CBbd(12,11)+ω(11,10)S CBbd(11,10)+ω(10,13)S CBbd(10,13)=622.
Thus (X, S CBbd) is neither a strong-controlled metric-type space nor a controlled Branciari b-distance
space.
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Example 2.2. Let X = {1, 2, 3, 4}. Define S CBbd : X×X→ R+ by ω(g, h) = 10g + 10h + 100 and then
(X, S CBbd) is a strong-controlled Branciari b-distance space.

Once all other conditions are met, we shall demonstrate the amended quadrilateral inequality.

S CBbd(g, h)
=|g − h|2

=|g − l + l − k + k − h|2, where g , h , l , k

≤|g − l|2 + |l − k|2 + |k − h|2 + 2|g − l||l − k| + 2|l − k||k − h| + 2|k − h||g − l|

≤|g − l|2 + |l − k|2 + (10g + 10h + 100)|k − h|2

=S CBbd(g, l) + S CBbd(l, k) + ω(g, h)S CBbd(k, h).

Therefore, S CBbd(g, h) ≤ S CBbd(g, l) + S CBbd(l, k) + ω(g, h)S CBbd(k, h).

Remark 2.1. If ω(g, h) = s = 1, then it is the standard Bd. It is widely recognized that the b-metric
does not require continuity. As a result, S CBbd is also not always continuous. We assume S CBbd is
continuous.

Now, we present the topological properties of strong-controlled Branciari b-distance (S CBbd).

Definition 2.4. Let X be a set that includes at least one element and endowed with S CBbd, and then a
sequence {gn} in X is
(a) Convergent to g if for every ε > 0 there exists N = N(ε) ∈ N such that S CBbd (gn, g) < ε, for all
n ≥ N. Particularly, for this instance, we define limn→∞ gn = g.
(b) Cauchy if for every ε > 0 there exists N = N(ε) ∈ N such that S CBbd (gm, gn) < ε, for all m, n ≥ N.
(c) An S CBbd-metric space (X, S CBbd) is complete if every Cauchy sequence in X is convergent.

3. Primary findings

We shall commence this portion by providing an introduction to the notion of a θ-Branciari
contraction.

Definition 3.1. Let (X, S CBbd) be a (S CBbd) − Msp and consider the self-mapping L : X → X where
X is a non-empty set. Then, L is called a θBC if ∃ ϑ ∈ θ satisfying

ϑ (S CBbd(Lg, Lh)) ≤
[
ϑ (S CBbd(g, h))

]t if S CBbd(Lg, Lh) , 0 for g, h ∈ X,

where t ∈ (0, 1) and gp = Lpg0 (p=0,1,2...), for some g0 ∈ X. Here, gp denotes the sequence (called the
orbit or Picard iteration) generated by repeated application of L.

Therefore, g1 = L(g0), g2 = L(g1) = L2(g0), ...., gp = L(gp−1) = Lp(g0).

Theorem overview. We show that a θBC L on a complete strong-controlled Branciari b-distance space
(X, S CBbd) has a unique fixed point. Moreover, for every g0 ∈ X, the Picard orbit (gp) with gp = Lpg0

converges to that point.

Theorem 3.1 (Fixed point for θBC). Let (X, S CBbd) be a complete S CBbd − Msp, L : X → X be a
θBC, and ω : X × X → [1,∞) be a control function in a strong-controlled Branciari b-distance. If
lim supp,q→∞ ω(gp, gq) = K, K ≥ 1, and for each g ∈ X, limp→+∞ ω

(
g, gp

)
exists and is finite, then L

has only one fixed point in X.

AIMS Mathematics Volume 10, Issue 12, 28100–28114.



28104

Proof (outline). (1) Define gp = Lpg0; (2) apply (�,4) to get a decay of ϑ
(
S CBbd

(
gp+1, gp

))
; (3)

deduce Cauchy via the strong-controlled Branciari b-distance inequality; (4) completeness⇒ limit g∗;
(5) show Lg∗ = g∗ and uniqueness. �

Proof (details). For any point g0 ∈ X we generate the following iterative sequence
{
gp

}
where gp =

Lpg0 for all p ∈ N. Assume Lp∗g = Lp∗+1g for some p∗ ∈ N, and then Lp∗g is certainly a fixed point
of L. Thus, without losing generality, we can presume that S CBbd

(
Lpg, Lp+1g

)
> 0, ∀ p ∈ N. From

Definition 3.1, we have

ϑ
(
S CBbd

(
gp, gp+1

))
= ϑ

(
S CBbd

(
Lgp−1, Lgp

))
≤

[
ϑ
(
S CBbd

(
gp−1, gp

))]t
≤

[
ϑ
(
S CBbd

(
gp−2, gp−1

))]t2
.

Recursively, we find that

ϑ
(
S CBbd

(
gp, gp+1

))
≤

[
ϑ (S CBbd (g0, g1))

]tp
. (3.1)

Accordingly, we obtain that

1 < ϑ
(
S CBbd

(
gp, gp+1

))
≤

[
ϑ (S CBbd (g0, g1))

]tp
for all p ∈ N. (3.2)

Letting p→ ∞ in (3.2), we get ϑ
(
S CBbd

(
gp, gp+1

))
→ 1 as p→ ∞.

From (�) , we have
lim
p→∞

S CBbd

(
gp, gp+1

)
= 0. (3.3)

Similarly, we can easily deduce that

lim
p→∞

S CBbd

(
gp, gp+2

)
= 0. (3.4)

From (4), there exist e ∈ (0, 1) and F ∈ (0,∞) such that

lim
p→∞

ϑ
(
S CBbd

(
gp, gp+1

))
− 1[

S CBbd

(
gp, gp+1

)]e = F.

Suppose that F < ∞. In this case, let C = F
2 > 0. Utilizing the definition of a limit, choose p0 ∈ N

such that ∣∣∣∣∣∣∣∣
ϑ
(
S CBbd

(
gp, gp+1

))
− 1[

S CBbd

(
gp, gp+1

)]e − F

∣∣∣∣∣∣∣∣ ≤ C,

for all p ≥ p0. This implies that ϑ(S CBbd(gp,gp+1))−1

[S CBbd(gp,gp+1)]e ≥ F −C = C for all p ≥ p0.

Then, we derive that

p
[
S CBbd

(
gp, gp+1

)]e
≤ p

ϑ
(
S CBbd

(
gp, gp+1

))
− 1

C

 for all p ≥ p0.
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Suppose that F = ∞. Let C > 0 be an arbitrary positive number. Using the limit definition, we find
p0 ∈ N such that ϑ(S CBbd(gp,gp+1))−1

[S CBbd(gp,gp+1)]e ≥ C for all p ≥ p0. This implies that p
[
S CBbd

(
gp, gp+1

)]e
≤

p
[
ϑ(S CBbd(gp,gp+1))−1

C

]
, for all p ≥ p0. Thus, in all cases, there exist 1

C > 0 and p0 ∈ N such that

p
[
S CBbd

(
gp, gp+1

)]e
≤ p

ϑ
(
S CBbd

(
gp, gp+1

))
− 1

C

 ,
for all p ≥ p0.

Using Eq (3.2), we obtain p
[
S CBbd

(
gp, gp+1

)]e
≤

p
C

[[
ϑ (S CBbd (g0, g1))

]tp
− 1

]
for all p ≥ p0.

Letting p→ ∞, we have limp→∞ p
[
S CBbd

(
gp, gp+1

)]e
= 0. Thus, there exists p1 ∈ N such that

S CBbd

(
gp, gp+1

)
≤

1

p
1
e

for all p ≥ p1. (3.5)

Let N = max {p0, p1}. Due to the modified triangle inequality, we have two cases.
Case 1. Let gp = gq where p , q. In the case where q > p, we have Lq−p

(
gp

)
= gp. Choose

h = gp and s = q− p. Then Lsh = h. Consequently, L has h as a periodic point. Hence, S CBbd(h, Lh) =

S CBbd

(
Lsh, Ls+1h

)
= S CBbd

(
Lksh, Lks+1h

)
for all k ∈ N. Therefore, it is clear from the above reasoning

that S CBbd(h, Lh) = 0, so h = Lh, that is, h is a fixed point of L.
Case 2. Suppose that Lpg , Lqg for all integers p , q. Let p < q be two natural numbers; to show that{
gp

}
is a Cauchy sequence, we need to consider two subcases:

Subcase 1. We claim that if p − q is odd, then S CBbd

(
gp, gq

)
converges to 0 as p, q → ∞. To prove

this, we may assume that q = p + 2s + 1.
Thus,

S CBbd(gp, gp+2s+1)≤S CBbd(gp, gp+2s−1)+S CBbd(gp+2s−1, gp+2s)+ω(gp+2s, gp+2s+1)S CBbd(gp+2s, gp+2s+1).

Using ω(gp+2s, gp+2s+1) ≤ K and S CBbd(gp, gp+1) ≤ 1
(p)1/e , we have

S CBbd(gp, gp+2s+1) ≤ S CBbd(gp, gp+2s−1) +
1

(p + 2s − 1)1/e + K
1

(p + 2s)1/e .

Since K ≥ 1, we have

S CBbd(gp, gp+2s+1) ≤ S CBbd(gp, gp+2s−1) + K
(

1
(p + 2s − 1)1/e +

1
(p + 2s)1/e

)
.

Doing this recursively, we have

S CBbd(gp, gp+2s+1)≤S CBbd(gp, gp+2s−3)+K
(

1
(p+2s−3)1/e +

1
(p+2s−2)1/e +

1
(p+2s−1)1/e +

1
(p+2s)1/e

)
.

Eventually, we obtain

S CBbd(gp, gp+2s+1) ≤ S CBbd(gp, gp+1) + K
p+2s∑

i=p+1

1
(i)1/e ≤

1
(p)1/e + K

p+2s∑
i=p+1

1
(i)1/e .
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Now, using K ≥ 1, we have

S CBbd(gp, gp+2s+1) ≤ K
p+2s∑
i=p

1
(i)1/e .

Now, the series
∑∞

i=1
1

(i)1/e is convergent, so

lim
p,s→∞

S CBbd(gp, gp+2s+1) = 0.

Subcase 2. We may assume that q = p + 2s. Thus, we start with the recursive inequality:

S CBbd(gp, gp+2s)≤S CBbd(gp, gp+2s−2)+S CBbd(gp+2s−2, gp+2s−1)+ω(gp+2s−1, gp+2s)S CBbd(gp+2s−1, gp+2s).

Using ω(gp+2s−1, gp+2s) ≤ K and S CBbd(gp, gp+1) ≤ 1
(p)1/e , we have

S CBbd(gp, gp+2s) ≤ S CBbd(gp, gp+2s−2) +
1

(p + 2s − 2)1/e + K
1

(p + 2s − 1)1/e .

Since K ≥ 1, we have

S CBbd(gp, gp+2s) ≤ S CBbd(gp, gp+2s−2) + K
(

1
(p + 2s − 2)1/e +

1
(p + 2s − 1)1/e

)
.

Doing this recursively, we have

S CBbd(gp, gp+2s)≤S CBbd(gp, gp+2s−4)+K
( 1
(p+2s−4)1/e +

1
(p+2s−3)1/e +

1
(p+2s−2)1/e +

1
(p+2s−1)1/e

)
.

Thus, we obtain

S CBbd(gp, gp+2s) ≤ S CBbd(gp, gp+2) + K
p+2s−1∑
i=p+2

1
(i)1/e .

Using the fact that the series
∞∑

i=1

1
(i)1/e is convergent (since 1/e > 1), and limp→∞ S CBbd(gp, gp+2) = 0,

we can deduce that
lim

p,s→∞
S CBbd(gp, gp+2s) = 0.

Therefore,
{
gp

}
is a Cauchy sequence in X. Given (X, S CBbd) is a complete S CBbd, it implies that the

sequence
{
gp

}
converges to point µ in X. Next, we show that µ is a fixed point of L.

Note that if Lg , Lh and by employing (3.1), we have

ln
[
ϑS CBbd(Lg, Lh)

]
≤ t ln

[
ϑS CBbd(g, h)

]
≤ ln

[
ϑS CBbd(g, h)

]
.

Given that ϑ is non-decreasing, the aforementioned observance leads to the conclusion that
S CBbd(Lg, Lh) ≤ S CBbd(g, h) for all distinct g, h ∈ X.
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On the other hand, S CBbd

(
gp+1, Lµ

)
= S CBbd

(
Lgp, Lµ

)
≤ S CBbd

(
gp, µ

)
, ∀ p ∈ N. If we take

p → ∞ in the preceding inequality, we obtain gp+1 → Lµ. By the uniqueness of the limit we deduce
that Lµ = µ.

Assume that ξ ∈ L is a fixed point different than µ. Accordingly, S CBbd(µ, ξ) = S CBbd(Lµ, Lξ),0.
Now using the Definition 3.1, we get

ϑ (S CBbd(µ, ξ)) = ϑ (S CBbd(Lµ, Lξ)) ≤
[
ϑ (S CBbd(µ, ξ))

]t < ϑ (S CBbd(µ, ξ)) ,which is a contradiction.

Therefore, µ = ξ. Consequently, L is asserted to possess a unique fixed point in X. �

Now, let us consider the following example that validates our findings.

Example 3.1. Construct the following sequence:

σ1 = 1 × 2,
σ2 = 1 × 2 + 2 × 5,
σ3 = 1 × 2 + 2 × 5 + 3 × 10,
σ4 = 1 × 2 + 2 × 5 + 3 × 10 + 4 × 17, (3.6)

σp = 1 × 2 + 2 × 5 + 3 × 10 + 4 × 17 + . . . . + p
(
p2 + 1

)
=

p∑
i=1

(i3 + i)

=

[
p(p + 1)

2

]2

+
p(p + 1)

2
=

p4 + 2p3 + 3p2 + 2p
4

.

LetX =
{
σp : p ≥ 0

}
. Define S CBbd : X×X→ [0,∞) as S CBbd(g, h) = |g−h|2. Consider ω : X×X→

[1,∞) as ω(g, h) = 5g + 3h + 20. Subsequently, (X, S CBbd) is a complete S CBbd space. We take p to
be a non-negative real number. For the last two lines, we define

L(σp) = σp/2, for all p ≥ 0.

We will now demonstrate that L is a θBC where ϑ(x) = ex. Since ϑ (S CBbd(Lg, Lh)) ≤[
ϑ (S CBbd(g, h))

]t, this yields e(S CBbd(Lg,Lh)) ≤
[
e(S CBbd(g,h))

]t
. Applying log on both sides, we get

S CBbd(Lg, Lh) ≤ tS CBbd(g, h).

Therefore, proving the preceding equation is sufficient to demonstrate that L is a θBC.
Consider q > p ≥ 0. We have

S CBbd(Lσp, Lσq) = S CBbd(σp/2, σq/2)

=

∣∣∣∣∣∣∣∣
(

q
2

)4
+ 2

(
q
2

)3
+ 3

(
q
2

)2
+ 2

(
q
2

)
−

(
p
2

)4
− 2

(
p
2

)3
− 3

(
p
2

)2
− 2

(
p
2

)
4

∣∣∣∣∣∣∣∣
2

=

∣∣∣∣∣∣∣∣∣∣
((

q
2

)4
−

(
p
2

)4
)

+ 2
((

q
2

)3
−

(
p
2

)3
)

+ 3
((

q
2

)2
−

(
p
2

)2
)

+ 2
((

q
2

)
−

(
p
2

))
4

∣∣∣∣∣∣∣∣∣∣
2

,
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and

S CBbd(σp, σq) =

∣∣∣∣∣∣ (q4 − p4) + 2(q3 − p3) + 3(q2 − p2) + 2(q − p)
4

∣∣∣∣∣∣2 .
Consider

S CBbd(Lσp, Lσq)
S CBbd(σp, σq)

=

∣∣∣∣∣∣∣∣∣∣
((

q
2

)4
−

(
p
2

)4
)

+ 2
((

q
2

)3
−

(
p
2

)3
)

+ 3
((

q
2

)2
−

(
p
2

)2
)

+ 2
((

q
2

)
−

(
p
2

))
(q4 − p4) + 2(q3 − p3) + 3(q2 − p2) + 2(q − p)

∣∣∣∣∣∣∣∣∣∣
2

.

Clearly, (q
2

)n
−

( p
2

)n
≤

1
2

(qn − pn) for all n ≥ 1.

Therefore, ((
q
2

)4
−

(
p
2

)4
)

+ 2
((

q
2

)3
−

(
p
2

)3
)

+ 3
((

q
2

)2
−

(
p
2

)2
)

+ 2
((

q
2

)
−

(
p
2

))
(q4 − p4) + 2(q3 − p3) + 3(q2 − p2) + 2(q − p)

≤
1
2
,

and this implies that
S CBbd(Lσp, Lσq)

S CBbd(σp, σq)
≤

1
2
.

By choosing t ∈ [1/2, 1), we have

S CBbd(Lσp, Lσq) ≤ t · S CBbd(σp, σq).

Hence, L meets θBC with ϑ(x) = ex. Then, from Theorem 3.1, L has a unique fixed point σ1. Letting
ω(g, h) = 1 in the preceding theorem, the following corollary is obtained.

Corollary 3.1. Consider L as a self mapping on a complete S CBd − Msp (X, S CBd). If ∃ Θ ∈ θ and
t ∈ (0, 1) satisfying

Θ(S CBd(Lg, Lh)) ≤ [Θ(S CBbd(g, h))]t when S CBbd(Lg, Lh) , 0 for g, h ∈ X,

then L possesses a unique fixed point in X.

Definition 3.2. Consider the S CBbd −Msp (X, S CBbd). According to Reich, the self-mapping L : X→
X is Ćirić-Reich-Rus-type θBC, briefly, CRRT − θBC, if there exists a function ϑ ∈ θ and non-negative
real number t < 1 such that

ϑ (S CBbd(Lg,Lh)) ≤
[
ML,ϑ(g, h)

]t , (3.7)

for all g, h ∈ X, where

ML,ϑ(g, h) := max {ϑ (S CBbd(g, h)) , ϑ (S CBbd(h,Lh)) , ϑ (S CBbd(g,Lg))} ,

where lim supp,q→∞ ω
(
gp, gq

)
< K, K ≥ 1, and gp = Lpg0 for g0 ∈ X and t ∈ (0, 1).

Theorem overview. We extend the fixed point result to the CRRT − θBC class: every CRRT − θBC on a
complete S CBbd space admits a unique fixed point.
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Theorem 3.2 (Fixed point for CRRT − θBC). Consider (X, S CBbd) a complete S CBbd space and L :
X→ X is a CRRT − θBC. Then L has a unique fixed point.

Proof (outline). Consider the Picard sequence gp+1 = L(gp). The CRR − θ-Branciari contractive
condition yields a geometric decay for the successive gaps ϑ(S CBbd(gp+1, gp)). Using the S CBbd-
inequality (with the control function), this implies that (gp) is Cauchy; completeness gives a limit
g∗ ∈ X. Passing to the limit in the contractive inequality shows L(g∗) = g∗. Uniqueness follows by
applying the same inequality to two proposed fixed points. �

Proof (details). As in Theorem 3.1, we establish an iterative sequence
{
gp

}
. Let g0 ∈ X and define

gp = Lpg0, ∀ p ∈ N.

Without loss of generality, we presume that S CBbd

(
Lpg,Lp+1g

)
> 0 for all p ∈ N. Certainly, if Lp∗g =

Lp∗+1g for some p∗ ∈ N, then Lp∗g will be a fixed point of L. We show that limp→∞ S CBbd

(
gp, gp+1

)
= 0.

Applying the condition of contraction (3.7), we obtain

ϑ
(
S CBbd

(
gp+1, gp

))
≤

[
ML,ϑ

(
gp, gp−1

)]t
, (3.8)

in which

ML,ϑ
(
gp, gp−1

)
= max

{
ϑ
(
S CBbd

(
gp, gp−1

))
, ϑ

(
S CBbd

(
gp,Lgp

))
, ϑ

(
S CBbd

(
gp−1,Lgp−1

))}
= max

{
ϑ
(
S CBbd

(
gp, gp−1

))
, ϑ

(
S CBbd

(
gp, gp+1

))
, ϑ

(
S CBbd

(
gp−1, gp

))}
≤ max

{
ϑ
(
S CBbd

(
gp, gp−1

))
, ϑ

(
S CBbd

(
gp, gp+1

))}
.

If ML,θ
(
gp, gp−1

)
= ϑ

(
S CBbd

(
gp, gp+1

))
, then the inequality (3.8) turns into ϑ

(
S CBbd

(
gp+1, gp

))
≤

ϑ
(
S CBbd

(
gp, gp+1

))t
⇔ ln

(
ϑ
(
S CBbd

(
gp+1, gp

)))
≤ t ln

(
ϑ
(
S CBbd

(
gp+1, gp

)))
, which is a

contradiction (because t < 1). Hence, we have ML,ϑ
(
gp, gp−1

)
= ϑ

(
S CBbd

(
gp−1, gp

))
. From (3.8),

it follows that
ϑ
(
S CBbd

(
gp, gp+1

))
≤

[
ϑ
(
S CBbd

(
gp−1, gp

))]t
.

Repeatedly, we discover that

ϑ
(
S CBbd

(
gp, gp+1

))
≤

[
ϑ (S CBbd (g0, g1))

]tp
.

Following this insight, we deduce that
{
gp

}
in X is a Cauchy sequence by tracing the relevant lines

in the Theorem 3.1 proof. In conclusion, the sequence
{
gp

}
in X is Cauchy. Because (X, S CBbd) is

a complete S CBbd, there is a certain point µ in X in a way that
{
gp

}
converges to µ. Without loss of

generality, we presume that Lpg , µ for all p (or p tends to infinity). Assume that S CBbd(µ,Lµ) > 0.
Using (3.7), we obtain

ϑ
(
S CBbd

(
Lgp,Lµ

))
≤

[
ML,ϑ

(
gp, µ

)]t
, (3.9)

for all g, h ∈ X, in which

ML,ϑ
(
gp, µ

)
:= max

{
ϑ
(
S CBbd

(
gp, µ

))
, ϑ

(
S CBbd

(
gp,Lgp

))
, ϑ (S CBbd(µ,Lµ))

}
.
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Taking p→ ∞ in the preceding inequality, we get

ϑ (S CBbd(µ,Lµ)) ≤
[
ϑ (S CBbd(µ,Lµ))

]t < ϑ (S CBbd(µ,Lµ)) ,

which is a contradiction. Therefore, Lµ = µ. Hence, L has a fixed point in X. Assume that µ , ξ are
distinct fixed points of L. Afterwards, obviously

S CBbd(µ, ξ) = S CBbd(Lµ, Lξ) , 0.

Applying condition (3.10) now, we obtain

1 < ϑ (S CBbd(µ, ξ))

= ϑ (S CBbd(Lµ,Lξ))

≤
[
max {ϑ (S CBbd(µ, ξ)) , ϑ (S CBbd(µ,Lµ)) , ϑ (S CBbd(ξ,Lξ))}

]t

< ϑ (S CBbd(µ, ξ)) ,

which is clearly a contradiction. Consequently, we obtain ξ = µ. As a result, L has just one fixed point
in X. �

Definition 3.3. Consider the S CBbd space, (X, S CBbd) , and a self-mapping L : X → X. Hence, L is
considered an interpolative-θBC when there exists a function ϑ ∈ θ such that t1 + t2 + t3 < 1, where
t1, t2, t3 are positive real numbers satisfying

ϑ (S CBbd(Lg,Lh)) ≤
[
ϑ (S CBbd(g, h))

]t1 [ϑ (S CBbd(g,Lg))
]t2 [ϑ (S CBbd(h,Lh))]t3 , (3.10)

for all g, h ∈ X, where lim supp,q→∞ ω
(
gp, gq

)
< K, K ≥ 1, and gp = Lpg0 for g0 ∈ X and t ∈ (0, 1).

Theorem 3.3 (Fixed point for interpolative-θBC ). Let (X, S CBbd) be a complete and continuous
function S CBbd. If L : X→ X is an interpolative-θBC, then in X,L has a single fixed point.

We omit this proof because[
ϑ (S CBbd(g, h))

]t1 [ϑ (S CBbd(g,Lg))
]t2 [ϑ (S CBbd(h,Lh))]t3 ≤

[
Mϑ,L(g, h)

]t1+t2+t3 .

Then, selecting t := t1 + t2 + t3 < 1 is sufficient in Theorem 3.1 to sum up the preceding theorem.

4. Application to differential equations

Consider the following system of differential equations:{
ψ′′′′(χ) = g (χ, ψ(χ), ψ′(χ), ψ′′(χ), ψ′′′(χ)) ,
ψ(0) = ψ′(0) = ψ′′(1) = ψ′′′(1) = 0; χ ∈ [0, 1],

(4.1)

so that g is a continuous function defined as g : [0, 1] × R3 × R→ R .
The focus of the study is on the boundary value problem (BVP), a fundamental concept in

mathematical analysis, particularly when applied to the modeling of complex physical phenomena.
In this case, the problem is situated within the context of elastic beam deformations, with an emphasis
on the equilibrium configuration. Specifically, the problem models scenarios where one end of the
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beam is free to move, while the other is fixed in place. This setup is commonly referred to as the
cantilever beam problem in the field of mechanics, underlining its wide applicability and importance
in both theoretical and applied mathematics.

The solutions to this type of BVP play a crucial role in numerous applications, ranging from
structural engineering to mathematical physics. As such, determining the existence and uniqueness
of solutions is of central importance. To achieve this, we apply the fixed point technique, a well-
established method in mathematical analysis that is particularly effective for solving BVPs of this
nature.

Here we examine if a boundary value problem with a differential equation of fourth order has a
solution. On the interval [0, 1], X = F [0, 1] is the notation for the space of continuous bounded
functions. Within this space, we introduce the S CBbd as a means to measure distances between
functions. The metric is denoted by

S CBbd(L(v), g(v)) = max
v∈X
|L(v) − g(v)|2,

which provides the necessary structure for analyzing the convergence of sequences of functions in X.
Furthermore, we define a mapping ω : X4 → [1,∞), where ω (u1, u2, u3, u4) = 5u1 + 5u2 + 3. This

mapping introduces an additional layer of complexity to our exploration, enabling us to further study
the behavior of solutions within the context of the BVP.

Through this approach, we aim to demonstrate the existence of a solution to the boundary value
problem, using the fixed point theorem and the introduced metrics to rigorously establish the conditions
under which solutions can be found. Having established the foundational framework, we now proceed
to reformulate the fourth-order ordinary differential equation (BVP) as an integral equation. The
integral form in which the BVP is presented is below:

ψ(χ) =

∫ 1

0
G(χ, v)g

(
v, ψ(v), ψ′(v), ψ′′(v), ψ′′′(v)

)
dv, ψ ∈ F [0, 1].

In this expression, G(χ, v) represents Green’s function associated with the homogeneous linear
problem:

ψ′′′′(χ) = 0, ψ(0) = ψ′(0) = ψ′′(1) = ψ′′′(1) = 0.

This function provides a key component for solving the boundary value problem and offers valuable
insight into the underlying structure of the equation. The use of Green’s function allows for a detailed
understanding of the interactions between the boundary conditions and the solution, facilitating the
analysis of the problem’s characteristics.

G(χ, v) =

 1
6χ

2(3v − χ), 0 ≤ χ ≤ v ≤ 1,
1
6v2(3χ − v), 0 ≤ v ≤ χ ≤ 1.

(4.2)

The subsequently properties of G(χ, v) could be simply verified from (3.2).

1
3
χ2v2 ≤ G(χ, v) ≤

1
2
χ2

(
or

1
2

v2
)
, χ, v ∈ [0, 1].
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Theorem 4.1. Assume that the subsequent constraints are satisfied.
(1) The mapping g : [0, 1] × R3 × R→ R is continuous.
(2) For every ψ, y ∈ X = F [0, 1], there is a σ ∈ [1,∞) such that the below condition is satisfied.∣∣∣g (

v, ψ, ψ′, ψ′′, ψ′′′
)
− g

(
v, y, y′, y′′, y′′′

)∣∣∣ ≤ √20e
−σ
2 |ψ(v) − y(v)|, v ∈ [0, 1].

(3) There exists ψ0 ∈ X where for every χ ∈ [0, 1], we deduce

ψ0(χ) ≤
∫ 1

0
G(χ, v)g

(
v, ψ0(v), ψ′0(v), ψ′′0 (v), ψ′′′0 (v)

)
dv.

Hence, the BVP problem contains a solution in X.

Proof. Assume the self-mapping L : X→ X is defined as

L(ψ(χ)) =

∫ 1

0
G(χ, v)g

(
v, ψ(v), ψ′(v), ψ′′(v), ψ′′′(v)

)
dv.

Then ψ(χ) = L(ψ(χ)), which implies that the BVP has only one solution.
Consider,

|L(ψ)(χ) − L(y)(χ)|2

=

∣∣∣∣∣∣
∫ 1

0
G(χ, v)g

(
v, ψ(v), ψ′(v), ψ′′(v), ψ′′′

)
dv −

∫ 1

0
G(χ, v)g

(
v, y(v), y′(v), y′′(v), y′′′(v)

)
dv

∣∣∣∣∣∣2
≤

∫ 1

0
(G(χ, v))2

∣∣∣g (
v, ψ(v), ψ′(v), ψ′′(v), ψ′′′

)
− g

(
v, y(v), y′(v), y′′(v), y′′′(v)

)∣∣∣2 dv

≤

∫ 1

0

1
4

v420e−σ|ψ(v) − y(v)|2dv

≤20e−σS CBbd(ψ, y)
∫ 1

0

1
4

v4dv

≤20e−σS CBbd(ψ, y)
1

20
=e−σS CBbd(ψ, y),

where this deduces to
S CBbd(L(ψ), L(y)) ≤ e−σS CBbd(ψ, y),√
S CBbd(L(ψ), L(y)) ≤

√
e−σS CBbd(ψ, y),

e
√

S CBbd(L(ψ),L(y)) ≤

(
e
√

S CBbd(ψ,y)
)√e−σ

,

where
e−σ < 1 as σ ≥ 1.

Thus, e
√

S CBbd(L(ψ),L(y)) ≤

(
e
√

S CBbd(ψ,y)
)√r

with r =
√

e−σ which gives

ϑ (S CBbd(Lψ, Ly)) ≤
[
ϑ (S CBbd(ψ, y))

]r where ϑ(t) = e
√
χ.

L has a fixed point as all conditions of Theorem 3.1 are met. Therefore, the solution to the BVP is
found in X. �
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5. Conclusions

As an extension of strong-controlled metric-type spaces and Branciari spaces, we introduced
the notion of strong controlled b-Branciari metric type space in this work. Next, in the
framework of strong-controlled-b-Branciari metric-type space, we proved several fixed point theorems
concerning the θ-contraction, Ciric-Reich-Rus-type θ-Brainciari contraction, and interpolative-θ-
Branciari contraction. Additionally, we provided numerous examples to highlight our conclusions.
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