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1. Introduction

The Banach contraction principle, introduced in 1922 [1], established the cornerstone methodology
for proving fixed point theorems in metric spaces M,. This seminal work catalyzed extensive research
in fixed point theory, yielding profound implications across diverse mathematical disciplines. This
has led to significant developments and interests in the field of fixed point theory, which has broad
implications in numerous branches of mathematics. As an extension of M,,, Kamran and Samreen
introduced the notion of extended b—Mj), [2]. Abdeljawad then established the concept of controlled b—
M, [3]. This concept was elaborated upon by Santina et al. who progressed it into strong-controlled b—
M;, [4]. Nevertheless, Branciari introduced the Branciari distance as a generalization of M, [5]. Itis
often referred to as the Branciari metric or the Branciari distance function. Those generalizations open
up new avenues and possibilities, forming a vibrant and developing field marked by ongoing research
projects [6,7]. The resulting spaces offer fresh and fascinating interpretations on M, ideas, indicating
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potential for a wide range of uses. Moreover, existence and uniqueness issues are fundamentally
resolved by fixed point theory, especially when dealing with differential and integral equations. It
provides a basic structure for coping with a number of issues, such as integrodifferential equations.
Under diverse contraction conditions, such as the 6-contraction presented by Jleli and Samet [8] in the
framework of Branciari M,, CRRT —6p¢, and interpolative-0g¢ [9], many researchers have investigated
a variety of b — M,,. When determining the presence and uniqueness of fixed points for mappings
in M,,, the Banach contraction principle—a foundational finding in nonlinear analysis—is essential.
Motivated by the need to unify and extend existing distance notions, we propose the strong-controlled
Branciari b-metric spaces (S CB,;y), which combine the flexibility of the strong-controlled b-metric
with the quadrilateral structure of Branciari distances. Building on this framework, we develop new
fixed point results of 6-type and demonstrate their utility through an application to boundary value
problems.

The Banach contraction principle, introduced in 1922 [1], established the cornerstone methodology
for proving fixed point theorems in metric spaces M,. This seminal work catalyzed extensive research
in fixed point theory, yielding profound implications across diverse mathematical disciplines.

The main contributions of this paper are as follows:

(1) Definition of the (S CB,,;) (Section 2). We introduce a new distance structure (S CB;,) controlled
by a function w(x,y) > 1. This structure generalizes Branciari distance (w = 1) and we provide
explicit examples to illustrate its validity.

(2) 6-Branciari contraction and fixed point theorem (Section 3, Theorem 3.1). We establish a
f-type contractive condition in (S CB,,) spaces, proving that every 6-Branciari contraction admits
a unique fixed point. Moreover, we quantify the convergence of the Picard sequence by showing

) (S CByq (gp’ 8p+1)) < [ (SCBu (g0, &))" -

(3) Ciric-Reich-Rus-type 6-Branciari contraction (CRRT — 6p¢) (Section 3, Theorem 3.2). We
generalize classical Ciric-Reich-Rus-type conditions to the (S CB,,;) setting and prove that such
mappings also possess a unique fixed point, thereby extending known results from rectangular
and Branciari contexts.

(4) Interpolative 6-Branciari contractions (Section 3, Theorem 3.3). We formulate a three-term
interpolative contractive condition with exponents #;, t,, t3 satisfying t; + t, + t3 < 1.

(5) Application to a fourth-order boundary value problem (Section 4, Theorem 4.1). We apply
the abstract results to a nonlinear cantilever beam problem, reformulating it via a Green function
into an operator that satisfies our #-contractive condition. Under suitable growth restrictions on
the nonlinear term g, we prove the existence and uniqueness of a solution, showing the practical
impact of our theoretical framework.

2. Preliminary

We start by defining the Branciari distance (B,;) [5], which is one of the ideas put out to broaden
and generalize the scope of the metric.
Definition 2.1. Let X be a nonempty set and let Br : X X X — [0, o0) such that for all g, h € X and
all k # 1 € X\{g, h},
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(Brl) Br(g,h) =0ifandonlyifg=h,
(Br2) Br(g,h) = Br(h,g)(symmetry), (2.1)
(Br3) Br(g,h) < Br(g,k) + Br(k,l) + Br(l, h).

Then, Branciari defines Br as B,. Then, the pair (X, Br) is referred to as B, space.

Now we revisit the notion of #-contraction that is established by Jleli and Samet [8]. Consider the
set 6 that contains all the functions that are continuous and non-decreasing 9 : (0, c0) — (1, c0) such
that it fulfills the conditions below:

(O) for each sequence {g,} C (0,0), lim,_,9(g,) =1 e lim, g, =0";

(1) there exist e € (0, 1) and L € (0, 00) such that lim,_- % =L

Several fixed-point results have been improved by using this notion (see, e.g., [10-12]).
Recall the notion of controlled strong b — M, introduced by Santina et al. [4].

Definition 2.2. Let X be a non-empty set and let w : X X X — [1,00). The following function
SC: XXX — [0,00) is called a strong-controlled b — M), if

(1)SC(g,h)=0iff g=nh,

(2)SC(g,h)=SC(h,g),

(3)SC(g,h) <SC(g, )+ w(l,h)SC(, h),

forall g,h,l € X. The pair (X,SC ) is called a strong-controlled b — M.

We will merge these two concepts, strong-controlled b — M, and B,, under the designation of a
S CB,, space according to the following.

Definition 2.3. Consider the set X that contains at least one element and w : X X X — [1,0) is a
mapping. Hence, the function SCBy; : X X X — [0, 00) is a strong-controlled Branciari b-distance if
it fulfills:
(i) SCBpi(g, h) = SCBpa(h, g),
(ii) SCBpy(g,h) = 0ifand only if g = h,
(iii) S CBpa(g, h) < SCBpa(g, 1) + SCBpa(l, k) + w(k, h)S CBpa(k, h),
forall g, h € X and all distinct k,l € X\{g, h}. The couple of the symbols (X, S CBy,;) denotes S CBp; —
M),
Example 2.1. Let X = {10, 11, 12, 13}. Define SCBy,; : X X X — [0, 00) as follows:

SCBy(t, 1) = 0,Yt € X, SCBy(10,1) = SCByy(t, 10) = 40, ¥t € X — {10},

SCBbd(ll, 12) = SCBbd(IZ, 11) = SCBbd(ll, 13) = SCBbd(13, 11) = 211,

SCBy(13,12) = SCBy,4(12,13) = 999.
Consider the symmetric function w : X X X — [1, 00) with the following characteristics:

w(t, 1) =10,V e X,
w(10,11) =3, w(10,12) =4, w(10,13) = w(11,12) = 2, w(11,13) =9, w(12,13) = 3.

Therefore, (X,S CByy) is a SCByq — My,. In spite of that, we shall observe that
(1) SCBypy(12,13) =999 > SCB,;(12,10) + w(10, 13)S CB,;(10, 13) = 120.
(2) SCBpy(12,13)=999>w(12,11)S CBy(12,11)+w(11,10)S CBy(11,10)+w(10,13)S CB,,(10,13)=622.
Thus (X, S CByy) is neither a strong-controlled metric-type space nor a controlled Branciari b-distance
space.
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Example 2.2. Let X = {1,2,3,4}. Define SCByy : XXX — R* by w(g, h) = 10g + 10h + 100 and then
(X, S CByy) is a strong-controlled Branciari b-distance space.
Once all other conditions are met, we shall demonstrate the amended quadrilateral inequality.

SCBya(g, h)
=lg — hl’
=lg—Il+1—k+k—h* whereg#h#1+k
<lg =1+l kP> + k= hl* +2lg = ||l - k| + 2|l — kl|lk — h| + 2|k — hl|g — |
<|lg = II* + | = kI* + (10g + 10k + 100)|k — h?
=S CByu(g,1) + S CByy(l, k) + w(g, h)S CBpa(k, h).

Therefore, S CByy(g,h) < SCBpy(g, 1) + SCByy(l, k) + w(g, h)S CByu(k, h).

Remark 2.1. If w(g,h) = s = 1, then it is the standard B,. It is widely recognized that the b-metric
does not require continuity. As a result, S CB,, is also not always continuous. We assume S CBy, is
continuous.

Now, we present the topological properties of strong-controlled Branciari b-distance (S CBy).

Definition 2.4. Let X be a set that includes at least one element and endowed with S C By, and then a
sequence {g,} in X is

(a) Convergent to g if for every € > 0 there exists N = N(€) € N such that SCBy;(g,,8) < €, for all
n > N. Particularly, for this instance, we define lim, o, g, = &.

(b) Cauchy if for every € > 0 there exists N = N(€) € N such that S CBp; (g, 8n) < €, for all m,n > N.
(c) An S CByy-metric space (X, S CByy) is complete if every Cauchy sequence in X is convergent.

3. Primary findings

We shall commence this portion by providing an introduction to the notion of a 6-Branciari
contraction.

Definition 3.1. Let (X, S CBy) be a (SCBy,) — My, and consider the self-mapping L : X — X where
X is a non-empty set. Then, L is called a 0p¢ if A € 0 satisfying

(S CBya(Lg, Lh)) < [9 (S CBalg, )] if SCBya(Lg, Lh) # 0 for g,h € X,

where t € (0,1) and g, = LPg, (p=0,1,2...), for some g, € X. Here, g, denotes the sequence (called the
orbit or Picard iteration) generated by repeated application of L.

Therefore, g1 = L(g0), 82 = L(g1) = L*(80), ----» &p = L(gp-1) = L7(g0).

Theorem overview. We show that a 6z L on a complete strong-controlled Branciari b-distance space
(X, § CByy) has a unique fixed point. Moreover, for every g € X, the Picard orbit (g,) with g, = LPgq
converges to that point.

Theorem 3.1 (Fixed point for Ozc). Let (X,SCBy,) be a complete SCBy; — My,, L : X — X be a
Opc, and w : X X X — [1,00) be a control function in a strong-controlled Branciari b-distance. If
limsup, .., w(gp. &) = K, K > 1, and for each g € X,lim;_,, w(g, g,,) exists and is finite, then L
has only one fixed point in X.
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Proof (outline). (1) Define g, = L’go; (2) apply (0.4) to get a decay of & (SCByy(gye1.)): (3)
deduce Cauchy via the strong-controlled Branciari b-distance inequality; (4) completeness = limit g*;
(5) show Lg* = g* and uniqueness. |

Proof (details). For any point g, € X we generate the following iterative sequence {gp} where g, =
LPg, forall p € N. Assume LP*g = LP**'g for some p, € N, and then L”g is certainly a fixed point
of L. Thus, without losing generality, we can presume that S CB,y (L” g, Ll’”g) > 0,V p € N. From
Definition 3.1, we have

2

) (S CBpy (gp’ 8p+1)) = (S CBypy (Lgp—la Lgp)) < [19 (S CBpq (gp—la gp))]t < [19 (S CBpq (gp—Z’ gp—l))]
Recursively, we find that
9 (S CBua (> 8p+1)) < [9(S CBra (20, 8] - (3.1)

Accordingly, we obtain that

1 <9 (SCBu(gp»8p+1)) < [9(SCBa (g0, g1))]" forall p € N. (3.2)

Letting p — oo in (3.2), we get ﬂ(S CBy, (gp,gp+1)) — las p — oo.
From (O) , we have

lim S CByy (8- gps1) = 0. (3.3)

p—)(X)

Similarly, we can easily deduce that
lim S CByy (g, gpv2) = 0. (3:4)

From (A), there exist ¢ € (0, 1) and F € (0, o0) such that

. ﬂ(SCBbd (gp’gp+1)) -1

— =F.
P [SCBy (8> 8pe1)]

Suppose that F' < oco. In this case, let C = % > 0. Utilizing the definition of a limit, choose py € N
such that

) (S CBya (gp’ gp+1)) -1
[S CByy (gp’gp+l)]e

19(5 CBbd(gpagPJrl ))_1
[s CBhd(gpsng)]e

-F|<C,

for all p > py. This implies that >F —C = Cforall p > py.

Then, we derive that

(S CBua (g5 8ps1)) = 1
C

p [S CBypy (gp’ gp+1)]e <p

} for all p > py.
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Suppose that F' = co. Let C > 0 be an arbitrary positive number. Using the limit definition, we find
po € N such that ﬂ(SCBb‘[(g”’g"”)):l > C for all p > py. This implies that p[S CBy, (gp,gp+1)]e <

[SCBbd(gpvng)]
ﬂ(SCB""(i”’g"“))_l], for all p > p,. Thus, in all cases, there exist % > 0 and py € N such that

9 (S CBua (85 8p+1)) = 1
= :

p [S CByy (gp’ gp+1)]e <p

for all p > py.

Using Eq (3.2), we obtain p [SCB, (gp,g,,ﬂ)]e <P |[# (S CBya (g0, g = 1] for all p > p.

C
Letting p — oo, we have lim,,_,., p [S CByy (gp,g,,+1)] = 0. Thus, there exists p; € N such that

1
SCBbd (gp,gp+1) < . for all p > P1- (35)
pe

Let N = max {py, p:}. Due to the modified triangle inequality, we have two cases.

Case 1. Let g, = g, where p # g. In the case where g > p, we have L777 (gp) = g,. Choose
h =g,and s = g—p. Then L*h = h. Consequently, L has h as a periodic point. Hence, S CB;,4(h, Lh) =
SCBy, (Lsh, L"‘”h) = SCByy, (L"“'h, [Fs*l h) for all k € N. Therefore, it is clear from the above reasoning
that S CBy,(h, Lh) = 0, so h = Lh, that is, h is a fixed point of L.

Case 2. Suppose that LPg # Lig for all integers p # q. Let p < g be two natural numbers; to show that
{g ,,} is a Cauchy sequence, we need to consider two subcases:

Subcase 1. We claim that if p — ¢ is odd, then S CB,y (gp, gq) converges to 0 as p,g — oo. To prove
this, we may assume that g = p + 2s + 1.
Thus,

SCBra(gps &p+25+1) SS CBri(8p, &p+25-1)+S CBpa(gpsas—15 &p+25) T W(gps2s> &p+25+1)S CBpa(gps2ss &p+25+1)-

Using w(gp+25: §pr25+1) < K and S CBya(g,, gp+1) < e We have

1 1
+ K .
(p+2s—1)le (p +2s)l/e

SCBbd(gp’ gp+2s+l) < SCBbd(gp’ gp+2s—1) +

Since K > 1, we have

1 1
SCB , +1)<SCB , 1)+ K + .
bd(&p» &p+2s+1) bd(&ps &p+25-1) ((p Y I 2S)1/e)

Doing this recursively, we have

1 1 1 1
SCB , +1)<SCB , s—3)+K + + + .

Eventually, we obtain

p+2s 1 p2s
SCBpa(8p 8p+25+1) < S CBpa(8p, 8p+1) + =
bd(gp 8p+2 1) bd(gp p+1) 121 (z)l/e (p)l/e ,;1 (l)l/e
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Now, using K > 1, we have

p+2s

1
S CBy(2p, gprase) < K )|
i=p

O

Now, the series .2, m+/ is convergent, SO
pljgleCBbd(gp, gp+2s+1) = 0.
Subcase 2. We may assume that g = p + 2s. Thus, we start with the recursive inequality:

SCBya(8ps 8p+25) S CBra(8p, 8p+25-2)+S CBra(gpi2s—2, 8p+25-1) T W(8ps25-1> &p+25)S CBra(gpsas—1, &p+2s)-
Using w(gp+25-1, 8p+2s) < K and S CByu(gy, 8p+1) < (p% we have

1 K 1
(p+2s—2)le (p+2s— 1l

SCBpi(gps &p+2s) < SCBpa(gp, gpr25-2) +

Since K > 1, we have

1 1

Doing this recursively, we have

1 1 1 1 )

SCB , )<SCB , s +K( + + + .
ba(8p> 8p+2s) ba(8p» & p+25-4) pr2s— BTt (pr2s— e (pr2s—2) T (pr2s—T)

Thus, we obtain
p+2s—1

S CByi(8pr 8pr2) < SCBuulgp 8pia) + K )

i=p+2

|
@'

(o9

Using the fact that the series E OV
l e
i=1

is convergent (since 1/e > 1), and lim, o S CB4(gp, &p+2) = 0,
we can deduce that
lim S CByi(gp, gp+2s) = 0.

P,S—0

Therefore, {g p} is a Cauchy sequence in X. Given (X, S CB,,) is a complete S CB,,, it implies that the

sequence {gp} converges to point ¢ in X. Next, we show that u is a fixed point of L.
Note that if Lg # Lh and by employing (3.1), we have

In [195 CBbd(Lg, Ll’l)] <tln [ﬂS CBbd(ga h)] <In [ﬁS CBbd(g, ]’l)] .

Given that ¢ is non-decreasing, the aforementioned observance leads to the conclusion that
SCBy(Lg, Lh) < S CBy,(g, h) for all distinct g, h € X.
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On the other hand, SCB,,; (gp+1,L,u) = SCBy, (Lgp,L,u) < SCBy, (gp,,u), V¥ p € N. If we take
p — oo in the preceding inequality, we obtain g,.; — Lu. By the uniqueness of the limit we deduce
that Lu = pu.

Assume that ¢ € L is a fixed point different than p. Accordingly, S CBy(u, &) = S CBpy(Lu, LE)#O0.
Now using the Definition 3.1, we get

9 (S CBpy(u, £)) = 9 (S CBpy(Lu, LE)) < [ (S CBpa(u, f))]t < 3 (S CBpg(u, £)) , which is a contradiction.

Therefore, u = £. Consequently, L is asserted to possess a unique fixed point in X. O
Now, let us consider the following example that validates our findings.
Example 3.1. Construct the following sequence:
o =1x2,
oy =1%X2+2X%5,

o3=1%x2+2x5+3x%10,
o4 =1X24+2%x5+3x10+4x17, (3.6)

)4
Ty =1x242x5+3x10+4x17+....+p(p’+1)= > (@ +i)
i=1

p(p+1)
2

2+p(p+1) _p4+2p3+3p2+2p
2 4 '

LetX = {a'p ip = 0}. Define SCBpy : XxX — [0, 00) as S CByy(g, h) = |g—h|>. Consider w : XxX —
[1,00) as w(g, h) = 5g + 3h + 20. Subsequently, (X,S CByy) is a complete S CBy, space. We take p to
be a non-negative real number. For the last two lines, we define

L(o,) = 0pp, forall p>0.

We will now demonstrate that L is a 0pc where 3(x) = e*. Since #(SCByy(Lg,Lh)) <
t
[ (S CBpa(g, h))], this yields e'S Brale:Lh) < [e(s CBbd(g’h))] . Applying log on both sides, we get

SCByu(Lg, Lh) < tS CByy(g, ).

Therefore, proving the preceding equation is sufficient to demonstrate that L is a Opc.
Consider g > p > 0. We have

SCBbd(LO'p, LO'q) = SCBbd(O'p/Q, O'q/g)

@ 2 38 #2009 -2 -3 (5 -2()
[l - )+ - @)+ 3 (8- ) -2 - 60
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and )
SCBy(r,, ) = |(614 -pH) +2(q° - p3);r 3(q* - pH) +2(q - p)| _
Consider
2
SCButoy iy |8 =(8))+2((9" - (4))+3((9"- (&) +2((®) - (5)
SCBu(cp.0y) (q* = p*) +2(¢* — p*) + 3(¢* = p*) + 2(qg — p)
Clearly,
(%) - (g) < %(q” —p"foralln > 1.
Therefore,

(9= ())+2((2) - (&) +3(() - () +2((9) - (9))

(¢* = pH+2(¢* - p>) +3(¢> = p*) +2(¢ — p)

<

N | —

and this implies that
SCBbd(LO'p, LO'q) <

1
SCBu(op o) 2

By choosing t € [1/2, 1), we have
SCBbd(LO'p, LO'q) <t- SCBbd(O'p, O'q).

Hence, L meets Ogc with 9(x) = e*. Then, from Theorem 3.1, L has a unique fixed point oy. Letting
w(g, h) = 1 in the preceding theorem, the following corollary is obtained.

Corollary 3.1. Consider L as a self mapping on a complete SCB; — M, (X,SCBy). If 3 © € 0 and
t € (0, 1) satisfying

O(SCB,(Lg, Lh)) < [O(S CByy(g, h))l when S CBy,4(Lg, Lh) # 0 for g,h € X,

then L possesses a unique fixed point in X.

Definition 3.2. Consider the S CByy; — M, (X, S CBy,). According to Reich, the self-mapping £ : X —
X is Cirié-Reich-Rus-type Opc, briefly, CRRT — Opc, if there exists a function ® € 0 and non-negative
real number t < 1 such that

9 (S CBpa(Lg, Lh)) < [Mo (g, D], (3.7)

forall g,h € X, where
My 9(g, h) := max {$ (S CBpa(g, ), ? (S CBpa(h, L)) , ¥ (S CBra(g, L)},

where limsup,, ., a)(gp,gq) <K, K>1,andg, = 8rg, forgo € Xandrt € (0,1).

Theorem overview. We extend the fixed point result to the CRRT — 6pc class: every CRRT — 0pc on a
complete S CB,, space admits a unique fixed point.
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Theorem 3.2 (Fixed point for CRRT — 0p¢). Consider (X, S CByy) a complete S CByy space and L :
X — X'is a CRRT — Opc. Then L has a unique fixed point.

Proof (outline). Consider the Picard sequence g,,; = 2£(g,). The CRR — 6-Branciari contractive
condition yields a geometric decay for the successive gaps H(S CByi(gy+1,8p)). Using the SCByy-
inequality (with the control function), this implies that (g,) is Cauchy; completeness gives a limit
g* € X. Passing to the limit in the contractive inequality shows £(g*) = g*. Uniqueness follows by
applying the same inequality to two proposed fixed points. O

Proof (details). As in Theorem 3.1, we establish an iterative sequence {g,,}. Let gy € X and define
gy =280, Y peN.

Without loss of generality, we presume that S CB;, (81’ g, ertl g) > 0 for all p € N. Certainly, if £7g =

eP*1g for some p, € N, then €7+ g will be a fixed point of L. We show that lim,_,c, S CByy (gp, ng) =0.
Applying the condition of contraction (3.7), we obtain

0(SCBbd (gp+1’gp)) < [Mﬁ,ﬂ (gp’gp—l)]t’ (3.8)
in which
Mey (89> 8p-1) = max {9 (S CBua (25> 8p-1)) 9 (S CBra (25> 225)) ¥ (S CBua (2p-1- £2p-1))}
= max {19 (S CBpy (gpa gp—l)) 0 (SCBbd (gpv 8p+1)) , 0 (S CBpq (gp—l , gp))}
< max {8 (SCBya (8- 8p-1)) - # (S CBra (8- 8p11))} -

If Moy (gp, gp_l) =9 (S CBy, (gp, gp+1)), then the inequality (3.8) turns into ¢ (S CB, (gp+1, gp)) <

t
9(SCBu (g 8p1)) & (I(SCBua(gpi18s)) < tIn(F(SCBua(gpergy))). which is a
contradiction (because t < 1). Hence, we have Mgy (gp,gp_l) = 19(5 CByy (gp_l,gp)). From (3.8),
it follows that

9 (SCBua (85 8p1)) < [9#(SCBoa (8p-1.8,))] -

Repeatedly, we discover that
) (S CByy (gpa gp+l)) < [#(SCBua (g0, &))" -

Following this insight, we deduce that {gp} in X is a Cauchy sequence by tracing the relevant lines
in the Theorem 3.1 proof. In conclusion, the sequence {gp} in X is Cauchy. Because (X, SCB;y) is

a complete S CB,,, there is a certain point i in X in a way that {gp} converges to u. Without loss of
generality, we presume that £7g # u for all p (or p tends to infinity). Assume that S CB(u, Lu) > 0.
Using (3.7), we obtain

9 (S CBya (28, u)) < [Mes (g511)] - (3.9)
for all g, h € X, in which

My (gp-41) := max {8 (SCBya (8-11)) . & (S CBa (8- £8p)) - ¥ (S CBpalus, L))} .
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Taking p — oo in the preceding inequality, we get

& (S CBpa(it, L)) < [0 (S CBpa(t, L))" < & (S CBpa(p, L))

which is a contradiction. Therefore, £u = u. Hence, € has a fixed point in X. Assume that u # & are
distinct fixed points of . Afterwards, obviously

S CBpa(u, &) = SCBpy(Lu, LE) # 0.
Applying condition (3.10) now, we obtain

1 < 9 (S CBpat, &)
= 9 (S CBpa(Lu, L&)
< [max (¢ (S CBya(t, £)) , 9 (S CBpa(it, L)) , 3 (S CBpy(€, LENY]'
< 9 (SCBu(u,£)),

which is clearly a contradiction. Consequently, we obtain & = u. As a result, £ has just one fixed point
in X. O

Definition 3.3. Consider the S CB,y space, (X,S CByy), and a self-mapping L : X — X. Hence, L is
considered an interpolative-0gc when there exists a function & € 6 such that t; + t, + t3 < 1, where
t1, b, t3 are positive real numbers satisfying

9 (S CBpa(Lg, Lh) < [ (S CBa(g, M)]" [9 (S CBpa(g, Le)]” [F (S CBpalh, L))", (3.10)

forall g,h € X, where limsup, ., (g,,, gq) <K, K>1,andg, = 8rg, forgo € Xandrt € (0,1).

Theorem 3.3 (Fixed point for interpolative-0pc ). Let (X,SCBy,) be a complete and continuous
function S CByy. If £ : X — X is an interpolative-Ogc, then in X, £ has a single fixed point.

We omit this proof because
[9 (S CBpa(g. )]" [8 (S CBra(g, LeN]* [8 (S CBpa(h, Lh)I* < [My.o(g, ] ™.

Then, selecting ¢ := t; + t, + t3 < 1 is sufficient in Theorem 3.1 to sum up the preceding theorem.
4. Application to differential equations

Consider the following system of differential equations:

{ Y00 = & 0600 00, 47 00, 4" (X)) @.1)
¥(0) =¢'(0) =" (1) =y (1) = 0; x €0, 1], '

so that g is a continuous function defined as g : [0, 1] X R* xR — R .

The focus of the study is on the boundary value problem (BVP), a fundamental concept in
mathematical analysis, particularly when applied to the modeling of complex physical phenomena.
In this case, the problem is situated within the context of elastic beam deformations, with an emphasis
on the equilibrium configuration. Specifically, the problem models scenarios where one end of the
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beam is free to move, while the other is fixed in place. This setup is commonly referred to as the
cantilever beam problem in the field of mechanics, underlining its wide applicability and importance
in both theoretical and applied mathematics.

The solutions to this type of BVP play a crucial role in numerous applications, ranging from
structural engineering to mathematical physics. As such, determining the existence and uniqueness
of solutions is of central importance. To achieve this, we apply the fixed point technique, a well-
established method in mathematical analysis that is particularly effective for solving BVPs of this
nature.

Here we examine if a boundary value problem with a differential equation of fourth order has a
solution. On the interval [0, 1], X = F70, 1] is the notation for the space of continuous bounded
functions. Within this space, we introduce the SCB,; as a means to measure distances between
functions. The metric is denoted by

S CBya(L(v), g(v)) = max |L(v) - g%,

which provides the necessary structure for analyzing the convergence of sequences of functions in X.

Furthermore, we define a mapping w : X* - [1, 00), where w (uy, Uy, us, ug) = Su; + Suy + 3. This
mapping introduces an additional layer of complexity to our exploration, enabling us to further study
the behavior of solutions within the context of the BVP.

Through this approach, we aim to demonstrate the existence of a solution to the boundary value
problem, using the fixed point theorem and the introduced metrics to rigorously establish the conditions
under which solutions can be found. Having established the foundational framework, we now proceed
to reformulate the fourth-order ordinary differential equation (BVP) as an integral equation. The
integral form in which the BVP is presented is below:

1
W) = fo Gl g (v W), 0 ), 0" () 0" () dv, @ € FTO, 1],

In this expression, G(y,v) represents Green’s function associated with the homogeneous linear
problem:

wli!/(X) - O’ !//(O) — w/(O) — 17[///(1) — w”/(l) — O.

This function provides a key component for solving the boundary value problem and offers valuable
insight into the underlying structure of the equation. The use of Green’s function allows for a detailed
understanding of the interactions between the boundary conditions and the solution, facilitating the
analysis of the problem’s characteristics.

é)(Z(?)v—)(), O0<y<v<l,

4.2)
1
@y -v), 0<v<y<l

G, v) ={

The subsequently properties of G(y, v) could be simply verified from (3.2).

1 1 1
g)(zvz < G(y,v) < EXZ ( or Evz), x,velo,1].
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Theorem 4.1. Assume that the subsequent constraints are satisfied.
(1) The mapping g : [0, 1] x R} X R — R is continuous.
(2) For every Y,y € X = F10, 1], there is a o € [1, o) such that the below condition is satisfied.

8 vy 0/ W ") = g vy, YY) £ V20e 7 [y(v) =yl v € [0, 1].
(3) There exists o € X where for every y € [0, 1], we deduce

1
Yol) < fo Gl V) (v, o), W), U (). 0 () b,

Hence, the BVP problem contains a solution in X.

Proof. Assume the self-mapping L : X — X is defined as

1
L) = fo Gl Vg (v, (V) 0 (), 7 (), " () dv.

Then ¢/(y) = L(¥(x)), which implies that the BVP has only one solution.
Consider,

ILG)0O) = LO)P

2

1 1
fo G, v)g (v, v, ' ), " (v),y"") dv - fo GO, vg (v, y(1), Y (), Y 1),y (v)) dv

1
< fo (GO v)) |8 (v (), ¥’ (), " (), w”’)—g(v,y(v),y’(v),y”(v),y”’(v))|2dv

1
< f 1v420e-“|¢(v)—y(v)|2dv

o 4
1
<20e77S CBy(¥, y) f lv“dv
o 4

1
<20¢°SCB ,V)—
<20e ba (Y y)20
=e "SCBui(Y,y),

where this deduces to
SCBa(L(Y), L(y)) < e 7S CBya(y, y),

VS CB(LY), L(y)) < e 7S CBy(¥, y),

i
¢ VSCBuL).LO) < (e \/SCBbdw,y)) ‘

where
e’ <laso>1.

\ﬁ
Thus, e V3 CBuLW.LO) < (e VS CBM(W)) with 7 = Ve~ which gives

9 (S CBypa(Lyr, Ly)) < [9 (S CByu(¥,y))]” where 9(z) = e V.

L has a fixed point as all conditions of Theorem 3.1 are met. Therefore, the solution to the BVP is
found in X. o
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5. Conclusions

As an extension of strong-controlled metric-type spaces and Branciari spaces, we introduced
the notion of strong controlled b-Branciari metric type space in this work. Next, in the
framework of strong-controlled-b-Branciari metric-type space, we proved several fixed point theorems
concerning the 6-contraction, Ciric-Reich-Rus-type 6-Brainciari contraction, and interpolative-6-
Branciari contraction. Additionally, we provided numerous examples to highlight our conclusions.
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