Research article

Dynamics analysis and optimal control of a fractional-order SEAIQRM model with media effects

  • Published: 28 November 2025
  • MSC : 34A08, 92D30, 49J20

  • As a crucial research tool, epidemic models have played an important role in predicting disease progression. In this study, we delineated the full dynamics of epidemics by extending the susceptible–exposed–infectious–recovered (SEIR) model to include media effects ($ M $), unascertained cases ($ A $), and case isolation in a hospital ($ Q $), generating a model that we called SEAIQRM. Dual time delays, aware susceptibles, and fractional order were also incorporated, synergistically enhancing the model's accuracy in depicting the real dynamic process of disease transmission. We calculated a specific expression for the basic reproduction number $ R_0 $, proved the existence and uniqueness of the model solution, and analyzed the local and global stability of two types of equilibrium points. To investigate the optimal control of the model, the sensitivity indices of the parameters in $ R_0 $ were computed, and vaccination rate and isolation rate were selected as control variables, exerting the strongest effects on $ R_0 $. Finally, the effectiveness of the model in illustrating and controlling the spread of infectious diseases is verified through numerical simulation. For a fractional order $ \alpha $ in the interval [0.7, 0.9], the peak sizes of the asymptomatic ($ A $) and symptomatic ($ I $) compartments decreased significantly relative to the $ \alpha $ = 1 benchmark, corresponding to reductions of 32%–37% and 28%–33%, respectively. Implementing an optimal control strategy with vaccination ($ u $ = 0.4) and quarantine ($ q $ = 0.5) minimized implementation costs while achieving the most effective reduction in disease spread. The model can provide information regarding intervention timing in a setting with similar parameters. However, its use in the real-world requires calibration and validation.

    Citation: Wenli Huang, Ping Tong, Jing Zhang, Qunjiao Zhang, Jie Liu. Dynamics analysis and optimal control of a fractional-order SEAIQRM model with media effects[J]. AIMS Mathematics, 2025, 10(11): 27898-27920. doi: 10.3934/math.20251225

    Related Papers:

  • As a crucial research tool, epidemic models have played an important role in predicting disease progression. In this study, we delineated the full dynamics of epidemics by extending the susceptible–exposed–infectious–recovered (SEIR) model to include media effects ($ M $), unascertained cases ($ A $), and case isolation in a hospital ($ Q $), generating a model that we called SEAIQRM. Dual time delays, aware susceptibles, and fractional order were also incorporated, synergistically enhancing the model's accuracy in depicting the real dynamic process of disease transmission. We calculated a specific expression for the basic reproduction number $ R_0 $, proved the existence and uniqueness of the model solution, and analyzed the local and global stability of two types of equilibrium points. To investigate the optimal control of the model, the sensitivity indices of the parameters in $ R_0 $ were computed, and vaccination rate and isolation rate were selected as control variables, exerting the strongest effects on $ R_0 $. Finally, the effectiveness of the model in illustrating and controlling the spread of infectious diseases is verified through numerical simulation. For a fractional order $ \alpha $ in the interval [0.7, 0.9], the peak sizes of the asymptomatic ($ A $) and symptomatic ($ I $) compartments decreased significantly relative to the $ \alpha $ = 1 benchmark, corresponding to reductions of 32%–37% and 28%–33%, respectively. Implementing an optimal control strategy with vaccination ($ u $ = 0.4) and quarantine ($ q $ = 0.5) minimized implementation costs while achieving the most effective reduction in disease spread. The model can provide information regarding intervention timing in a setting with similar parameters. However, its use in the real-world requires calibration and validation.



    加载中


    [1] World Health Organization, World health statistics 2023: monitoring health for the SDGs, sustainable development goals. Available form: https://www.who.int/publications/i/item/9789240074323.
    [2] W. O. Kermack, A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc. Lond. A, 115 (1927), 700–721. https://doi.org/10.1098/rspa.1927.0118 doi: 10.1098/rspa.1927.0118
    [3] M. El-Shahed, F. A. El-Naby, Fractional calculus model for childhood diseases and vaccines, Appl. Math. Sci., 8 (2014), 4859–4866. https://doi.org/10.12988/ams.2014.4294 doi: 10.12988/ams.2014.4294
    [4] S. M. Salman, A. M. Yousef, On a fractional-order model for HBV infection with cure of infected cells, J. Egypt. Math. Soc., 25 (2017), 445–451. https://doi.org/10.1016/j.joems.2017.06.003 doi: 10.1016/j.joems.2017.06.003
    [5] I. Area, H. Batarfi, J. Losada, J. J. Nieto, W. Shammakh, Á. Torres, On a fractional order Ebola epidemic model, Adv. Differ. Equ., 2015 (2015), 278. https://doi.org/10.1186/s13662-015-0613-5 doi: 10.1186/s13662-015-0613-5
    [6] T. Sardar, S. Rana, J. Chattopadhyay, A mathematical model of dengue transmission with memory, Commun. Nonlinear Sci. Numer. Simul., 22 (2015), 511–525. https://doi.org/10.1016/j.cnsns.2014.08.009 doi: 10.1016/j.cnsns.2014.08.009
    [7] L. Zhang, G. Huang, A. Liu, R. Fan, Stability analysis for a fractional HIV infection model with nonlinear incidence, Discrete Dyn. Nat. Soc., 2015 (2015), 563127. https://doi.org/10.1155/2015/563127 doi: 10.1155/2015/563127
    [8] R. Liu, J. Wu, H. Zhu, Media/psychological impact on multiple outbreaks of emerging infectious diseases, Comput. Math. Methods Med., 8 (2007), 153–164. https://doi.org/10.1080/17486700701425870 doi: 10.1080/17486700701425870
    [9] G. Zaman, Y. H. Kang, I. H. Jung, Optimal treatment of an SIR epidemic model with time delay, Biosyst, 98 (2009), 43–50. https://doi.org/10.1016/j.biosystems.2009.05.006 doi: 10.1016/j.biosystems.2009.05.006
    [10] C. C. McCluskey, Complete global stability for an SIR epidemic model with delay — Distributed or discrete, Nonlinear Anal., 11 (2010), 55–59. https://doi.org/10.1016/j.nonrwa.2008.10.014 doi: 10.1016/j.nonrwa.2008.10.014
    [11] A. K. Misra, A. Sharma, V. Singh, Effect of awareness programs in controlling the prevalence of an epidemic with time delay, J. Biol. Syst., 19 (2011), 389–402. https://doi.org/10.1142/S0218339011004020 doi: 10.1142/S0218339011004020
    [12] C. Hsu, T. Yang, Existence, uniqueness, monotonicity and asymptotic behaviour of travelling waves for epidemic models, Nonlinearity, 26 (2012), 121. https://doi.org/10.1088/0951-7715/26/1/121 doi: 10.1088/0951-7715/26/1/121
    [13] S. L. Wu, C. H. Hsu, Existence of entire solutions for delayed monostable epidemic models, Trans. Am. Math. Soc., 368 (2016), 6033–6062. https://doi.org/10.1090/tran/6526 doi: 10.1090/tran/6526
    [14] S. Kundu, S. Kouachi, S. Kumar, N. Kumari, Pattern formation and stability analysis in a delayed epidemic model with two aware classes, Eur. Phys. J. Plus, 139 (2024), 1079. https://doi.org/10.1140/epjp/s13360-024-05840-6 doi: 10.1140/epjp/s13360-024-05840-6
    [15] D. Greenhalgh, S. Rana, S. Samanta, T. Sardar, S. Bhattacharya, J. Chattopadhyay, Awareness programs control infectious disease – Multiple delay induced mathematical model, Appl. Math. Comput., 251 (2015), 539–563. https://doi.org/10.1016/j.amc.2014.11.091 doi: 10.1016/j.amc.2014.11.091
    [16] T. K. Kar, S. K. Nandi, S. Jana, M. Mandal, Stability and bifurcation analysis of an epidemic model with the effect of media, Chaos Soliton. Fract., 120 (2019), 188–199. https://doi.org/10.1016/j.chaos.2019.01.025 doi: 10.1016/j.chaos.2019.01.025
    [17] K. A. Kabir, K. Kuga, J. Tanimoto, Analysis of SIR epidemic model with information spreading of awareness, Chaos Soliton. Fract., 119 (2019), 118–125. https://doi.org/10.1016/j.chaos.2018.12.017 doi: 10.1016/j.chaos.2018.12.017
    [18] L. Feng, S. Jing, S. Hu, D. Wang, H. Huo, Modelling the effects of media coverage and quarantine on the COVID-19 infections in the UK, Math. Biosci. Eng., 17 (2020), 3618–3636. https://doi.org/10.3934/mbe.2020204 doi: 10.3934/mbe.2020204
    [19] T. Li, Y. Xiao, Complex dynamics of an epidemic model with saturated media coverage and recovery, Nonlinear Dyn., 107 (2022), 2995–3023. https://doi.org/10.1007/s11071-021-07096-6 doi: 10.1007/s11071-021-07096-6
    [20] G. González-Parra, A. J. Arenas, B. M. Chen-Charpentier, A fractional order epidemic model for the simulation of outbreaks of influenza A(H1N1), Math. Methods Appl. Sci., 37 (2014), 2218–2226. https://doi.org/10.1002/mma.2968 doi: 10.1002/mma.2968
    [21] J. Singh, D. Kumar, Z. Hammouch, A. Atangana, A fractional epidemiological model for computer viruses pertaining to a new fractional derivative, Appl. Math. Comput., 316 (2018), 504–515. https://doi.org/10.1016/j.amc.2017.08.048 doi: 10.1016/j.amc.2017.08.048
    [22] N. Sene, SIR epidemic model with Mittag–Leffler fractional derivative, Chaos Soliton. Fract., 137 (2020), 109833. https://doi.org/10.1016/j.chaos.2020.109833 doi: 10.1016/j.chaos.2020.109833
    [23] Y. Chen, F. Liu, Q. Yu, T. Li, Review of fractional epidemic models, Appl. Math. Model., 97 (2021), 281–307. https://doi.org/10.1016/j.apm.2021.03.044 doi: 10.1016/j.apm.2021.03.044
    [24] D. Baleanu, M. Hassan Abadi, A. Jajarmi, K. Zarghami Vahid, J. J. Nieto, A new comparative study on the general fractional model of COVID-19 with isolation and quarantine effects, Alex. Eng. J., 61 (2022), 4779–4791. https://doi.org/10.1016/j.aej.2021.10.030 doi: 10.1016/j.aej.2021.10.030
    [25] C. Maji, Impact of media coverage on a fractional-order SIR epidemic model, Int. J. Model. Simul. Sci. Comput., 13 (2022), 2250037. https://doi.org/10.1142/S1793962322500374 doi: 10.1142/S1793962322500374
    [26] K. S. Nisar, M. Farman, M. Abdel-Aty, C. Ravichandran, A review of fractional order epidemic models for life sciences problems: past, present and future, Alex. Eng. J., 95 (2024), 283–305. https://doi.org/10.1016/j.aej.2024.03.059 doi: 10.1016/j.aej.2024.03.059
    [27] Y. H. Liang, K. J. Wang, Dynamics of the new exact wave solutions to the local fractional Vakhnenko–Parkes equation, Fractals, 25 (2025), 2550102. https://doi.org/10.1142/S0218348X25501026 doi: 10.1142/S0218348X25501026
    [28] K. J. Wang, The fractal active low-pass filter within the local fractional derivative on the Cantor set, COMPEL, 42 (2023), 1396–1407. https://doi.org/10.1108/COMPEL-09-2022-0326 doi: 10.1108/COMPEL-09-2022-0326
    [29] X. Hao, S. Cheng, D. Wu, T. Wu, X. Lin, C. Wang, Reconstruction of the full transmission dynamics of COVID-19 in Wuhan, Nature, 584 (2020), 420–424. https://doi.org/10.1038/s41586-020-2554-8 doi: 10.1038/s41586-020-2554-8
    [30] Y. Zhang, R. Niu, Relaxation oscillations in an SIS epidemic model with a nonsmooth incidence, Int. J. Bifurcat. Chaos, 33 (2023), 2350188. https://doi.org/10.1142/S0218127423501882 doi: 10.1142/S0218127423501882
    [31] X. Hao, L. Hu, L. Nie, Stability and global hopf bifurcation analysis of a schistosomiasis transmission model with multi-delays, Int. J. Bifurcat. Chaos, 35 (2025), 2550039. https://doi.org/10.1142/S0218127425500397 doi: 10.1142/S0218127425500397
    [32] Z. Yu, J. Zhang, Y. Zhang, X. Cong, X. Li, A. M. Mostafa, Mathematical modeling and simulation for COVID-19 with mutant and quarantined strategy, Chaos Soliton. Fract., 181 (2024), 114656. https://doi.org/10.1016/j.chaos.2024.114656 doi: 10.1016/j.chaos.2024.114656
    [33] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, Elsevier, 2006.
    [34] H. W. Berhe, O. D. Makinde, D. M. Theuri, Parameter estimation and sensitivity analysis of dysentery diarrhea epidemic model, J. Appl. Math., 2019 (2019), 8465747. https://doi.org/10.1155/2019/8465747 doi: 10.1155/2019/8465747
    [35] W. Fleming, R. Rishel, Deterministic and stochastic optimal control, Stochastic Modelling and Applied Probability, New York: Springer, 1975. https://doi.org/10.1007/978-1-4612-6380-7
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(200) PDF downloads(19) Cited by(0)

Article outline

Figures and Tables

Figures(7)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog