Research article Special Issues

The bivariate Weibull distribution based on the GFGM copula

  • Published: 28 November 2025
  • MSC : 60B12, 62G30

  • In statistical modeling, bivariate models are essential, especially when examining data with two associated variables. Bivariate distributions capture dependencies between variables, offering a more realistic depiction of real-world phenomena compared to univariate models that treat variables independently. This is particularly important in domains where variables frequently show non-trivial correlations, such as environmental science, reliability engineering, medicine, and finance. This motivates the proposal of a bivariate distribution that uses the generalized Farlie-Gumbel-Morgenstern (FGM) copula and Weibull marginal distribution, referred to as the GFGM-WD. The GFGM-WD describes bivariate lifetime data with weak to moderate correlation between variables. The suggested model was employed to investigate the reliability of dependent stress-strength models. Several properties of the GFGM-WD were derived, including the product moment, the coefficient of correlation between the inner variables, and the conditional expectation. Additionally, the statistical characteristics of the concomitants' k-record values from the GFGM-WD were discussed. We ran comprehensive Monte Carlo simulations to assess the suggested distribution's performance and used the maximum likelihood estimation and Bayesian methods to estimate its parameters. Finally, the distribution was tested on two actual medical datasets, showing that it outperformed other pre-existing bivariate models in terms of fitting accuracy.

    Citation: M. A. Abd Elgawad, H. M. Barakat, Atef F. Hashem, G. M. Mansour, I. A. Husseiny, M. A. Alawady, M. O. Mohamed. The bivariate Weibull distribution based on the GFGM copula[J]. AIMS Mathematics, 2025, 10(11): 27862-27897. doi: 10.3934/math.20251224

    Related Papers:

  • In statistical modeling, bivariate models are essential, especially when examining data with two associated variables. Bivariate distributions capture dependencies between variables, offering a more realistic depiction of real-world phenomena compared to univariate models that treat variables independently. This is particularly important in domains where variables frequently show non-trivial correlations, such as environmental science, reliability engineering, medicine, and finance. This motivates the proposal of a bivariate distribution that uses the generalized Farlie-Gumbel-Morgenstern (FGM) copula and Weibull marginal distribution, referred to as the GFGM-WD. The GFGM-WD describes bivariate lifetime data with weak to moderate correlation between variables. The suggested model was employed to investigate the reliability of dependent stress-strength models. Several properties of the GFGM-WD were derived, including the product moment, the coefficient of correlation between the inner variables, and the conditional expectation. Additionally, the statistical characteristics of the concomitants' k-record values from the GFGM-WD were discussed. We ran comprehensive Monte Carlo simulations to assess the suggested distribution's performance and used the maximum likelihood estimation and Bayesian methods to estimate its parameters. Finally, the distribution was tested on two actual medical datasets, showing that it outperformed other pre-existing bivariate models in terms of fitting accuracy.



    加载中


    [1] A. M. Sarhan, M. E. Sobh, Unit exponentiated Weibull model with applications, Sci. Afr., 27 (2025), e02606. https://doi.org/10.1016/j.sciaf.2025.e02606 doi: 10.1016/j.sciaf.2025.e02606
    [2] A. M. Sarhan, J. Apaloo, Exponentiated modified Weibull extension distribution, Reliab. Eng. Syst. Safe., 112 (2013), 137–144. https://doi.org/10.1016/j.ress.2012.10.013 doi: 10.1016/j.ress.2012.10.013
    [3] R. B. Nelsen, An introduction to copulas, New York: Springer-Verlag, 2006. https://doi.org/10.1007/0-387-28678-0
    [4] A. Sklar, Random variables, joint distributions functions, and copulas, Kybernetica, 9 (1973), 449–460.
    [5] M. Fischer, I. Klein, Constructing generalized FGM copulas by means of certain univariate distributions, Metrika, 65 (2007), 243–260. https://doi.org/10.1007/s00184-006-0075-6 doi: 10.1007/s00184-006-0075-6
    [6] A. K. Gupta, C. F. Wong, On three and five parameter bivariate beta distributions, Metrika, 32 (1985), 85–91. https://doi.org/10.1007/BF01897803 doi: 10.1007/BF01897803
    [7] E. S. A. El-Sherpieny, E. M. Almetwally, H. Z. Muhammed, Bivariate Weibull-G family based on copula function: properties, Bayesian and non-Bayesian estimation and applications, Stat. Optim. Inf. Comput., 10 (2022), 678–709. https://doi.org/10.19139/soic-2310-5070-1129 doi: 10.19139/soic-2310-5070-1129
    [8] M. K. H. Hassan, C. Chesneau, Bivariate generalized half-logistic distribution: properties and its application in household financial affordability in KSA, Math. Comput. Appl., 27 (2022), 72. https://doi.org/10.3390/mca27040072 doi: 10.3390/mca27040072
    [9] G. M. Mansour, M. A. Abd Elgawad, A. S. Al-Moisheer, H. M. Barakat, M. A. Alawady, I. A. Husseiny, et al., Bivariate Epanechnikov-Weibull distribution based on sarmanov copula: properties, simulation, and uncertainty measures with applications, AIMS Math., 10 (2025), 12689–12725. https://doi.org/10.3934/math.2025572 doi: 10.3934/math.2025572
    [10] A. Alsalafi, S. Shahbaz, L. AL-Turk, A new bivariate transmuted family of distributions: properties and application, Eur. J. Pure Appl. Math., 18 (2025), 5819–5819. https://doi.org/10.29020/nybg.ejpam.v18i2.5819 doi: 10.29020/nybg.ejpam.v18i2.5819
    [11] A. K. Pathak, M. Arshad, Q. J. Azhad, A. Ali, On bivariate generalized lifetime distribution, Commun. Stat.-Simul. Comput., 2025, 1–17. https://doi.org/10.1080/03610918.2025.2529459 doi: 10.1080/03610918.2025.2529459
    [12] S. H. Shahbaz, M. Q. Shahbaz, A new bivariate exponentiated family of distributions: properties and applications, Pak. J. Stat. Oper. Res., 21 (2025), 137–161.
    [13] J. S. Huang, S. Kotz, Correlation structure in iterated Farlie-Gumbel-Morgenstern distributions, Biometrika, 71 (1984), 633–636. https://doi.org/10.1093/biomet/71.3.633 doi: 10.1093/biomet/71.3.633
    [14] M. A. Abd Elgawad, H. M. Barakat, M. Abdelwahab, M. Zaky, I. A. Husseiny, Fisher information and Shannon's entropy for record values and their concomitants under iterated FGM family, Romanian J. Phys., 69 (2024), 1–27. https://doi.org/10.59277/RomJPhys.2024.69.103 doi: 10.59277/RomJPhys.2024.69.103
    [15] M. A. Abd Elgawad, H. M. Barakat, M. A. Alawady, Concomitants of generalized order statistics under the generalization of Farlie–Gumbel–Morgenstern-type bivariate distributions, Bull. Iran. Math. Soc., 47 (2021), 1045–1068. https://doi.org/10.1007/s41980-020-00427-0 doi: 10.1007/s41980-020-00427-0
    [16] M. A. Alawady, H. M. Barakat, S. Xiong, M. A. Abd Elgawad, Concomitants of generalized order statistics from iterated Farlie–Gumbel–Morgenstern type bivariate distribution, Commun. Stat.-Theory Meth., 51 (2022), 5488–5504. https://doi.org/10.1080/03610926.2020.1842452 doi: 10.1080/03610926.2020.1842452
    [17] H. M. Barakat, E. M. Nigm, M. A. Alawady, I. A. Husseiny, Concomitants of order statistics and record values from generalization of FGM bivariate-generalized exponential distribution, J. Stat. Theory Appl., 18 (2019), 309–322. https://doi.org/10.2991/jsta.d.190822.001 doi: 10.2991/jsta.d.190822.001
    [18] H. M. Barakat, E. M. Nigm, M. A. Alawady, I. A. Husseiny, Concomitants of order statistics and record values from iterated FGM type bivariate-generalized exponential distribution, Revstat.-Stat. J., 19 (2021), 291–307.
    [19] H. M. Barakat, M. A. Alawady, I. A. Husseiny, G. M. Mansour, Sarmanov family of bivariate distributions: statistical properties–concomitants of order statistics–information measures, Bull. Malays. Math. Sci. Soc., 45 (2022), 49–83. https://doi.org/10.1007/s40840-022-01241-z doi: 10.1007/s40840-022-01241-z
    [20] I. A. Husseiny, M. A. Alawady, S. A. Alyami, M. A. Abd Elgawad, Measures of extropy based on concomitants of generalized order statistics under a general framework from iterated Morgenstern family, Mathematics, 11 (2023), 1377. https://doi.org/10.3390/math11061377 doi: 10.3390/math11061377
    [21] E. M. Almetwally, H. Z. Muhammed, E. A. El-Sherpieny, Bivariate Weibull distribution: properties and different methods of estimation, Ann. Data Sci., 7 (2020), 163–193. https://doi.org/10.1007/s40745-019-00197-5 doi: 10.1007/s40745-019-00197-5
    [22] A. E. Aly, H. M. Barakat, M. El-Adll, Prediction intervals of the record-values process, RevStat.-Stat. J., 17 (2019), 401–427. https://doi.org/10.57805/revstat.v17i3.274 doi: 10.57805/revstat.v17i3.274
    [23] M. Berred, K-record values and the extreme-value index, J. Stat. Plan. Infer., 45 (1995), 49–63. https://doi.org/10.1016/0378-3758(94)00062-X doi: 10.1016/0378-3758(94)00062-X
    [24] M. Fashandi, J. Ahmadi, Characterizations of symmatric distributions based on Renyi entropy, Stat. Probabil. Lett., 82 (2012), 798–804. https://doi.org/10.1016/j.spl.2012.01.004 doi: 10.1016/j.spl.2012.01.004
    [25] W. Dziubdziela, B. Kopocinski, Limiting properties of the k-th record values, Appl. Math., 15 (1976), 187–190.
    [26] O. M. Bdair, M. Z. Raqab, Mean residual life of kth records under double monitoring, Bull. Malays. Math. Sci. Soc., 37 (2014), 457–464.
    [27] M. Chacko, M. S. Mary, Concomitants of k-record values arising from morgenstern family of distributions and their applications in parameter estimation, Stat. Papers, 54 (2013), 21–46. https://doi.org/10.1007/s00362-011-0409-y doi: 10.1007/s00362-011-0409-y
    [28] M. A. Alawady, H. M. Barakat, G. M. Mansour, I. A. Husseiny, Information measures and concomitants of $k-$record values based on Sarmanov family of bivariate distributions, Bull. Malays. Math. Sci. Soc., 46 (2023), 9. https://doi.org/10.1007/s40840-022-01396-9 doi: 10.1007/s40840-022-01396-9
    [29] C. E. Shannon, A mathematical theory of communication, Bell Syst. Tech. J., 27 (1948), 379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x doi: 10.1002/j.1538-7305.1948.tb01338.x
    [30] S. Guiasu, Grouping data by using the weighted entropy, J. Stat. Plan. Inf., 15 (1986), 63–69. https://doi.org/10.1016/0378-3758(86)90085-6 doi: 10.1016/0378-3758(86)90085-6
    [31] F. Lad, G. Sanfilippo, G. Agro, Extropy: complementary dual of entropy, Statist. Sci., 30 (2015), 40–58. https://doi.org/10.1214/14-STS430 doi: 10.1214/14-STS430
    [32] I. A. Husseiny, A. H. Syam, The extropy of concomitants of generalized order statistics from Huang-Kotz-Morgenstern bivariate distribution, J. Math., 2022. https://doi.org/10.1155/2022/6385998
    [33] M. Kelbert, I. Stuhl, Y. Suhov, Weighted extropy: basic inequalities, Mod. Stoch. Theory Appl., 4 (2017), 233–252. https://doi.org/10.15559/17-VMSTA85 doi: 10.15559/17-VMSTA85
    [34] J. M. Barraza-Contreras, M. R. Pina-Monarrez, A. Molina, Fatigue-life prediction of mechanical element by using the Weibull distribution, Appl. Sci., 10 (2020), 6384. https://doi.org/10.3390/app10186384 doi: 10.3390/app10186384
    [35] M. Nagy, H. M. Barakat, M. A. Alawady, I. A. Husseiny, A. F. Alrasheedi, T. S. Taher, et al., Inference and other aspects for Weibull distribution via generalized order statistics with applications to medical datasets, AIMS Math., 9 (2024), 8311–8338. https://doi.org/10.3934/math.2024404 doi: 10.3934/math.2024404
    [36] R. Tovar-Falón, G. Martinez-Flórez, L. Páez-Martinez, Bivariate unit-Weibull distribution: properties and inference, Mathematics, 11 (2023), 3760. https://doi.org/10.3390/math11173760 doi: 10.3390/math11173760
    [37] N. Sreelakshmi, An introduction to copula-based bivariate reliability concepts, Commun. Stat.-Theory Meth., 47 (2018), 996–1012. https://doi.org/10.1080/03610926.2017.1316396 doi: 10.1080/03610926.2017.1316396
    [38] D. R. Cox, D. V. Hinkley, Theoretical statistics, London: Chapman and Hall/CRC, 1974.
    [39] R. L. Smith, Maximum likelihood estimation in a class of nonregular cases, Biometrika, 72 (1985), 67–90. https://doi.org/10.1093/biomet/72.1.67 doi: 10.1093/biomet/72.1.67
    [40] R. D. Gupta, D. Kundu, Generalized exponential distributions: statistical inferences, J. Stat. Theory Appl., 1 (2002), 101–118.
    [41] S. Dey, S. Singh, Y. M. Tripathi, A. Asgharzadeh, Estimation and prediction for a progressively censored generalized inverted exponential distribution, Stat. Methodol., 32 (2016), 185–202. https://doi.org/10.1016/j.stamet.2016.05.007 doi: 10.1016/j.stamet.2016.05.007
    [42] A. Hamdy, E. M. Almetwally, Bayesian and non-Bayesian inference for the generalized power akshaya distribution with application in medical, Comput. J. Math. Stat. Sci., 2 (2023), 31–51.
    [43] G. Grover, A. Sabharwal, J. Mittal, Application of multivariate and bivariate normal distributions to estimate duration of diabetes, Int. J. Stat. Appl., 4 (2014), 46–57.
    [44] E. S. A. El-Sherpieny, H. Z. Muhammed, E. M. Almetwally, Progressive type-Ⅱ censored samples for bivariate Weibull distribution with economic and medical applications, Ann. Data Sci., 11 (2024), 51–85. https://doi.org/10.1007/s40745-022-00375-y doi: 10.1007/s40745-022-00375-y
    [45] Z. Chen, A new two-parameter lifetime distribution with bathtub shape or increasing failure rate function, Stat. Probabil. Lett., 49 (2000), 155–161. https://doi.org/10.1016/S0167-7152(00)00044-4 doi: 10.1016/S0167-7152(00)00044-4
    [46] A. Alkhazaalh, L. Al-Zoubi, Epanechnikov-exponential distribution: properties and applications, General Math., 29 (2021), 13–29. https://doi.org/10.2478/gm-2021-0002 doi: 10.2478/gm-2021-0002
    [47] S. Shoaee, On a new class of bivariate survival distributions based on the model of dependent lives and its generalization, Appl. Appl. Math., 15 (2020), 801–829.
    [48] C. Genest, L. P. Rivest, Statistical inference procedures for bivariate Archimedean copulas, J. Am. Stat. Assoc., 88 (1993), 1034–1043. https://doi.org/10.1080/01621459.1993.10476372 doi: 10.1080/01621459.1993.10476372
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(344) PDF downloads(28) Cited by(0)

Article outline

Figures and Tables

Figures(5)  /  Tables(13)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog