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Abstract: In statistical modeling, bivariate models are essential, especially when examining data with
two associated variables. Bivariate distributions capture dependencies between variables, offering a
more realistic depiction of real-world phenomena compared to univariate models that treat variables
independently. This is particularly important in domains where variables frequently show non-trivial
correlations, such as environmental science, reliability engineering, medicine, and finance. This
motivates the proposal of a bivariate distribution that uses the generalized Farlie-Gumbel-Morgenstern
(FGM) copula and Weibull marginal distribution, referred to as the GFGM-WD. The GFGM-WD
describes bivariate lifetime data with weak to moderate correlation between variables. The suggested
model was employed to investigate the reliability of dependent stress-strength models. Several
properties of the GFGM-WD were derived, including the product moment, the coeflicient of correlation
between the inner variables, and the conditional expectation. Additionally, the statistical characteristics
of the concomitants’ k-record values from the GFGM-WD were discussed. We ran comprehensive
Monte Carlo simulations to assess the suggested distribution’s performance and used the maximum
likelihood estimation and Bayesian methods to estimate its parameters. Finally, the distribution was
tested on two actual medical datasets, showing that it outperformed other pre-existing bivariate models
in terms of fitting accuracy.
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1. Introduction

Studying bivariate data plays a critical role in reliability theory. Many aspects of life, including
physics, medicine, economics, biology, and environmental sciences, require statistical methods on
bivariate distributions. Thus, we present a new bivariate Weibull distribution. The Weibull distribution
is incredibly adaptable and can fit a variety of data set shapes. Like the normal distribution, the Weibull
distribution is unimodal and describes probabilities for continuous data. However, unlike the normal
distribution, it can also model skewed data. It can even model data that is skewed both left and right
because of its tremendous adaptability. It can be used to approximately represent other distributions
as well as the normal distribution. Because of its versatility, analysts apply it in several contexts, such
as capability analysis, quality control, engineering, and medical investigations. For recent studies on
the Weibull distribution and its extensions with applications, see Sarhan and Sobh [1] and Sarhan and
Apaloo [2]. It is frequently used in reliability studies, warranty analysis, and life data to estimate the
time to failure for systems and components. The univariate Weibull distribution (denoted by W D(«, 5))
has the following distribution function (DF) and probability density function (PDF), respectively:

Hyzaf)=1-e@: 250 a,8>0

and

a-1
hz(z;a,B) = % (é) e_(é)a; z>0, a,>0,
where @ and S are the shape and scale parameters, respectively.

One technique for creating bivariate distributions that can be found in the statistical literature is the
knowledge of a copula (see Nelsen [3]). Copulas can help characterize bivariate distributions when
they contain an explicit dependency structure. It is a function that joins bivariate DFs with uniform
[0,1] margins. Copulas can be applied in this way to look into bivariate distribution studies. The copula
function will be selected based on the dependence structure between the two random variables (RVs).
Copulas are useful in high-dimensional statistical applications because they make it simple to model
and estimate the distribution of random vectors by estimating marginals and copula separately. For
two marginal univariate distributions Hz(z) = P(Z < z) and Hy(t) = P(T < t), a copula C(u,v), and its
PDF ie., c(u,v) = %, Sklar [4] presented the joint DF (JDF) and joint PDF (JPDF), respectively,
as follows:

Hzr(z,1) = C(Hz(2), Hr (1)) (1.1)

and

hz1(z, 1) = hz(2)hr()c(Hz(2), Hr (D). (1.2)

Among the most well-known copulas are the Farlie-Gumbel-Morgenstern (FGM) copula and its
extensions. The FGM family of bivariate distributions has been the subject of in-depth research.
Fischer and Klein [5] focused on specific generalized FGM copulas generated by a single function
defined on the unit interval. Gupta and Wong [6], among others, deduced a three- and five-parameter
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bivariate beta distribution from the FGM family. El-Sherpieny et al. [7] introduced a novel bivariate
FGM-Weibull-G family of distributions based on the FGM copula. The bivariate generalized
half-logistic distribution utilizing the FGM copula was proposed by Hassan and Chesneau [8].
Recently, Mansour et al. [9] introduced a novel bivariate distribution, which combines the Sarmanov
copula with the Epanechnikov-Weibull marginal distribution. Related bivariate generalizations have
also been proposed by Alsalafi et al. [10], Pathak et al. [11], and Shahbaz and Shahbaz [12], who
respectively introduced a novel bivariate transmuted family capable of modeling both positive and
negative dependencies, a flexible bivariate generalized lifetime distribution extending classical
lifetime models, and a new bivariate exponentiated family that unifies and generalizes several existing
lifetime frameworks.

To further enhance the dependence range attainable by the FGM copula, Huang and Kotz [13]
proposed the generalized FGM (GFGM) copula. Through successive iterations, they showed that even
a single additional term can substantially increase the attainable correlation between marginals. The
GFGM copula is defined as

Clu,v;y,w) =uv|[l +y(1 —u)(l-=v)+wu(l —u)(l-v)]. (1.3)
The corresponding PDF of the copula (1.3) is given by
cu,v;y,w) =1+vy(1 =2u)(1 = 2v) + wuv(2 — 3u)(2 — 3v). (1.4)

By setting w = 0, the FGM copula can be obtained as a special instance of the GFGM copula (1.1)-
(1.2). Huang and Kotz [13] proved that the natural parameter space € (which is the admissible set of
the parameters y and w) is convex, where

3-y+ \/9—6)/—3)/2}

Additionally, this copula’s correlation coefficient is p = £ + 5. This copula was the subject of extensive
research by many different researchers. Abd Elgawad et al. [14,15], Alawady et al. [16], Barakat
et al. [17-19], and Husseiny et al. [20] are a few among them.

In this study, a bivariate distribution known as the GFGM bivariate Weibull distribution (GFGM-
WD) is created using the GFGM copula and Weibull marginal distributions. Almetwally et al. [21]
used the FGM copula to tackle the same problem and obtained what is called the FGM bivariate
Weibull (FGMBW). For characterizing bivariate data with a weak correlation between variables in
lifetime data, the models GFGM-WD and FGMBW are both utilized. The GFGM-WD, however, can
accommodate a wider variety of data set shapes because the GFGM family enhances the correlation
between variables more effectively than the FGM family. In addition to this significant motive, our
study also covers a study of reliability in a dependent stress-strength model based on the GFGM-WD
and some additional aspects that are shown below.

Let Hz(z) and hz(z) be a common continuous DF and PDF, respectively, for a sequence of
independent and identically distributed RVs {Z;, i > 1}. If Z; > Z; for every i < j, the observation Z; is
referred to as an upper record value. Lower record values can be defined similarly. Due to the
extremely long projected waiting times between two record values, the model of record values is
inadequate in several circumstances. For instance, because record data is highly uncommon in
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real-world settings and the expected waiting time for each record after the first is infinite, statistical
inference based on records faces significant challenges. The second or third greatest values are very
significant in those circumstances. However, if we take into account the k—record (KR) value model
(see Aly et al. [22], Berred [23], and Fashandi and Ahmadi [24]), we can avoid these problems.
Dziubdziela and Kopocinski [25] provided the PDF of the nth upper KR values as

n

oy log Ha) Hy (Dhy (),

() =

where I'(.) is the gamma function and Hy(z) = 1 — Hy(z) is the survival function (or the reliability
function R(z;) = Hz(z;) = P(Z; > 2,)).

Let us assume that (Z;, T;), i = 1,2, ..., is a random bivariate sample with a shared continuous DF
Hyz71(z,t) = P(Z < z,T < t). The second component associated with the KR value of the first one is
referred to as the concomitant of that KR value when the investigator is only interested in examining the
sequence of KR of the first component, Z. KR values and their concomitants have been the subject of
numerous real-world studies, such as those conducted by Bdair and Raqab [26], Chacko and Mary [27],
and Alawady et al. [28]. Given below is the PDF of T, (the nth upper concomitant of Z, ;).

h[n,k](t):f(; hriz(t|2)h, 1 (2)dz, (L.5)

where hrpz(t|z) 1s the conditional PDF of T' given Z.

An RVs average reduction in uncertainty or variability is reflected by the mathematical information
measure known as entropy. It was first established by Shannon [29] and is widely used in information
theory, statistics, probability, and other fields. If Z is a continuous non-negative RV and has a PDF
hyz(.), then its entropy is defined by

H(Z) = —f hz(z)log hz(2)dz. (1.6)
0

A recent generalization of classical entropy called weighted entropy (WE), which is a measure of the
amount of information produced by Z, has been proposed in the literature.

HO(Z) = - f 7hz(2) log hy(z)dz. (1.7)
0

For more details about this measure, see Guiasu [30].

As a complementary measure of entropy, Lad et al. [31] presented extropy as a measure associated
with order, structure, and predictability. The duality between entropy and extropy can be especially
helpful in domains like artificial intelligence and pattern recognition, for example, where understanding
both the “disorder” and “order” aspects of systems gives a more complete view of system behavior.
This measure has drawn a lot of attention in the last five years, and is described by (Husseiny and
Syam [32])

00 1
()= f Wz = 5 f hy(H; (v)dv < 0. (1.8)
0 0

Kelbert et al. [33] defined the weighted extropy (WEX) as

é(“”(Z):—% f 2h3(2)dz. (1.9)
0
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Motivation. Dependence between measured quantities is the rule rather than the exception in
applied statistics. Mechanical components subject to common loads, environmental indicators driven
by shared climatic forces, and correlated medical biomarkers all illustrate systems in which marginal
(univariate) modeling is inadequate. Bivariate distributions provide a principled framework for
quantifying such joint behavior. Yet much of the existing methodology either lacks the flexibility to
realistically represent weak-to-moderate associations or sacrifices the analytical tractability needed
for interpretation and inference. Thus, there remains a clear need for models that reconcile flexibility,
interpretability, and computationally feasible parameter estimation.

Motivated by these considerations, we develop a bivariate lifetime distribution that incorporates
Weibull marginals with a GFGM copula-henceforth referred to as the GFGM-WD. This construction
retains the analytical convenience of the GFGM class while substantially broadening the range of
attainable dependence structures. Given the ubiquity of Weibull models in reliability, fatigue, and
biomedical survival studies, the GFGM-WD is particularly well suited for stress-strength investigations
and analyses involving concomitant KR values. Its parameterization also supports practical estimation
procedures, making the model attractive for applied work.

Prior studies have demonstrated the usefulness of Weibull and Weibull-FGM-based models in
physics and dependability, including works by Barraza-Contreras et al. [34], El-Sherpieny et al. [7],
Nagy et al. [35], Tovar-Faloén et al. [36], and Teimour and Gupta [37]. The GFGM-WD framework
provides a unified extension capable of strengthening and generalizing the results reported in these
studies.

Novelty and contribution of the proposed model. The principal novelty of this study lies in
developing a new GFGM-WD that addresses a well-recognized limitation in copula-based Weibull
modeling. Traditional FGM copula—Weibull models are constrained by their limited dependence
range (typically |p| < 1/3), restricting their ability to capture moderate-to-strong positive dependence
structures commonly encountered in reliability, biomedical, and engineering applications. These
conventional formulations typically exhibit restricted dependence ranges and limited flexibility for
modeling nonlinear or asymmetric associations.

The proposed GFGM-WD model overcomes these limitations by introducing an additional
dependence parameter w within the GFGM copula framework. This structural enhancement
significantly expands the copula’s capacity to represent diverse dependence patterns while preserving
the analytical tractability of the original FGM family. Compared to existing bivariate Weibull models
based on FGM, Clayton, and Gumbel copulas, the GFGM copula maintains closed-form expressions
while substantially broadening the attainable correlation range and enabling more flexible tail
behavior, as demonstrated by our empirical results showing correlation coefficients up to
approximately 0.44 (see Table 1), substantially exceeding the FGM copula’s limitations.
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Table 1. The coefficient of correlation, p,,, in the GFGM-WD(a, B1; @2, B2).

Pzr Y w ) a Pzr 94 w aq [0%)
-0.1694 -0.5 -0.4 1 1 0.0222 0.8 -1.6 1 1
-0.0316 -0.5 1.4 2 3 0.0340 0.8 -1.1 0.5 1
-0.0107 -0.5 2.1 5 6 0.3763 0.8 1.3 1.5 2
0.0086 -0.5 2.5 7 7 0.4038 0.8 1.6 2 2.5
0.0470 0.3 -0.7 8 5 -0.0024 0.9 -1.8 0.8 0.8
0.0616 0.3 -0.5 8 8 0.0624 0.9 -1.4 0.9 1
0.1064 0.3 0.2 8 9 0.4083 0.9 1.4 1.2 1.5
0.1375 0.3 0.7 9 9 0.4390 0.9 1.6 1.7 1.7

Beyond enhanced dependence modeling, the GFGM-WD offers superior interpretability and
computational efficiency. The closed-form expressions for joint and marginal distributions facilitate
straightforward parameter estimation and simulation, while all parameters retain clear physical
interpretations related to scale, shape, and dependence strength. Consequently, the GFGM-WD
provides a unified framework that bridges theoretical generality with practical applicability, offering a
robust and computationally stable tool for modeling bivariate lifetime data with weak-to-moderate
correlations. This represents a significant advancement beyond existing bivariate Weibull and
FGM-based frameworks in terms of both modeling flexibility and interpretive clarity.

Organization of the paper: Section 2 develops the DF and PDF of the GFGM-WD, derives key
structural properties (moments, correlation coefficient, conditional distributions, concomitants of KR,
and the moment-generating function (MGF)), and illustrates its application to a dependent
stress-strength model. Section 3 examines information and uncertainty measures (entropy, WE,
extropy, and WEX) for 77, 4, supported by a numerical study. Section 4 presents maximum likelihood
(ML) and Bayesian estimations of the model parameters, and compares their performance. Section 5
provides two real-data applications. Section 6 concludes the paper.

2. The bivariate Weibull distribution based on the GFGM copula

LetZ ~ WD(a,,B1) and T ~ WD(a»,8>). Thus, according to (1.1), the JDF of the bivariate Weibull
distribution based on the GFGM copula, denoted by GFGM-WD(a, 5;; a2, >), is as follows:

Hzr(z,r) = (1 -Ap( —Az)[1+7A1A2+wA1A2(1 -A)Nd -4y, 2.1)

a)

2 1 t
where A| = e_(ﬁT ) and A, = e_(FZ ) . Moreover, according to (1.2), the corresponding JPDF of (2.1)
is given by

a;—1 ap—1
hyr(z1) = %(é) (ﬁiz) AA, [ 1+y QA - 1) 24, - D)+ w (1 - A) (1 - Ay)
X 3A; = 1) (34, — 1) ] 2.2)

Figure 1 shows the three-dimensional surface plots for the JPDF of the GFGM-WD with different
values of ay, 81, @2, 5,, 7, and w. The diversity in the surface shapes of this family for different values
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of its parameters reflects the various values of skewness and kurtosis that the family provides. This
confirms the efficiency of this family in describing various categories of data.

©a1=58=15a6:=5p=09y=-05w=14 da=018=2a=35=02y=-05w=25

Figure 1. Some graphs of the JPDF of the GFGM-WD(a, 81; @3, 5>).

2.1. Some statistical characteristics
2.1.1. Moments
Thus, it is easy to show that the product moments of the GFGM-WD(ay, 8; @3, ;) are

00 OO a—1 ar—1
a1 Z t
EZ"T™ M= — AA1 20 — 1) (2A, — 1 1-A
@' szofoz" (/31) (/32) a1y A = DA =D+ - A

X (1-A2)3A;-1)(3A,-1) ]dzdt

00 oo ar-1 ar—1 00 oo ar-1 ar—1
a1y Z t Z t
= e = — | AA,dzd = —
B> [ﬁ j; : (,31) (,32) e t+y£ ﬁ < (,31) (,32)
aj—1

00 00 ar—1
x A1A2(2A1—1)(2A2—1)dzdt+wffz"tm(i) (i) AlAy (1 - Ay)
0 Jo ﬁl ﬁ2

% (1= A)(3A; — 1) (3A, — l)dzdt]
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= B ’;r(l + ai)r(l + ﬁ)[1 ry(1-27)(1-2%) + (37 -2 + 1)

1 (04)
X (3* L 1)] nm=12, .. (2.3)

Thus, by using (2.3) atn = m = 1, we get

EZT) = BB.I(1 + ail)r(l + aiz) [1 + y(l - 251)(1 - 22) + w(351 _olar g 1)
x (3% — 2@ 4 1)]. 2.4
( ) 24

The coefficient of correlation can be evaluated through the following expression:

E(ZT) - E(Z)E(T)
Pzr = . (2.5)
VVar(Z)Var(T)
To determine the correlation between Z and T, we employed (2.4) and obtained the corresponding
values of the expected values and variances as:

EZ) = %fowz(é)al_lfxldz:ﬁlr(1+ail), 2.6)
and similarly, E(T) = S,I'(1 + i); and
o 2\ 2
E(ZY = B fo ZZ(E) Aldz:/ﬁr(ua—l), (2.7)

and similarly, E(T?) = ,8%1"(1 + %). By substituting (2.4), (2.6), and (2.7) into (2.5), the coefficient of
correlation between Z and T is given by

P = 1 I(1 + )T+ —)
\/<r<1 +2)— [T+ DT+ 2) - T+ L)) o @
x (y (1 =271 =23) +w 37 =2 + )37 -2 + 1))] . 2.8)

Table 1 manifests the correlation, p, ., for the GFGM-WD(a, 81; @3, 8,), by using (2.8). The result of
this table shows that the maximum and minimum values of p,, from the GFGM-WD(a, 8:; a», B,) are
0.438998, and —0.169444, respectively.

Mathematical justification, admissibility, and identifiability. We provide rigorous mathematical
justification for coupling Weibull marginals with the GFGM copula, along with the admissibility and
identifiability conditions required for the model to be well defined.
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Marginal preservation. The Weibull marginals are preserved by construction since for each fixed
u € [0,1],

1
f c(u,v;y,w)du = 1.
0
Indeed,

1 1
f (1 —=2u)du =0 and f u(2 -3u)du =0,
0 0

which imply that integrating c(u, v;y, w) with respect to either argument yields 1, ensuring correct
marginal recovery.

Admissibility: nonnegativity of the copula density. The copula density must satisfy c(u, v;y, w) >
0 for all (u,v) € [0, 1]%. Using the uniform norms

sup |1 =2ul =1 and sup [u(2-3uw)| =1,
uel0,1] uel0,1]

we obtain the sufficient condition

[yl + lw| <1,

which guarantees c(u, v; v, w) > 0 and thus yields wy,x = 1 — |y|. For sharper bounds, we may compute

Wmax =SUpqw > 0: min c(u,v;y,w) >0y,
(u,v)€[0,1]2

which can be evaluated analytically or numerically to ensure the nonnegativity constraint holds exactly.

Identifiability. The full parameter vector 6 = (@, 8, @2, 5,7, w)" is identifiable under:

(1) Identifiable marginals: distinct (a1, 8;) and (a3, 8;) yield distinct Hz(-; a1, 81) and Hy(-; a3, 52);
(2) Injective copula parameterization: distinct (y, w) yield distinct copula densities c(-, -;y, w) on a
set of positive measure.

Consequently, equal joint densities imply equal marginals (by integration) and hence equal copula
densities (by division), which establishes (y, w) = (¥, »’).

Practical implementation. During estimation, the constraints

>0, B>0 (=1,2), lyl <1, and |w| < Wmax
are enforced, together with numerical verification that c(u, v; y, w) > 0 holds over a fine uniform grid
in [0, 1]?. The bound |y| + |w| < 1 ensures a feasible starting region, and refined admissible ranges for

w are computed adaptively when exploring stronger dependence.

AIMS Mathematics Volume 10, Issue 11, 27862-27897.
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2.2. Conditional distribution and concomitants of KR values

After some straightforward algebraic manipulation, the conditional DF of T given Z = z is given by

Hrz(tlz) = (1 ol )2) 1+ ye‘(ﬁi ) (2.{(/51)“1 - 1) twelE) (1 - e‘(ﬁ’z)az)

X (1 _o A )”1)(35(51 ) 1)]

Consequently, the GFGM-WD(a, 5;; a», 8,) regression curve for T given Z = z is
f t (T\Z = z)dt
0

E(T|Z =2)

00 -1
Z—jfo t(ﬁ%) M| 147 CA - DA~ D41 - 4) (1 - )

% 3A; = 1)3A, — 1) ]dt
_ BT+ |1 y(ze‘(é‘l)al _ 1)(1 _ 2(15) _ w(l _ e—(ﬂi)al)(ge—(é})al _ 1)
(0%)

x (3% _olE 4 1)]

where the conditional expectation is non-linear with respect to z.

2.2.1. Marginal DF of Ty,

The following theorem, which is based on the GFGM-WD(ay, 81; @2, 5,), provides a salutary form
for the PDF Ay, 1(2).

Theorem 2.1. Let Ty, be the concomitant of KR values based on the GFGM-WD(a,81; a2, 82). Then
the PDFE, DF; and survival function of T\, are given, respectively, by

ay—1 @ @ @
hins (1) = 5 (,82) 2 e_(’%) 2 (1 + Efll,)c (2e_(/3t2) 2— 1) + :(2’) (1 e_(ﬁi) 2)

X (36_(”2)”2 - 1)), (2.9)

H[n,k](t) = (1 - €_(ﬂtz)az)

1+e-(ﬂ’z)”( <1)+:<2>(1 e—(ﬁ’z)az))], (2.10)
and

Hip (1) = RO [1 - (1 _E )@2) (”“’ +22) (1 o5 )@2))] , @.11)

where 2 _(1) )/(2 (L)n - 1) and _(2) a)(4(L)n -3 (L)n — 1).

k+1
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Proof. By using (1.5) and (2.2), we get

medl () e
0

hon® = 5ot )y B

ay—1 « « «

% (ﬁi) ) (1 +20 (2e‘(/fz) T 1) +52 (1 _ %) 2)
2 ? .

‘ (36-@2) - 1))

where
ek (T () )(_ (‘(ﬁ‘])al))n_l( ‘(‘])wl)k_l (i)m_l &)
B BT Uy (2e 1][-log|e e 3 e dz
k n
= 7ele) )
and

- g8 [T ol

Bl Jy
(L k)" ko \"
X e (ﬁl) dZ:a)(4(m) _3(k+—2) —1)

This completes the proof.
Relying on (2.9), the MGF of T, based on the GFGM-WD(ay,:; @z, ;) is given by

@ | A= (=) =2\ _ 2% =2
22 ()4 280) -3 =),

M5 = D> e+ D1 -5 - 28

M
pars 1. (0%))

Using (2.9), the £th moment of T, based on the GFGM-WD(ay,51; @2, B>) is given by

=) _ =2 | =& (=D =) _ 2% =@
[1 - - '_'n,k + 2 2 (u—in’k + 2 '_‘l’l,k) 3 2 '_‘ﬂ,k

t
© @
=6, T(1+—
/J[n,k] ﬁz ( 02)

“n.k

(2.12)

Moreover, by putting £ = 1 and ¢ = 2 in (2.12), we get the mean and variance of 77, 4, respectively, by
23]

1 i
— =) _ =2 -2 (=D =2\ _
Hing = Pol(1+ 0[2) [1 -8 -850 +27 (B() +2E0) - 3
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and
2 1
oty = A+EDBITA+ =) — (1 +EDTA +—)*|+283ER - & n1+—q
’ i (0% i [0%) i
(1+2) =2 _ g0 2 H-(1+2) 2—(2) 2
x (1-271") —2E2 - mu)u 2)))2 %%nuﬁ
2
(a2 _2 (e L 1
x(3m@—2é+Q+?m@“%L2%+QGu+—»]4&ﬂ+“)
a,
— — 1 — _ € _ 1
X #ﬁ—nﬁ(ﬂl+aﬁfﬂ 2 (e 5+@¥<Dwu+-2»%3“%9—2a2+q
_ 1
x [aE +2El -ha -2,

Practical interpretation and applications of concomitants of KR values. The theoretical results
for the concomitants of KR values under the proposed GFGM-WD model have important implications
for real-world problems in reliability, engineering, and biomedical data analysis. In reliability
systems, the KR structure naturally models the joint behavior of sequential failure times for multiple
dependent components monitored simultaneously. Specifically, the KR value from one component’s
failure times and its concomitant (the corresponding failure time of a dependent component) capture
the dependence between successive failure events under shared environmental or load conditions. The
derived expressions for the joint and marginal densities of record concomitants allow practitioners to
quantify this dependence, evaluate conditional reliability measures, and estimate system-level
performance indices such as mean residual life or conditional hazard functions. This is particularly
relevant in designing redundant or load-sharing systems, where understanding the dependence
between component lifetimes is essential for optimizing maintenance and replacement strategies.

In biomedical and survival analysis, concomitants of KR values provide a probabilistic framework
for studying ordered survival times of patients in longitudinal clinical studies. Here, each record
(upper or lower) represents a new extreme survival time, while the concomitant captures an associated
outcome, such as tumor response or recovery time. The GFGM copula’s dependence structure allows
flexible modeling of correlated patient outcomes, capturing weak to moderate associations that often
arise from shared treatment effects or genetic similarities. Consequently, the derived results facilitate
the development of predictive tools for assessing patient prognosis based on prior record events,
improving inference on survival dynamics in heterogeneous populations. Thus, the concomitant
analysis under the proposed GFGM-WD framework bridges theoretical record-value properties and
practical inference tools for reliability assessment and medical prognosis.

2.2.2. Bivariate reliability function

Sreelakshmi [38] introduced the relationship between the copula and reliability copula, which is
defined as follows:

R(z,t) = 1 = Hz(z) — Hr(?) + C (Hz(2), Hr(2)) .
The bivariate reliability function R(z, ) for the GFGM-WD (a4, 8;; @2, 3) is

1+(1—e%éy)(l—e{érj*y+w(1—e{ér)(l—e{éyjﬂ.
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2.2.3. Reliability in the dependent stress-strength model GFGM-WD

The life of a component with random strength Z and random stress T is described by the
stress-strength model. When Z > T, the component performs satisfactorily, making R = P(T < Z) a
measure of component reliability. There are numerous uses for it, particularly in quality assurance,
engineering, economics, physics, etc. When Z and T are independent RVs that belong to the same
univariate distribution, a lot of work has been done to calculate the value of R. However, many
applications call for the knowledge of R in dependent situations (Z and T'). Here, we assume that the
strength Z and stress T have some sort of dependence structure according to the GFGM-WD.
Given (1.2) and (1.4), one may write

R=P(T <Z2)= f f hzr(z, t)dtdz = f f c(Hz(z), Hr(t))hz(2)hr(t)dtdz.
0o Jo 0o Jo

On putting @; = @, and ¢ = (g—;)‘”, and by using the probability integral transformations, we get

o ~Hr(H;'(v)
f f c(u,v)dudv
0o Jo

1 pl=(1-v)°
f f [T+ y(1=2u)(1-2v)+ wuv (2 -3u) (2 -3v)|dudv. (2.13)
0o Jo

R=P(T <2Z)

As B = B», 1.e., ¢ = 1, we get, as expected, R = % The integration (2.13) can be easily evaluated using
MATHEMATICA 12 as
R c[(c+3)2c+3)3c+ 1)Bc+2)(cRc+y+5)—y+2)+4w(c— e(c(11c +25) + 11)]
B (c+ D(c+2)(c+3)2c+ 1)2c+3)3Bc+1)3Bc+2) '

(2.14)

When w = 0, the relation (2.14) yields the reliability in the dependent stress-strength model FGMBW.
Figures 2 and 3 show that R > % (the component does not perform satisfactorily), while R < % (the
component performs satisfactorily) according to 5, < 81 and 8, > B, respectively.

(@ a;=azandc=025<1 M a=aandc=0.75<1

Figure 2. R < 1 at 8| < ..
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0.0
Y ~_)
05 2
©)ay=azandc=125>1 da=axandc=1.75>1

Figure 3. R > 1 at 8| > f3,.

3. Information measures in 77, based on the GFGM-WD(«a,,8;; @2, 52)

In terms of extropy, entropy, and information extraction, the GFGM-WD is superior to many
bivariate distributions, including the exponential family, particularly for data sets with weak
dependencies or changing hazard rates. In general, it can capture more structured information because
of its adaptability to various lifetime patterns and moderate dependencies. Furthermore, the
availability of closed-form equations for joint entropy, extropy, and associated information metrics
aids in practical computation and interpretation, as well as informing dependability and maintenance
planning. The measures of entropy, WE, extropy, and WEX for T, of the KR values from the
GFGM-WD(ay,B1; a3, 5,) are obtained in this section.

3.1. Entropy in Ty, x

Let T}, be the concomitant of KR values. Then from (1.6) and (2.5), and after some algebra using
MATHEMATICA 12, the entropy in the GFGM-WD(a, 81; a3, 8,) is given by

H(Tx)

—f B (1) 1og by, (1)dt
0

-1 @ « «
N E) (1 + =“>(2e‘(ﬁ§) T ) +z% (1 %) )

“n,k “n.k

ap -1 ;\*2 + \*2
X (3e‘(ﬁtz) —1))1ogl%(i) o) (1+E§1{;(2e‘(ﬁz) —1)

2 2

+ 29 (1 % )) (3e‘(ﬁ’z ) 1))] dt

= (L+EDHT) = 2E); ~ E WD) +3Z750(2) + S,

where
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00 ar—1 ay ar—1 @)
_ __@ () %) [a_ (L) () )
H(T) = —-E(oghy(T)) = ﬁzf (ﬁz) e log 3 \5 e dt

1
= (1 - log(%) + EulerGamma(l - —))
B 0%}

is the Shannon entropy of 7, and

@ (T -(’2)”)(L)”_1 ()" (“2( ! )] -(;)"2]

v mﬁ(leﬁ B ¢ e )

[llo (%)+L(EulerGamma(l—a )+« (10 (2(l)a2_1)—lo ((i)az))
2 s B 2a, ? 2| 1% B2 s B2

Ny

@ %) _(L)wz )2 ( t )(lz—l _(ﬁi)(g a» ( t )(12—1 _(/%)“2
2 — 1 — B2 — 2 1 | — 2
¥ mﬁ( ¢ B ¢ leegl) A

10(5) 5 svercimmets s ) ) -1 )
- -_— uterGamma - (04 —_— - —_—
3 B2 3ay ? 2|08 B2 ¢ B2
o2 (1)) - L

(85 i8]
where the Euler gamma function I'(z) = fow et 'dt, and

Sty = —E (log(l + Ei{;(ze‘(ﬁ% ) -1 +E (1 e‘(ﬁ’z)nz) (36—(52)“2 _ 1)))

3.2. Weighted entropy in T}, x

From (1.7) and (2.5), and after some algebra with the aid of MATHEMATICA 12, the WE in the
GFGM-WD(ay,B1; a3, B,) is given by

+

+

H (T a1

- f t h[n’k](l) 10g h[n,k](l)dl
0

00 ar—1 @ « @
- —%f t(i)z e‘(ﬁ'z)z(u:(”(ze (3)2—1)+E<2)(1—e‘(ﬁ’2)2)
ﬁ2 0 ﬁZ n,k
@ ar—1 « «
X@AW_%mr%jzgw1H$¢Am2g

B2 \Ba>

+ 29 (1 - e‘(ﬂfz)az)(&‘(ﬁz ) 1))] dt

= (L+EDH(T) - 2E) - ELDw (1) + 3220 (2) + 6,2

where

AIMS Mathematics Volume 10, Issue 11, 27862-27897.



27877

00 az—1 a) ar—1 @)
- (L
2 JO 2 2 2

el e Gloeel () )- o)

— 1)PolyG o1+ L))o 2 ¢ (1
(ap )PolyGamma | 0, +cy2 B +m)

Wiy~ @ (T ())(L) (1) ( ( ) —(ﬁ;)“z)

Y (1) B o t(l e 2 e og 5 \5 e dt
_(y+l 1 2+1a/ 1 i"']_

(-2 % (1 Lo (52) -2 % (L) (22 - 1)
1\ 1\ ., 1\® 1\®

o (P I R (o W RS (PR W R (P

— log (2 (ﬁl) 2) + aylog (2) + ( - 1) (ay — 1)PolyGamma (O 1+ l)) + 5
2

X (2‘@%) _ 1)r(2 + i) ,
an

. @\ 2 ar—1 ar-1 a
e [T Tl
2 JOo 2 2 2

where PolyGamma(n, z) gives the nth derivative of the digamma function ¢"*(z), and
t 2 ! 2 t 2
=-E (T log(l + 3 "<”(2e‘(ﬁ7) -1 +E% (1 - e‘(ﬁ?) )(3e‘(ﬁz) - 1)))

3.3. Extropy in T

+

(w)
6[n k]

From (1.8), the extropy of T, is given by

1 00
Ty = -3 f (hpiy(D))* dt
0
(12—1 @y . @) ‘ ap
_lf [az( t ) e—(é) ( ~(1)(2e (5) )+ ~<2)(1 e (;) )
B2 \pB>

(38—(52)"2 _ 1)) 2

dt

X

- 3= 7EE ) 6 (2 (”) -2k - 5 () xet

(1+=0) e+ 2((E0) + =0 - 20 - =0ER v - (2(E8) +2 (51
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a2\ 2
where {(T) = —% fooo (% (ﬁiz)az_l e_(é) ) dt = (—2—22“12_31“ (2 - a/lz)) is the extropy of 7,
00 L\ p ar—1 e 2
X(P):fo (l—e_(’ﬁ)z) (Z—j (ﬁiz) e_(ﬁz)z] dt, p=1,2,3,4,

and

_ ([ ())“_(L) {8)?) gy 2 (_L) 4 _ax3d
V(1) fo(l ) Fg) W =2 o (9><2 4x3 )

3.4. Weighted extropy in T}, x

By using (1.9) and (2.5), and after some algebra with the aid of MATHEMATICA 12, the WEX in
the GFGM-WD(a,B1; @z, 5>) is given by

1 (o)
(T = ) fo t i, (D)t

b az-1 o . a
_lf t[% (i) g_(;ftz)z(l +E(1 (26_(/;2)2 B 1)+E(2)(1 _e_([th) 2)
2 0 ﬁz :82 n,k ik

@ 2
(ae—@;)z - 1))] d
= (1 =) o 2((E0) 5 -2 - =0E) w0 - (2(20)

=@V _32@ _7z(hz®@) @) @V _ =)=\ (@
+2(22) Hn,k_n,k) Y@ +6((22) X“3)

X

“n,k “nk"nk
9/ 2\ (o
-5 (ER) ¥ @,
| oo at (&)?) _
where J@(T) = =4 [V 1[4 (L)" e \%) | dr == isthe WEX of T,

© -(£)?Y w1 (1)
X(w)(p):j(; t(l—e (/32) ) (“_Z(BLZ) e (ﬁz) ) dt, p=1,2,3,4, and
" ar\ 2
o= i1 B () ) - g

3.5. Numerical study with discussion

Entropy, WE, extropy, and WEX for T, in the GFGM-WD(«a/, B8; a2, 82) are shown in Tables 2—
5. MATHEMATICA 12 is used to perform the computations. These tables can be used to derive the
following qualities.
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e Generally, fory = 0.9, @, = 1, and 8, = 2, the value of H (T, x)) increases at k > n, and decreases
at k < n with w < 0. Also, with fixed k and w > 0, the value of H (7T, x)) increases as the value of
n increases. On the other hand, for y = 0.5, @, = 1, and 8, = 2, the value of H (7T, 4;) decreases
as the value of n < k“ , and increases for n > k“ with w > 0. With fixed k and w < 0, the value
of H(T},x) decreases as the value of n 1ncreases (see Table 2).

e Fory =09, a;, = 1, and 8, = 2, the value of H“(T,;) increases at k > n, and decreases at
k < n(w < 0). Also, with fixed k and w > 0, the value of H“ (T, ) increases as the value of n
increases. On the other hand, for y = 0.5, a; = 1, and 3, = 2, the value of H <“’)(T[n,k]) decreases
as the value of k£ > n, and increases for k < n (w > 0). With fixed k and w < 0, the value of
H“(T\,.4) decreases as the value of n increases (see Table 3).

e Fory =0.9, a, = 1, and 3, = 2, the value of {(7|,x)) increases as the value of n increases, and for
v =-0.5, a;, =1, and B, = 2, the value of {(T7, ) decreases as the value of k > n, and increases

for k < n (w > 0). For w < 0, the value of {(T7, ) decreases as the value of n increases (see Table

4).

e Fory = -0.9 and a; = B, = 2, the value of £ (‘”)(T[n,k]) increases as the value of n increases, and
for y = 0.25 and a, = B, = 2, the value of £ (“’)(T[n,k]) decreases as the value of n increases (see
Table 5).

4. Methods of estimation

4.1. Maximum likelihood estimation and properties

Let (Z,,T)),(Z,,T3),...,(Z,, T,) be arandom sample from the GFGM-WD with the JPDF

h(Za ta Q) = C(HZ(Z; al’ﬁl)a HT(ta a23ﬁ2); Y (1)) hZ(Z; a’l’ﬂl) hT(ta a27ﬁ2)’
where 0 = (ay,B1,2,58,y,w)" is the parameter vector. The likelihood function for the observed
sample is

n

L(®) = H hzr(zi, 13 0) = H[C(HZ(Zi), Hr(t);y, w) hz(z; a1, B1) hr(t; a2, 82)]
i=1

i=1
Taking logarithms gives

n

o) = Z[log hz(zis a1, B1) + log hy (t;; s, B2) + log c(Hy(z;), Hr(t);y, w)] .

i=1
Substituting the explicit forms of the marginals and copula yields

€0) = n(log a; + log s — log B; — log ) + (a — I)Zlog(ﬁ )+ (s — I)ZIOg(IB )

i=1

Z[(ﬁl) (,32) ] Zlog 1+ y(1 = 2Hy(z))(1 = 2H (1))

i=1
+ w Hz(z)Hr(6;)(2 — 3Hz(2))(2 — 3HT(ti))]-
The MLE:s are obtained by solving d¢(6)/d(8) = 0 for all parameters. Let
O; =1+ y(1 = 2Hz(z))(1 = 2Hr(#)) + w Hz(z)Hr (4;)(2 — 3H7(2:))(2 — 3Hr (1))).
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(i) For a;:

Zi l Zj \Pli
6&1_ @ lzlllog(ﬁl) Z(,Bl) o (51) la’

i=1

where
_ 00 8H,z) OHz) _ . . o fz)\"
T 0H(z) day o, = HZ(Zz))(ﬁl) 1g(ﬁ1)
and
00;
i =~ 2Hr W) + © Hr ()2 = 3Hr(1)(2 — 6H ().
(ii) For S;:
@
A __n_@-1 ()" 0B
B B Bi +ﬁ ;(/31) +; o,
where

00;  0D: O0Hz(z) OHz(z;) —a (1- HZ(Zi))(ﬁ)m

B, 0Hy(z) OB B B B

(iii) For a; and B,: The corresponding expressions follow by symmetry, interchanging (z;, a1, 81,
Hz) with (¢;, a2, B2, Hr).

(iv) For y:

9t <o (1= 2Hz(z))(A — 2Hr (1)
ay ,Z‘ D; '

(v) For w:

ot _ Zn: H7(z))Hr(t;)(2 — 3HZ(z;))(2 — 3H(1;))
dw ®; :

i=1

The vector of MLEsEis obtained by numerically solving 9¢/96 = 0.

Newton—Raphson iterative scheme

Because the score equations are nonlinear, the estimates are obtained iteratively using the Newton—
Raphson algorithm. Let s(§) = V{(0) denote the score vector and D(f) = —W(Q) the observed
information matrix. The update rule is

g0 =67 +D7(0")s(6”),  r=0,1,2,...
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Implementation details:

e Initialization: 0¥ = (4%, ,/S’Targ,&;‘arg, ﬁ;‘”g,o, 0)7, where marginal MLEs are obtained from
independent Weibull fits.
e Convergence criteria:

10U+ — 0P|, < 107® and |6V — (8] < 1075,
e Parameter constraints: We enforce «;,3; > 0 and (y, w) € Q.

Existence and uniqueness of MLEs

Under the regularity conditions of Cox and Hinkley [39], the MLE exists and is unique within
0O = (0, ©)* x Q when:

(1) €(0) is strictly concave in each parameter,
(2) s() is bounded and continuous, and
(3) the Fisher information matrix 7 () = E[-V?£(0)] is positive definite for all § € @.

For the bivariate GFGM-WD model:

e Log-concavity: The Weibull marginal log-likelihoods are strictly concave for @; > 0. The copula
term log[c(Hz, Hr; ¥, w)] is concave in (y, w) within €, producing a unique maximum.

e Boundedness: The score components are bounded since the Weibull density decays
exponentially and the copula derivatives remain finite for all admissible (y, w).

e Positive definiteness: The marginal Fisher information matrices are positive definite (cf.
Smith [40]), and the joint matrix retains this property for large n.

Hence, €(0) attains a unique global maximum atE, which can be efficiently located via the Newton—
Raphson algorithm.

Remark 4.1. In finite samples, the observed information matrix D= —sz@) is checked to ensure all
eigenvalues are positive, guaranteeing numerical stability and the validity of the MLE.

This completes the MLE framework for the proposed GFGM-WD model.

4.2. Bayesian estimation

The Bayesian estimation approach provides a flexible inferential framework by combining sample
information with prior beliefs about the parameters. Unlike the classical MLE method, which depends
solely on observed data, Bayesian inference integrates prior distributions and updates them via Bayes’
theorem to obtain posterior distributions that reflect both prior knowledge and empirical evidence.

Let 0 = (a1, @2,B1,52, 7, w)" denote the parameter vector of the proposed GFGM-WD.

We assume independent priors for all parameters. For the Weibull shape parameters a; > 0 (I =
1,2), gamma priors are assigned:

Cl

I(a;) o< ﬁlc) a;'l_le_d’“’, a; >0, ¢,d; > 0.
I
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For the scale parameters g, > 0 (/ = 1,2), we also assume gamma priors:

al

i le_blﬁl, ,81 >0, al,bl > 0.

H(ﬁl) r( ) 1

For the dependence parameters, we adopt independent uniform priors
v ~ Uniform(—1, 1) and w ~ Uniform(—wmax, Wmax),

where wp,, denotes the maximum admissible value that ensures c(u, v; y, w) > 0 for all u,v € [0, 1].
Hence, the joint prior density is

T1(6) o ﬁ dCl CI 1 =diau ﬁ bal ,Bal 1 o=biBy
- T(c) ) L(a)™

=1 =1

1
X = X

I | — ,
3 X S 1)) Lt oma) (@)

where I, (x) denotes the usual indicator function of the set A. The hyperparameters (a;, b;, ¢;, d;) are
chosen to reflect prior information, typically aligning prior means and variances with marginal MLEs
(see Gupta and Kundu [41], Dey et al. [42], and Hamdy and Almetwally [43]).

Using the copula density of the GFGM-WD model, which is given by (2.2), and substituting these
expressions, we obtain

non -1 -1 1 .
_ a2 ﬁ i — ﬁ i
1o -(575) D(ﬂl) 5 ool ) )

]

i=1

I +y(1 = 2Hz(z))(1 = 2H7 () + w Hz(z))Hr (1;)(2 = 3H7(z;))(2 — 3H (1)) |-

The posterior density function, up to a proportionality constant, is

1O | z, 1) o 11(0) L(O)
2 C 2 a n
d;’ . b 1 (o
oc acl e—d[(l[ -1 _blﬁl ( )
l[z_ll 1—‘(cl) ! } l—[ 1—‘(al)ﬁa 4a)max ﬁlﬁZ

[T (e T ()

X l_[[l +y(1 = 2Hz(z))(1 = 2H7 (1)) + w Hz(z))Hr (1;)(2 — 3Hz(z;))(2 - 3HT(ti))]

i=1

X H(—l,l)(Y) ]I(_wmaXawmux)(w)'

Numerical computation via MCMC

Because the posterior distribution lacks a closed-form normalizing constant, we employ a Markov
chain Monte Carlo (MCMC) method based on the Metropolis—Hastings (MH) algorithm.
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Algorithm (Metropolis—Hastings sampling):

(1) Initialization: Set §© = (GMLE, G)LE, BMLE MLE JMLE /MLE) y5ing the MLEs from Section 4.1.
Multiple chains with dispersed starting points enhance robustness.

(2) Proposal generation: At iteration r, propose 8 ~ N(6"V,X), with covariance X tuned for an
acceptance rate of 30%—-40%. For constrained parameters (o5, > 0, y € (-1,1),
W € (—Wmax, Wmax)), transformations (log or logit) or rejection of invalid proposals are employed.

(3) Acceptance step:

A = min {1’ (0" | z,1) } and 00 = g, with probability A,
" | z,1) - 67V, otherwise.

(4) Convergence check: Run several chains and assess convergence using the Gelman—Rubin
statistic (ﬁ < 1.1), the effective sample size (ESS> 400), and trace plots indicating stable
mixing. Typically, 50,000 iterations are run with the first 10-20% discarded as burn-in.

(5) Posterior summaries: Bayes estimates (posterior means) under squared-error loss are

T 1 < T 1
A ) N _ (r) S (r) Ao (r)
a,_—MrEZIa/l, ﬂl——M;:l,Bl, )’——M;:ly , and w—M;:la) ,

where M is the number of post-burn-in iterations. Credible intervals are obtained from the 2.5th
and 97.5th percentiles of the posterior samples.

Remarks

e The Bayesian approach provides both point estimates and complete posterior uncertainty
quantification.

e The MH tuning matrix X strongly influences convergence, and adaptive tuning can enhance
mixing and efficiency.

e Tables 6-9 present the posterior means and 95% credible intervals obtained from this MCMC
estimation.

This completes the Bayesian estimation framework for the parameters of the proposed GFGM-WD.

4.3. Monte Carlo simulation

This subsection presents a numerical comparison of the performance of the ML and Bayesian
estimators. The analytical efficiency of both estimation methods is evaluated for the parameters of the
GFGM-WD. To perform this assessment, 1000 samples were generated from the GFGM-WD model
using the Mathcad software package. The study considers various scenarios by selecting different
parameter values for y = 0.9,-0.5, w = 1.59,3.423, and varying sample sizes n = 20, 50, 100, 150.
Specifically, the parameter configurations used in the simulation study are as follows:

In Table 6, 8; = 1, B, = 2, withknown a; =1, a; = 2.

In Table 7, By = 2, B, = 0.3, with known a; = 2, a, = 0.3.

In Table 8, B, = 1.5, B, = 0.9, with known a; = 1.5, a, = 0.9.
In Table 9, 5, = 0.2, 5, = 2, with known a; = 0.2, a, = 2.
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The simulation results of bias and mean squared error (MSE), based on 5000 iterations of the Monte
Carlo simulation, are shown in Tables 6-9. The following conclusions can be drawn from the tables:

e [t can be shown that the ML and Bayesian estimates of unknown parameters are fairly good in
terms of bias and MSE.

e With an increase in sample size, it is shown that MSEs decrease and the estimated values of the
parameters approach the nominal values of the parameters.

e Bayesian estimates are smaller than MLE.

e For y = 0.9 and w = 1.59, both ML and Bayesian estimate values are smaller than the case of
vy =-0.5and w = 3.423.

Table 6. ML and Bayesian estimation methods for the parameters of the GFGM-WD model.

Bi=1p=2
withknown @) = 1, @, =2
y=09,w=1.59 y=-0.5 0=3423
ML estimate Bayes ML estimate Bayes
n Bias MSE Bias MSE Bias MSE Bias MSE
20 Bi 0.055 0.255 0.045 0.155 0.088 0.257 0.068 0.155
B> 0.088 0.599 0.068 0.399 0.112 0.784 0.012 0.681
v 0.064 0.316 0.054 0.215 0.084 0.457 0.064 0.353
W 0.045 0.435 0.034 0.372 0.054 0.457 0.023 0.433
50 Bi 0.028 0.333 0.021 0.231 0.079 0.241 0.079 0.140
B> 0.072 0.487 0.062 0.382 0.097 0.698 0.087 0.593
b 0.051 0.287 0.038 0.183 0.069 0.421 0.059 0.320
W 0.034 0.421 0.022 0.354 0.041 0.443 0.014 0.421
100 Bi 0.019 0.298 0.005 0.193 0.063 0.239 0.053 0.133
B> 0.065 0.414 0.054 0.311 0.083 0.631 0.073 0.530
b 0.047 0.245 0.031 0.143 0.057 0.401 0.037 0.399
w 0.021 0.411 0.019 0.341 0.036 0.427 0.014 0.322
150 B 0.010 0.167 0.007 0.167 0.059 0.214 0.049 0.112
B> 0.054 0.389 0.034 0.389 0.076 0.543 0.056 0.432
b 0.038 0.212 0.028 0.212 0.053 0.289 0.043 0.121
w 0.036 0.234 0.015 0.331 0.034 0.299 0.009 0.299

Table 7. ML and Bayesian estimation methods for the parameters of the GFGM-WD model.

Bi=2,5=03
with known a; =2, @, = 0.3
y=09,w =159 y=-0.50=3423
ML estimate Bayes ML estimate Bayes
n Bias MSE Bias MSE Bias MSE Bias MSE
20 Bi 0.074 0.542 0.064 0.441 0.092 0.652 0.082 0.351
B> 0.106 0.321 0.099 0.220 0.122 0.382 0.102 0.281
v 0.040 0.242 0.032 0.141 0.053 0.384 0.023 0.182
W 0.065 0.237 0.061 0.233 0.076 0.257 0.072 0.245
50 Bi 0.066 0.532 0.054 0.431 0.086 0.583 0.066 0.481
B> 0.094 0.286 0.085 0.184 0.115 0.351 0.105 0.250
b 0.030 0.230 0.022 0.123 0.044 0.341 0.024 0.240
w 0.042 0.221 0.038 0.211 0.053 0.276 0.049 0.266
100 Bi 0.057 0.508 0.043 0.401 0.071 0.542 0.061 0.441
B> 0.081 0.240 0.076 0.434 0.094 0.298 0.084 0.193
b 0.022 0.199 0.011 0.091 0.038 0.308 0.018 0.204
w 0.054 0.211 0.028 0.201 0.049 0.266 0.041 0.257
150 Bi 0.040 0.460 0.034 0.354 0.060 0.483 0.050 0.381
B> 0.073 0.210 0.067 0.109 0.076 0.252 0.056 0.152
b 0.020 0.182 0.009 0.081 0.030 0.262 0.020 0.161
w 0.038 0.199 0.21 0.189 0.041 0.254 0.037 0.243
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Table 8. ML and Bayesian estimation methods for the parameters of the GFGM-WD model.

B =156,=09
with known a; = 1.5, a, = 0.9
y=09,w=159 v=-0.5, w=3423
ML estimate Bayes ML estimate Bayes
n Bias MSE Bias MSE Bias MSE Bias MSE
20 Bi 0.047 0.248 0.027 0.144 0.068 0.279 0.048 0.178
B> 0.059 0.288 0.049 0.183 0.079 0.304 0.069 0.202
Y 0.111 0.425 0.101 0.322 0.111 0.532 0.101 0.431
w 0.065 0.365 0.061 0.355 0.077 0.387 0.072 0.378
50 Bi 0.038 0.236 0.028 0.134 0.059 0.248 0.049 0.146
B> 0.045 0.268 0.035 0.166 0.055 0.285 0.045 0.184
b 0.086 0.411 0.076 0.310 0.102 0.477 0.099 0.376
w 0.061 0.345 0.056 0.332 0.071 0.375 0.065 0.367
100 Bi 0.025 0.222 0.015 0.121 0.042 0.231 0.032 0.130
B> 0.032 0.255 0.022 0.154 0.043 0.264 0.033 0.163
b 0.075 0.401 0.065 0.300 0.079 0.468 0.069 0.364
w 0.059 0.321 0.055 0.311 0.066 0.367 0.061 0.356
150 Bi 0.018 0.201 0.008 0.100 0.033 0.224 0.023 0.121
B> 0.021 0.235 0.011 0.133 0.025 0.241 0.015 0.140
b 0.069 0.388 0.059 0.287 0.071 0.405 0.061 0.301
W 0.049 0.299 0.044 0.287 0.054 0.344 0.041 0.276

Table 9. ML and Bayesian estimation methods for the parameters of the GFGM-WD model.

B1=02,8=2
with known a; = 0.2, a; =2
=09, w=159 v =-0.5 w=3423
ML estimate Bayes ML estimate Bayes
n Bias MSE Bias MSE Bias MSE Bias MSE
20 Bi 0.076 0.447 0.056 0.246 0.082 0.501 0.072 0.400
B> 0.088 0.568 0.038 0.363 0.089 0.644 0.039 0.443
v 0.068 0.264 0.048 0.162 0.079 0.337 0.069 0.134
w 0.055 0.324 0.019 0.278 0.076 0.389 0.045 0.333
50 B 0.065 0.413 0.055 0.312 0.075 0.472 0.045 0.271
B2 0.075 0.552 0.035 0.451 0.077 0.579 0.067 0.373
b 0.059 0.232 0.039 0.131 0.071 0.331 0.031 0.227
w 0.048 0.322 0.044 0.312 0.068 0.363 0.061 0.355
100 B 0.055 0.377 0.035 0.276 0.065 0.411 0.055 0.301
B> 0.074 0.513 0.054 0.411 0.062 0.502 0.032 0.366
b 0.052 0.204 0.042 0.102 0.068 0.277 0.058 0.170
w 0.039 0.311 0.031 0.302 0.062 0.346 0.054 0.341
150 B 0.048 0.335 0.028 0.232 0.058 0.378 0.048 0.272
B2 0.052 0.477 0.042 0.372 0.056 0.473 0.046 0.371
b 0.044 0.198 0.024 0.091 0.059 0.241 0.049 0.140
w 0.029 0.289 0.021 0.278 0.059 0.338 0.052 0.331

5. Real data application

Example 5.1 (Diabetic nephropathy data). This example aims to examine the extropy and WEX of a
real-world data set based on the GFGM-WD. Using diabetic nephropathy data, a review of medical
information is performed, revealing a poor correlation between the two RVs (bivariate data). This
data was obtained from Dr. Path Lal’s lab database between January 2012 and August 2013.
Researchers measured glucose levels in 132 patients with type 2 diabetic nephropathy throughout
their lives, from childhood to adulthood, according to Grover et al. [44]. The RV Z represents the
mean duration of diabetes, whereas the RV T represents the mean serum creatinine level (SrCr),
based on studies of 19 patients (cf. El-Sherpieny et al. [45]). The FGMBW, GFGM-Chen distribution
(cf. Chen [46]), denoted by GFGM-CHD, GFGM-Epanechnikov-exponential distribution (cf.
Alkhazaalh and Al-Zoubi [47]), denoted by GFGM-EED, and GFGM-generalized exponential
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distribution, denoted by GFGM-GED have all been compared to the GFGM-WD based on Akaike
information criterion (AIC), corrected AIC (AICc), Bayesian information criterion (BIC),
Hannan-Quinn information criterion (HQIC), and consistent AIC (CAIC). Comparing the
GFGM-WD against these distributions, it is found that its AIC and BIC are the lowest, and the
findings are shown in Table 10. Moreover, Table 11 shows estimated values of the extropy and WEX
for the model GFGM-WD(3.3486, 19.2634;9.1617, 1.8278) for the concomitant Ty, .

Table 10. Comparison of goodness-of-fit measures for competing bivariate distributions
applied to diabetic nephropathy data.

—logL AlIC AlCc BIC HQIC CAIC
GFGM-WD -55.07 122.148 129.148 127.815 123.107 129.148
GFGM-CHD -56.30 124.599 131.599 130.266 125.558 131.599
FGMBW -57.72 125.433 130.048 130.155 126.232 130.048
GFGM-EED -98.07 204.142 206.999 207.92 204.781 206.999
GFGM-GED -148.58 309.154 316.154 314.821 310.113 316.154

Table 11. Extropy and WEX of the GFGM-WD at @, = 9.1617 and Ez = 1.8278.

k 2 2 2 2 2 4 4 4 4 4

n 1 3 5 8 10 1 3 5 8 10
LTy -0.7251 -0.5793 -0.5798 -0.6989 -0.7502 -0.7641 -0.7079 -0.6039 -0.5584 -0.5922
Ty -1.2804 -1.0231 -1.0729 -1.3374 -1.4450 -1.3650 -1.2263 -1.0525 -1.0145 -1.1031

Figure 4 presents quantile—quantile (Q—Q) and probability—probability (P—P) plots for the marginal
Weibull distributions fitted to the real dataset. The left panel displays Q—Q plots, where empirical
quantiles are plotted against theoretical quantiles of the fitted Weibull distributions. The close
alignment of points along the 45° reference line indicates good agreement between empirical and
theoretical quantiles, suggesting that the Weibull distribution provides an appropriate marginal
representation for both variables. The right panel shows P—P plots comparing empirical DFs with the
fitted Weibull DFs. The points closely following the diagonal line demonstrate strong concordance
between empirical and theoretical probabilities. These graphical diagnostics, supported by high
correlation coeflicients (exceeding 0.95 in this dataset), support the suitability of the Weibull
marginals and confirm the adequacy of the proposed GFGM-WD model in capturing the empirical
distributional characteristics.
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Figure 4. Q-Q plot and density plot for diabetic nephropathy data.

Example 5.2 (Cholesterol data set). This data set includes cholesterol levels measured at 5 and 25
weeks after treatment in 30 patients (see Shoaee [47]). We fit the data based on the GFGM-WD(a, B1;
@, 3,). The ML estimates of the parameters are @ = 2.897,?1 =1.203,a, = 2.545,,@ =1.087,y =1,
and w = 0.707. Based on AIC and BIC, the GFGM-WD has been compared to the GFGM-CHD,
GFGM-EED, and GFGM-GED families. The results are displayed in Table 12 and indicate that the
GFGM-WD has the lowest AIC and BIC when compared to those families. Table 13 shows estimated
values of the entropy, extropy, and WEX for the model GFGM-WD(2.897,1.203;2.545, 1.087) for the
concomitant Ty, .

Table 12. Model comparison for cholesterol data using information criteria.

—logL AIC AlCc BIC HQIC CAIC
GFGM-WD  -26.82 65.6323 69.2845 74.0395 68.3218 69.2845
GFGM-GED -27.88 67.7564 71.4085 76.1635 70.4459 71.4085
GFGM-CHD -2897 69.9335 73.5857 78.3407 72.6231 73.5857
GFGM-EED -54.34 116.688 118.288 122.293 118.481 118.288

Table 13. Entropy, extropy, and WEX of the GFGM-WD at @, = 2.545 and Ez = 1.087.

k 2 2 2 2 2 4 4 4 4 4

n 1 3 5 8 10 1 3 5 8 10
H(Tpp) 0.2298  0.2828 0.2187 0.1350 0.1066  0.1612  0.2679 0.2842 0.2401 0.2016
Z(T[n,k]) -0.3735 -0.3402 -0.3639 -0.3942 -0.4035 -0.40601 -0.3527 -0.3405 -0.3558 -0.3703
{(Tpy) -0.3080 -0.3612 -0.4291 -0.4886 -0.5051 -0.3101 -0.3191 -0.3516 -0.4105 -0.4430
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Figure 5 illustrates the dependence structure captured by the proposed GFGM-WD using contour
and three-dimensional surface plots. The contour plots reveal a structured pattern characteristic of the
GFGM copula’s dependence form, with contour density indicating regions of higher joint probability
concentration. The three-dimensional surface plot complements this view by displaying the overall
shape of the JPDE, highlighting modal intensity and tail behavior. The smooth curvature and well-
defined modal regions demonstrate the models capability to capture both the strength and direction
of dependence effectively. These visualizations, corresponding to the estimated parameters y and @,
confirm the robustness of the GFGM-WD model in representing real-world phenomena with distinct
marginal behaviors and moderate dependence within a unified probabilistic framework.

Q-QPlot Q-Q Plot
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Figure 5. Some summary plots of the cholesterol data set.

6. Discussion and concluding remarks

In this study, we introduced a new bivariate Weibull distribution, termed the GFGM bivariate
Weibull distribution (GFGM-WD), constructed by coupling Weibull marginals with the generalized
Farlie-Gumbel-Morgenstern (GFGM) copula. This model offers a flexible yet analytically tractable
framework for describing bivariate lifetime data exhibiting weak to moderate dependence, as
commonly observed in reliability, medical, and engineering applications. = The closed-form
expressions of its joint, marginal, and conditional distributions allow for straightforward computation
of several reliability measures and statistical properties.

Practical interpretation of the model parameters. The parameters of the proposed GFGM-WD
model possess clear physical interpretations that enhance its applicability in practical contexts. The
Weibull shape parameters a; (I = 1,2) describe the behavior of component failure rates: a; < 1
corresponds to decreasing failure rates (infant mortality), @; = 1 to constant failure rates
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(exponential-type behavior), and @; > 1 to increasing failure rates (ageing effects). The scale
parameters 3; (I = 1,2) determine the characteristic lifetimes, where larger 5, values imply longer
expected survival times. The dependence parameters y and w jointly govern the strength and type of
association between the two components. Specifically, y controls linear dependence in the classical
FGM sense, while w introduces nonlinear dependence effects that expand the attainable correlation
range and allow for moderate positive or negative association. Positive (y,w) values indicate
simultaneous degradation or shared environmental stress, whereas negative values suggest
compensatory or competitive reliability behavior. Together, these parameters provide meaningful
insight into correlated system performance and joint survival probabilities, which are essential for
reliability design and medical prognosis.

From a methodological perspective, the GFGM-WD retains analytical simplicity while extending
the dependence flexibility of the classical FGM-Weibull models. The derived reliability and
uncertainty measures including entropy, weighted entropy (WE), extropy, and weighted extropy
(WEX) were examined both theoretically and numerically. Parameter estimation was conducted using
maximum likelihood and Bayesian approaches, with Bayesian inference showing improved stability
and efficiency. A Monte Carlo simulation study confirmed the consistency and precision of the
estimators, and two real medical datasets demonstrated the superior fitting capability of the proposed
model compared to existing bivariate Weibull frameworks.

Future study. While the GFGM-WD is well suited for datasets exhibiting moderate dependence
without significant tail behavior, it still inherits some limitations from the GFGM family, such as
restricted dependence range and challenges in extending to higher dimensions. In future research,
these limitations can be addressed by: (i) embedding stronger dependence structures using other
copulas (e.g., Clayton, Joe, or Archimax families), (ii) extending the current formulation to trivariate
or multivariate versions, and (iii) adapting the model to handle censored or heterogeneous lifetime
data. Moreover, issues of parameter identifiability and copula-based estimation (as discussed by
Genest and Rivest [48]) warrant further exploration to improve robustness and interpretability in more
complex reliability systems.

Overall, the proposed GFGM-WD constitutes a significant advancement in modeling dependent
lifetime phenomena, offering a balance between theoretical generality, computational tractability, and
practical interpretability.
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