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Abstract: As a crucial research tool, epidemic models have played an important role in predicting
disease progression. In this study, we delineated the full dynamics of epidemics by extending the
susceptible—exposed—infectious—recovered (SEIR) model to include media effects (M), unascertained
cases (A), and case isolation in a hospital (Q), generating a model that we called SEAIQRM. Dual
time delays, aware susceptibles, and fractional order were also incorporated, synergistically enhancing
the model’s accuracy in depicting the real dynamic process of disease transmission. We calculated
a specific expression for the basic reproduction number R, proved the existence and uniqueness of
the model solution, and analyzed the local and global stability of two types of equilibrium points.
To investigate the optimal control of the model, the sensitivity indices of the parameters in R, were
computed, and vaccination rate and isolation rate were selected as control variables, exerting the
strongest effects on Ry. Finally, the effectiveness of the model in illustrating and controlling the
spread of infectious diseases is verified through numerical simulation. For a fractional order « in the
interval [0.7, 0.9], the peak sizes of the asymptomatic (A) and symptomatic (/) compartments decreased
significantly relative to the =1 benchmark, corresponding to reductions of 32%—-37% and 28%—33%,
respectively. Implementing an optimal control strategy with vaccination (# = 0.4) and quarantine (g =
0.5) minimized implementation costs while achieving the most effective reduction in disease spread.
The model can provide information regarding intervention timing in a setting with similar parameters.
However, its use in the real-world requires calibration and validation.
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1. Introduction

Since the 21st century, global public health has been confronted with security challenges posed by
infectious diseases. Historically, the 1918 Spanish flu pandemic caused tens of millions of deaths with
far-reaching effects. Subsequent threats, including SARS, COVID-19, and the HIN1, have further
highlighted the urgency of addressing these issues. According to World Health Organization data [1]
from 2022, over 10.2 million people worldwide die from epidemics each year, accounting for 18% of
the total number of deaths. Epidemics not only pose threats to human life and health, but also result in
substantial economic losses and exert profound effects on social structures.

Many mathematical models have been proposed, attempting to increase the understanding of the
dynamical behavior of infectious diseases. Kermack and McKendrick [2] pioneered the classic
compartmental model by dividing a population into three distinct groups: susceptible, infected,
and removed. El-Shahed and El-Naby [3] developed a Susceptible-Vaccinated-Infectious-Recovered
(SVIR) compartmental model to investigate the dynamics of childhood diseases and vaccine efficacy.
The dynamics of HBV infection was modeled using differential equations [4], and also the epidemic
dynamics of Ebola [5], dengue [6], and HIV [7].

Research has indicated that media effects are pivotal to infectious disease prevention and control.
During the COVID-19 pandemic, mass media played a core role by disseminating key information,
including updates on new infections and mortality rates, tracking of infected individuals’ activity
trajectories, detailed explanations of disease symptoms, and guidance on prevention and treatment.
The public actively engaged in prevention and control, adopting measures such as mask-wearing,
disinfectant use, and reduced visits to high-risk areas. These measures significantly curbed the spread
of COVID-19 and other infectious diseases.

The profound effects of time delays on model dynamics and control have also been well-
documented. Motivated by these insights, a variety of studies have extended classical epidemic models
by integrating time delays and media effects through various analytical approaches. For example,
Liu et al. [8] pioneered the integration of media coverage into epidemic modeling by proposing a
media effect function to quantify its influence on disease outbreaks. Zaman et al. [9] developed an
optimal control Susceptible-Infectious-Recovered (SIR) model with time delay, wherein control was
implemented through the treatment of infected hosts. McCluskey [10] investigated an SIR model
that incorporated distributed and discrete delays. Misra et al. [11] established a delayed model with
media effects by accounting for the time delay in media campaign implementation. Wu et al. [12]
enhanced an existing model by introducing two time delays and analyzed the existence of global
solutions for the resulting time-delayed monostable epidemic model [13]. Kundu et al. [14] proposed
a delayed epidemic model with saturated incidence and treatment functions, incorporating a delay to
represent the temporary immunity period of recovered individuals. Greenhalgh et al. [15] improved
model realism by introducing delays related to memory decay and media effects, analyzing equilibrium
stability, and performing numerical simulations by using pneumonia as a case study. Kar et al. [16]
embedded media effects into a SEIR framework by introducing a parameter M and directly transferring
aware, susceptible individuals into the recovered compartment. Kabir et al. [17] formulated a reaction-
diffusion model for media-influenced infectious diseases and examined the effects of key parameters
including time delay, infection rate, and media effect. Feng et al. [18] constructed a COVID-19 model
by incorporating media coverage and isolation measures, classifying susceptible individuals into aware
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and unaware categories based on media reports. Li et al. [19] incorporated an exponential media
function into a SIEM model with a dedicated media-effect variable to describe contact transmission
rates, analyzing COVID-19 transmission patterns under dual media effects.

Although existing studies on media effects rely on integer-order models, the inherent memory and
genetic traits of virus transmission are more accurately captured by fractional calculus. Furthermore,
fractional-order models have an additional degree of freedom during parameter estimation, offering
enhanced flexibility for data fitting [20]. This advantage has stimulated extensive research on
fractional-order infectious disease dynamics.

Area et al. [5] concurrently analyzed classical and fractional SEIR models for Ebola, demonstrating
that the fractional version provided better fit to real data. Singh et al. [21] formulated a fractional
epidemiological model with non-singular kernel-based derivatives to characterize computer virus
propagation and derived solutions via iterative methods. Sene [22] developed a delayed SIR epidemic
model within the framework of Mittag-Lefller kernel-based fractional derivatives. Chen et al. [23]
proposed a generalized fractional SEIAR model applicable to monomial and polynomial fractional
differential equations, and introduced a reliable parameter estimation method that combined an
improved hybrid Nelder—Mead simplex search with particle swarm optimization. Baleanu et al. [24]
introduced a fractional model that incorporated isolation and quarantine mechanisms, established a
generalized formulation, and derived corresponding stability criteria. In [25], Maji constructed and
analyzed a fractional-order model that accounted for media influence on disease dynamics, finding that
sufficiently strong media effects can induce stable oscillations in the system. Nisar et al. [26] developed
a fractional-order model by employing multiple numerical techniques and tuning parameters associated
with temporal fractional orders. Liang et al. [27] proposed a local fractional Vakhnenko—Parkes
equation and applied the Mittag-Leffler function-based method to this equation for the first time.
Wang [28] pioneered the construction of a fractal active low-pass filter on a Cantor set by using
local fractional calculus. Hao et al. [29] proposed the next class of infectious disease models that
incorporated presymptomatic and asymptomatic infections.

Motivated by advances in theoretical and applied epidemic modeling, the current study introduces a
fractional-order model, called SEAIQRM, which incorporates dual time delays into media effects.
To more accurately characterize real-world transmission scenarios, this study aims to develop a
comprehensive, precise, and practically valuable theoretical framework. The proposed framework
generalizes the classical integer-order models by incorporating key epidemiological features, including
asymptomatic infections, quarantine measures, media effects, and stratification of susceptibles into
aware and unaware populations, and it leverags the fractional-order parameter « as a pivotal regulator of
memory intensity and dynamic evolution. This integration enables precise modulation of transmission
rhythm, stability, threshold behavior, and control efficacy, precisely characterizing both the historical
cumulative impact of viral transmission and the real-world delayed effects of intervention measures,
and significantly strengthening the model’s explanatory power and practical utility in real-world
applications. The analysis establishes the basic reproduction number R, and identifies the disease-free
equilibrium (DFE). Furthermore, it proves the existence and uniqueness of the endemic equilibrium
while demonstrating the local asymptotic stability of the disease-free state. In addition, a sensitivity
analysis of Ry is conducted. Thereafter, control variables are selected to examine the model’s optimal
control. The theoretical findings are validated through numerical simulations, which also provide
insights into system dynamics and optimal control policies.
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The major contributions of the current study are summarized as follows: (1) Different from prior
models [30, 31], this study presents an extended epidemic model, designated as SEAIQRM, which
enhances the classical SEIR framework by incorporating media effects (M), unascertained infections
(A), and hospital-based case isolation (Q). The model further refines the susceptible population by
stratifying it into unaware (S;) and aware (S,) classes, thereby comprehensively capturing the full
transmission-intervention-isolation continuum. Existing research has not yet incorporated all of these
elements in a unified and comprehensive framework. (2) Compared with existing studies [32], this
study presents the integrated framework that synergistically combines fractional calculus, dual time
delays, and media effects. The approach leverages the memory dependence of fractional operators
to capture the cumulative historical impact of virus transmission, while incorporating dual delays
to realistically represent the non-instantaneous nature of media interventions in practice. (3) An
optimal control problem is formulated for the proposed system that incorporates vaccination strategies,
aiming to simultaneously minimize the total number of infections, maximize the size of the unaffected
population, and reduce the overall intervention cost.

2. Preliminaries

Compared with other fractional derivatives, the Caputo fractional operator is adept at describing
complex physical phenomena with memory and hereditary properties. This feature, coupled with
its requirement for initial conditions in classical form, makes this operator particularly suitable for
modeling physical systems. Consequently, the current study is based on Caputo type fractional
derivative. Before the presentation and analysis of the model, the fractional integral and Caputo
fractional derivative are introduced.

Definition 1. The fractional integral of order a > 0 for the appropriate function f(t) can be described
by the following expression [33]:

1 !
L' f@) = @fo(t—e“)““f({)d{,wo, 2.1)

where I represents the gamma function, which is used to extend the factorial to the domain of real and
complex numbers.

Definition 2. For the appropriate function f(t), the Caputo fractional derivative of order « is defined
as [33]:

CDEf(r) = r(% f (t = O FOQdL 1> 0, 22)
n 0

—a)
where n = [a] + 1; [a] denotes the smallest integer that is greater than or equal to a; and I represents
the gamma function, which extends the factorial function to real and complex numbers.

3. Model formulation
In the SEAIQRM model introduced in the current study, the susceptible population is categorized
into two groups: the unaware susceptible individuals S;; and the aware susceptible individuals §,.

The members of the latter do not participate in disease transmission due to self-imposed isolation after
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information uptake. Here, E refers to those in the latent infection stage who are infected but not yet
infectious or symptomatic. A fraction of these individuals later progress to the symptomatic infectious
class I, while the remainder enter the asymptomatic infectious class A. Both groups contribute to
disease spread. The model further incorporates compartments for quarantined individuals Q, recovered
individuals R, and media effects M.

In this model, direct inter-individual transmission is considered the primary route of disease
spread. Presymptomatic infections are categorized as a form of asymptomatic infection, with a
defined proportion assumed to develop symptomatic manifestations after a specific latency period.
During the initial phase of an outbreak, increasing media coverage exposes initially unaware
susceptible individuals to preventive health information, prompting their transition into an aware
state. This heightened risk perception encourages the adoption of protective behavior, reducing
disease transmission rates. However, disease-related information is not retained indefinitely, and thus,
some aware individuals may revert into an unaware status once information dissemination wanes. To
capture non-instantaneous transition along the causal pathway from information exposure to behavioral
adaptation in real-world contexts, the model also incorporates two critical time delays: 7;, which is a
delay between receiving media information and developing self-protective awareness, and 7,, which is
a delay associated with the media processes of information acquisition and dissemination. The overall
structure of the disease transmission process is illustrated in Figure 1.

Figure 1. Disease transmission flow chart.

The epidemic process under consideration is described by the following system of fractional-order
differential equations:

DS (1) = A= BS1f(A, D) =S M(t = 71) + mS, — uS 1,
CDS,(t) =S 1 M(t — 7)) —mS, — S,

CDE(f) = BS\ f(A, ) - 0 — uE,

CDA() = (1 = r)0E — yaA — rpA — UA,

CDU(t) = roE + y4A — 1l — gl — ul,

D*Q(1) = gl = roQ — uQ,

CDYR(t) = raA + il + roQ — UR,

CDM(t) = £E[A( — 1) + (1 = )] — ¢M.

3.1
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The model parameters are described in Table 1.

Table 1. Description of model parameters.

Parameters Descriptions Value
A Recruitment rate 0.05
B Transmission rate of infected persons 0.41
I3 Media effect impact 0.05
1) Media effect dissemination loss 0.05
u mortality rate 0.05
n Rate of dissemination of awareness 0.02
m aware to unaware transfer rate 0.001
o Non-infectious to infectious conversion rate 0.35
r Symp/asymp infection determination rate 0.23
Ya Asymptomatic to symptomatic conversion rate  0.42
ra Asymptomatic recovery rate 0.34
ry Symptomatic recovery rate 0.34
ro Quarantine recovery rate 0.05
q Symptomatic isolation rate 0.03
c Undetermined to determined transmission ratio  0.55

4. Basic reproduction number and existence of equilibrium points

For any disease model, DFE represents a fundamental steady state that is crucial for determining
whether an infection can invade a fully susceptible population.

The basic reproduction number R, serves as a threshold parameter that governs DFE stability. It
is defined as the expected number of secondary infections that arise from a single typical infective
individual in a completely susceptible population. The proposed model always admits DFE. Let £ = 0
and I = 0. DFE is given by X, = (l%, 0,0,0,0,0, 0, 0), which can be expressed in the following form:

where

F(X) =

AIMS Mathematics

=
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dX - -
= = FX0 - GX),

oFE +ukE

—rOE —ys A+l +ql +ul
X0 =
’ G( ) —nSlM(t—T1)+mS2 +/JS2

—ql +roQ +pQ
—raA —ril —roQ + uR
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—¢[A( —12) + I(1 = T2)] + oM
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4.2)

Volume 10, Issue 11, 27898-27920.



27904

Then, the Jacobian matrix of F(X) is

0 BS10)fay BS1(0)fi0)
F(X)=10 0 0 , 4.3)
0 0 0
and the Jacobi matrix of G(X) is
o+ u 0 0
GX)=|-(1-roc ya+ra+u 0 “4.4)
-ro ~ya gt

Therefore, the spectral radius of the FG™! matrix is the basic reproduction number of the
model (3.1), i.e.,

_ A=nopS 1O fawy  [yall =00 +10(ya + 74+ WIS 1O) o
T T+ Wya At ) (T + W) (ya+ra+ @ +q+p)

4.5)

A rigorous proof of the solution’s positivity precedes the examination of the model’s local and
global properties at the disease-free and endemic equilibria through Ry.

Theorem 1. For any t > 0, the solution to the model (3.1) is non-negative.

Proof. To establish the non-negativity of all solutions, the proof by contradiction method is used.
Assume that a first time ¢y > 0 exists, at which one of the state variables becomes negative. Our goal is
to demonstrate that such a situation is impossible. Without losing generality, suppose that S()) = 0
and S |(7) becomes negative immediately after #,. From the model equations, the derivative of S at 1,
satisfies

DS 1(ty) = A — BS 1(to) f(A(to), I(t)) — 1S 1 (t0)M(ty — T1) + mS 2(to) — uS 1(to).

Given that S (#)) = 0, the equation can be simplified into DS (ty) = A + mS ,(%o).

Considering that A > 0, then DS |(#y) > A > 0. This result indicates that S (¢) is non-decreasing
at tp, contradicting the assumption that it becomes negative. Through analogous reasoning, all the
solutions of model (3.1) remain non-negative for all > 0 cases. O

The model also admits an endemic equilibrium, representing a state of persistent infection within a
population. The analysis of this equilibrium yields the following existence condition:

Theorem 2. For model (3.1), if Ry < 1, then the model only has the DFE point X, = (5, 0,00 00,
0, 0). If Ry > 1, then model (3.1) has a unique endemic equilibrium point X* = (S7, S5, E*, A*, I', O,
R*, M™), where all state variables satisfy S}, S5, E*, A*, I', O*, R*, M* > 0.

Proof. The endemic equilibrium point X* is defined by the condition that all fractional-order derivatives
will vanish, i.e.,
DS (1) = D*S5(t) = ... = “D"M(t) = 0.
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Setting the right side of model (3.1) to zero and solving the resulting algebraic system yields the
following expression for endemic equilibrium:

§* = M) g o BEATT e gaer)
L7 BAAn ) mtwrum+m+né(As+1)° =2 7 gm+p) - ’
E* = BAGn+palc(1-r)pt+rgtya(1-n)]-p(m+)gp(o+u1) « _ (I=noE”
a(o+wlc(1-r)p+rg+ya(1-Nlm+w+nél(1-r) p+rg+ya(1-r)]° g
I = [rog+ya(1-nolE” Q* — ql” * ro+u
sp ’ ro+u’ pl(raA +r ") (ro+m)+rogl1’

where g =ya+ra+u,p=ri+q+pu.

Existence: When Ry, > 1, the infection-driving terms in the numerator dominate the inhibitory
effects in the denominator. This condition ensures the positivity of the right side of the equilibrium
equation, implying the existence of a biologically meaningful solution E* > 0. To formalize this
finding, we define a continuous mapping F : R* — R*, as follows:

BA(m + pyo[c(1 = r)p + rg +ya(l = )] — pu(m + p)gp(o + p)

F(E") = .
(&) o(c+wlcd =rp+rg+ys(l =nlm+pu) +né[(1 —r)p +rg +ya(l —r)]

Given the linear growth of f(A*, I") with respect to E* and the condition Ry > 1, a closed interval
[0, E] exists, over which F forms self-mapping. In accordance with the Brouwer fixed-point theorem,
this condition guarantees the existence of at least one positive solution E* > 0 in the interval.

Uniqueness: As derived above, a nonlinear equation that concerns E* is obtained. If the derivative
of the right side of the equation with respect to E* is negative, then the right side is strictly decreasing
in E*. By contrast, the left side E* increases linearly. Within the domain of positive real numbers, such
an equation admits at most one solution. Combined with the earlier existence result, this condition
guarantees the uniqueness of the endemic equilibrium E*.

Positivity of the solution: All state variables can be expressed as functions of E* > 0. Given that
all system parameters (A, u, o, &, ¢, m, i) are positive and Ry, > 1 ensures the dominance of infection-
sustaining terms, then S7, §3, E*, A", I", Q*, R*, M* > 0. This statement completes the proof of
Theorem 2. O

Theorem 3. If Ry < 1, then the DFE point X, of model (3.1) is locally asymptotically stable. If Ry > 1,
then the DFE point X, of model (3.1) is unstable.

Proof. The Jacobi matrix of the model at X, is

—H m 0 —BS1(0) fay  —=BS1(0) f10) 0 0 -nS.(0)
0 —-(m+p) 0 0 0 0 0 7510
0 0 —(oc+p) BS10)fawy  BS1(0)fio) 0 0 0
10 0 (1-r0o -g 0 0 0 0
JX) =1 0 ro i —p 0 0 o |
0 0 0 0 q —(ro+u) O 0
0 0 0 r'a ry ro —u 0
0 0 0 & & 0 0 -
where g =ys+ra+u,p=r+q+pu.
The characteristic equation that corresponds to J(Xj) is
A+ > A +m+ (A +rg + WA+ T () = 0, (4.6)
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and
A+o+u  BS10)fao —BS 1(0) fi0)
T =|-(1-roc A+ys+ra+pu 0
—ro 7 A+r+q+p

=A+o+uwWA+ysa+ra+wA+r+qg+p (4.7)

= (1= 1)yaoBS 1(0) fio) = ro (A +ya + ra + ()BS 1(0) fro)
— (1 =noBS10) fa (A + 11+ q + ).

Thus, the Jacobi matrix J(Xy) has the following eigenvalues: A; = Ay = —u, A3 = —-m—pu, Ay = —ro — U,
As = —¢.

Evidently, 4, 4», 43, 44, and A5 are negative real roots of the characteristic formula, Eq (4.6). The
remaining eigenvalues of the characteristic equation have negative real parts, as proven below. Suppose
that 4 = x + iy(x > 0) is an eigenvalue of the characteristic formula, Eq (4.7). Then, Eq (4.7) can be
transformed into

3 (1 = r)yaoBS1(0) fio) N ro3S1(0) fio)
A+c+wWA+ys+ra+wA+r+g+u) A+oc+p@+r+qg+p
(1 = roBS1(0) fao)
A+o+W)A+ya+ra+p)

4.8)

Substituting A = x + iy(x > 0) into Eq (4.8), we obtain

_ (1 = 1yaoBS1(0) fio) raBS1(0) fio)
(x+iy+to+ux+iy+gx+iy+p) x+iy+to+u)(x+iy+r+q+p
(1 = oBS1(0) fao
(x+iy+o+u)(x+iy+ya+ra+p
(1 = n)ioBS1(0) fio)

= | |
(Vx + 0+ )2 + y)(V(x + 8)?) + y)(V(x + p)?) +2)

i raB3S 1(0) fioy 4] (I =noBS10)fao

(Ve + o+ + )+ + g+ +y) (Y +o +p)?) +y2)({(x + p)?) +y?)
(1 = r)ioBS 1(0) fio) . ro S 1(0) fio0) N (I =r)oBS 1(0) fao
(C+wya+ra+wp (@C+u)(ri+q+p) (O +p(ya+ra+p)
= R,.

This result contradicts the initial assumption that Ry < 1. Hence, all the eigenvalues of the
characteristic formula, Eq (4.7), have negative real parts. Thus, DFE point X is locally asymptotically
stable when R, < 1. This statement completes the proof of Theorem 3. O

Theorem 4. The endemic equilibrium point X* of model (3.1) is locally asymptotically stable if Ry > 1.
If Ry < 1, then the endemic equilibrium point X* of model (3.1) is unstable.
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Proof. The Jacobian matrix of the model at the endemic equilibrium point X* is

—u m 0 -BSifr —BSifir O 0 -nS;
Mt —(a+ ) 0 0 0 0 0 7S
BfASTY 0 —(c+w —BSife BSifr 0O 0 0
. 0 0 (1-ro  -g 0 0 0 0
JX) = 0 0 ro i —p 0 o o |
0 0 0 0 g —(o+w) 0 0
0 0 0 T4 r ro —u 0
0 0 0 & & 0 0 —¢

where g =ya+ra+u, p=ri+q+pu.
Thus, the characteristic equation that corresponds to J(X*) is

(A + )@ + rg + (MM Ly[Li Lo Ly — (1 = ryyacBS; fi- + roBS’ firLy = (1 = NoBS’ fir L]
+ (=mnS BFA" IN[~(1 = Noyaé — €1 - oLy - raéLy]] = 0.

To simplify the expression, let Ly = A+o0 +u, Ly =A+ys+ra+u, Ly=A+r+q+u Ly =1+ ¢.
From an argument that is analogous to the proof of Theorem 1, all the eigenvalues of the

characteristic equation have negative real parts when R, > 1. Consequently, endemic equilibrium

X* is locally asymptotically stable. This finding completes the proof of Theorem 4. O

Theorem 5. If Ry > 1, then model (3.1) has a unique endemic equilibrium point X* that is globally
asymptotically stable.

Proof. First, the Lyapunov function is defined as

*

M
)"DM,
M

S*
‘pvV=(- S—I)CD"SI o+ (1=
1

where §7, S5, E*, A*, I", and M denote the components of the endemic equilibrium X*. This function
quantifies the energy associated with a system’s deviation from its steady state by evaluating the
logarithmic divergence of each state variable from the equilibrium.

By applying the chain rule for Caputo fractional derivatives, we compute “D*V along the solution
trajectories of model (3.1) as follows:

*

YD M.

ST M
Cna 1\C ne
D'V=(1-—)D'S +..+({-
( 3 1) I ( i
Considering S (¢) as an illustrative case, its substitution into the model equation yields

DSy =A-BS1f(A, D) —nS Mt —11)— uS +mS,.

At endemic equilibrium X*, the identity A = BS| f(A*, I')+nS | M*(t—7,)+uS | —mS is maintained.
Substituting this relation and simplifying the result leads to

S*
(1- S—i)[—ﬁ(Slf(A, I = ST A" T) = n(S 1Mt —11) = STM) + m(S> — §3) — u(S1 - S].
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Applying the logarithmic inequality x — 1 — Inx > 0, we transform cross terms into square terms.
Under the condition Ry > 1, the structure of the basic reproduction number (4.5) reveals that the
infection term BS7f(A*,I") dominates over the suppression terms, such as natural mortality x4 and
media effect né€. This dominance allows the infection term to be decomposed as follows:

SUAD _SSAD | o

1 ’ 1 >

When R > 1, the magnitude of the numerator S f(A*, I") guarantees its dominance in governing the
negativity of the derivative. Similarly,

SlM(t— Tl)

(S M(t - -STM*)=-nS M* —_—

By extending analogous analysis to all system variables, a conclusion can be drawn that DV < 0,
with equality holding if and only if §; = §7, ... , M = M".

In accordance with the LaSalle invariance principle for fractional-order systems, all system
trajectories eventually converge to the largest invariant set M = {x € R|°D*V = 0}. Based on
the preceding analysis, this set consists solely of the endemic equilibrium X*. Consequently, all
solutions converge globally to X*. Moreover, the delayed state variables are reduced to constants at the
equilibrium, implying that time delays do not affect the sign definiteness of the fractional derivative.
This finding completes the proof of Theorem 5. O

5. Sensitivity analysis

A sensitivity analysis reveals the importance of each parameter to disease transmission. It provides
information about the design of effective and cost-efficient strategies for disease control and prevention.
By examining how variations in the parameters of R, influence its value, the sensitivity analysis
identifies the most influential parameters and quantifies their contributions to disease spread. This
knowledge allows policymakers to adjust critical parameters strategically, steering R, toward 1 to
reduce infection prevalence and curb transmission. Consider the function f(A,I) = cA + I, where
¢ denotes the transmission rate ratio between asymptomatic and symptomatic infected individuals.
The sensitivity indices of the parameters in R, are computed using the normalized forward sensitivity
index method described in [34]. The corresponding formula is given in Eq (5.1):

Ro_%ﬁ

o= R (5.1)

The sensitivity indices of the parameters p in R, are computed using Eq (5.1), as described below:
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Ro —1 . Ro = (1 = ro)yaly — yaocLi(1 = r) — ya»)(1 = r)o

T Lyo(1 —r)(cLy +y4) + roL,? ’
Ro _ R _ M Ry —Tal(l =r)cLy +ya(l =1)]
es,0) " =l = ———, 0,0 = ,
(c+ o (1 = r)cLiLy + [ya(1 — 1) + rl,]L,
Ry _ =rilya(l = r) +rL,] Ry _ —cLi —ys+ L,
SD,«[ - 2 ";Dr - P
(1 = r)cLy” + [ya(l = r) + rLy]L; (1 =rcLy+ys(1 =r)+rL,
Ro _ —qya(1 =r) +grl, Ry _ c(l-=r)
(Pq - 2 9()DC - ’
c(1 = r)L3~ + Ls[ya(1 = r) + rL;] c(l=nrLy+ys(1 =r)+rL,
o, o =l = e+ L L? = [(1 = r)e = rlLsLy? ya(l = r)(LiLy + Ly Ls + Ly L)
R0 =

LiLLs[(1 = 1)Ly +ya(l =)+ Lyl LiLoLs[(1 = r)cLy +ya(1 = 1) + rly]’

where Ly =r;+q+u, Ly =0+ pu,and Ly = ya +ra + .

The sign of the sensitivity index reflects the nature of the correlation between a parameter and
Ro: A negative value denotes an inverse relationship, while a positive value indicates a positive
association. The numerical results identify the isolation rate ¢ as the most influential parameter
on Ry. Consequently, effective intervention strategies should prioritize enhancing the isolation
and management of infected individuals and minimizing contact between susceptible and infected
populations. Such measures disrupt transmission pathways and reduce viral dissemination efficiency.
The influence of each parameter on Ry is visually summarized in Figure 2.

0.8

0.2r 1

sensitivity index
o

-0.6 1 1

-0.8
o r rI rA q J7 Cc YA

parameters
Figure 2. Relative impact of model parameters on R.

6. Optimal control

6.1. Formulation of the optimal control problem

In epidemiological modeling, optimal control theory provides a rigorous framework for designing
effective public health interventions. The central aim is to achieve disease containment while
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systematically evaluating the cost-effectiveness and practical feasibility of control measures. In the
current study, the vaccination rate and isolation rate of symptomatic infected individuals are selected
as control variables. The objective function, which incorporates infection prevalence, control costs,
and disease duration, is formulated as follows:

T
J:ffwd+wﬂ+%mmmf+%mmmf+%mfmx (6.1)
0

Here, wy, wy, w3, wy, and ws represent the corresponding weighting coefficients, all of which are
positive real numbers. These coefficients balance the relative importance of disease transmission
scale and control costs within the objective function. The control variables u(¢) and ¢(f) denote time-
dependent vaccination and isolation rates, respectively, while d represents the cumulative number of
deaths. The corresponding control constraints are given by

Ui = {(u, @)|0<u(t)<1,0<g<1}. (6.2)

Upon incorporating control variables u(t) and ¢(¢) into system (3.1), the resulting controlled system
dynamics are governed by the following equations:

DS (1) = A=BS\f —nS Mt —11) + mS, — uS; —u(t)S,
DSy (1) =S 1M(t — 1) —mS, — uS» — u()S,,

CDYE(t) = BS f(A,I) — 0E — uE,

CDA(f) = (1 = r)0E — y4A — r4A — UA,

CDUt) = roE + y4A — ril — q()] — ul,
DQ(1) = q()] - ro0 — pQ,

CDYR(t) = rpA + ril + roQ — uR + u()S| + u(®)S,,

CDM(1) = E[A(t - 12) + I(t = T2)] — $M.

(6.3)

The optimal control objective of the current study is to determine the pair (u*, ¢g*) € u,q that satisfies

J(u,q) = ( inf  J(u", q"). (6.4)

u*,q*)Euaq

6.2. Existence and uniqueness of optimal control

Theorem 6. An optimal control for the control problem (6.1)—(6.4) exists.

Proof. To prove the existence of optimal control by using Theorem 4.1 from [35], verifying the
following conditions is sufficient:

(1) The set of admissible states is non-empty.

(2) The control constraint set U, is convex and closed.

(3) The right side of the control system (6.3) is bounded by a linear function of the state and control
variables.

(4) The integrand of the objective function

1 1 1
MALm%m:wM+wﬂ+Emwmf+§m@®f+§mf
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is convex on U .
(5) Constants hy, h, > 0 exist, such that the integrand satisfies

1 1 1
wiA + wol + §w3(u(t))2 + 5w4(q;(z))2 + Ewsd2 > hylul + holgl.

Then, we prove each of the five conditions above:

(1) In accordance with the proof of existence and uniqueness of the solution to the state system, the
set of admissible states is non-empty.

(2) Forany Uy = (u1, q1), Uz = (u2, q2) € Ugg, and any A € [0, 1], let Us = A(uy, q1) + (1 = D(u2, ¢2).
Giventhat 0 <u#; <1,0<¢; <1(@=1,2),0<Au; +(1 = Du; < 1,and 0 < Ag; + (1 — Vg, < 1 hold.

Thus, U; € U,y, implying that U, is a convex set. In addition, for any convergent sequence U, € U,
lim u, = u, and lim ¢, = ¢q. Giventhat 0 < u, < land0 < g, < 1,then0 < x<1and0 < ¢g < 1. Thus

rﬁ:; is a closed set.
(3) By disregarding the negative terms in state system (6.3) and given 0 < 4 < land 0 < g < 1,
then

DS (1) 0 o' 0 0 0 0 O A
CDYS (1) nM 0 0 0 0 0 O 0
CDYE(f) Bf(A,I) O 0 0 0 0 O 0
CDA®) |< 0 0O (I-rnc 0 0 O Of+]0 (6.5)
CDU(t) 0 0 ro va 0 0 O 0
DOt 0 0 0 0O 1 0 0 0
CDR(1) 1 1 0 ra 11 rg 0O 0

Thus, Condition 3 holds.

(4) Evidently, L(A, 1, u, q, d) = wiA + wal + 2ws(u(®)* + 3wa(q(t))* + 3wsd* is convex with respect
to control variables u and g on U,,.

(5) By taking

1
hy = §W3(min(1, Vw3, Vwy)),

and

1
hy = Swa(min(l, Vws, Vwa)),

we obtain the inequality wiA + wal + 2ws(u(®))* + 2wa(q(1)* + 2wsd® > hi|ul + holgl, which verifies that
Condition 5 is satisfied. O

6.3. Optimality requirement

On the basis of the objective function, the Hamiltonian function H is constructed as follows:
H =L+ A5D"S (t) + ASDS 5(t) + A5 D E(t) + A D*A(t) + ASDI(t) + ASD*Q(t) + ASDR(t), (6.6)
where Ay, Ay, A3, A4, 45, dg, and A; are accompanying variables.
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Theorem 7. Let (S7, S5, E*, A", I', O, R*, u, q*) be the optimal pair of the optimal control
problem (6.1)—(6.4). Then, the accompanying variables Ay, A, A3, A4, As, Ag, and A; are satisfied
D = NBFA* ) +u+u’)— LA D — Au*,

D = —Aym+ (m+ p+u*) — Ak,

D3 = 3u— (1 —r)o — Asro,

DAy = —wi + UBS1fA(A T) — 13BS 1 fa(A", I*) + Au(ya + 1a + 1) — Asya — Agra, (6.7)
DAs = —wy + 4SS 1fi(A", ) = B3BS 1 fi(A*, T) + As(ri + ¢* + p) — Asq” = g1,

D2 = As(rg + p) — A7r,

DN = A

With the following horizontal conditions:
/11:/12:/13:/14:/15:/16:/17:0- (68)

Furthermore, optimal control can be expressed as

u* = min(1, max(0, u(r))), 6.9)
q" = min(1,max(0, g(1)). ‘
Proof. Substituting control system (6.3) into the Hamiltonian function (6.6) yields
1 2, ] 2 1 h
H(t) =wiA + wol + Ewﬁu(r)) + §w4(q(t)) + Ewsd
+ L4[A=-BS1f(A, D) —nS Mt —11)+mS, —uS| —u@)S]
(6.10)

+ L[S M@t —11) —mSy — pS, —u@®)S2] + BIBS1f(A, ) — 0E — uE]
+ L[(1 = r)OE — yaA — rsA — uA] + As[roE + y4A — rill — q(t) — ul]
+ Aslq(®)] — rpQ — uQ] + A7[raA + ril + rgQ — uR + u()S + u(r)CJ.
For any ¢ € [0, T], the application of Pontryagin’s minimum principle yields the following necessary
conditions:

D"y = —gS—Hl = WBfAT) +p+u) — LA D) — A,

DA, = _(%_HZ =-Aim+ L(m+u+u")— A;u",

DA = U= lpu— (0 -ro - Asro,

DA = =% = —wi + LBS 1 fa(A" ) = B3BS 1 fa(A" ) + A4(ya + 14 + ) — Asya — Aaa,
“D'As = =% = —wy + 1S fi(ATT) = L3BS 1 fi(A, I) + As(ry + G + 1) — Aeq” — Aar,
D2 = —z—g = Ag(rg + ) — A7rg,

D= - =—pp

(6.11)
Furthermore, under optimal control conditions with ¥ = u* and ¢ = ¢*, % = (0 and ‘2—2’ = 0 hold,
leading to the following expressions:

{u(t) — L=9)S1+(H-17)S3 ,

w3
(As—A6)1

q(t) = =

(6.12)
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Moreover, the following can be derived from the control constraints:

u* = min(1, max(0, u(r))), 6.13)
q" = min(1, max(0, g(1))). '
Thus, the proof of Theorem 7 is completed. O

7. Numerical simulation

This section investigates the solution influencing factors of model (3.1) and the optimal control
characteristics of model (6.3) through numerical simulations. The parameter values adopted in our
simulations are derived from [29].

7.1. Numerical simulation and discussion of model dynamics

In model (3.1), the transmission function is defined as f(A, I) = cA + I, where ¢ denotes the relative
transmission rate ratio between undetected and detected infections. Moreover,

(81(0), S2(0), E(0), A(0), 1(0), Q(0), R(0), M(0))" = (0.8,0,0.03,0.07,0.1,0,0,0)",

with the remaining parameters summarized in Table 1, we further examine the influences of fractional
order, media effect, media dissipation rate, and time delays on system dynamics, as visualized in
Figures 3-6.

Figure 3 displays the temporal evolution of asymptomatic infections A under varying parameter
configurations. The results demonstrate the substantial influences of media effect intensity and
information dissipation rate on asymptomatic transmission dynamics. Notably, the prevalence of
asymptomatic infections exhibits a gradual decline with increasing fractional order. With the
incorporation of media-related time delays, the prevalence of asymptomatic infections progressively
decreases as delay duration extends. These findings indicate that fractional order governs the decay rate
of A by modulating a system’s memory effects. Meanwhile, enhanced media effect £ suppresses disease
transmission, while elevated dissipation rates ¢ diminish its effectiveness, underscoring the need to
balance information coverage with persistence. Furthermore, delays in intervention implementation
7, prolong the transmission cycle of A, mathematically validating the essential principle of “early
detection, early isolation” in epidemic control.

Figure 4 illustrates the temporal dynamics of symptomatically infected individuals / under various
parameter conditions. The results demonstrate a declining trend in / with increasing fractional order,
highlighting the memory-dependent regulatory role of fractional calculus in shaping symptomatic
infection dynamics. However, the influence of media effect and its loss are significantly negatively
correlated with the cumulative scale of 1. These findings reinforce the notion that intensified public
health communication can effectively compress the epidemiological timeline. Furthermore, prolonged
time delays 7, lead to a gradual increase in symptomatic infections /. To minimize the prevalence of
symptomatic cases, establishing an emergency response mechanism with 7, < 10 days is essential.
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Figure 3. Evolution of asymptomatic infections A under varying: (a) fractional order @ =
0.4, 0.6, 0.8, (b) media impact & = 0.004, 0.005, 0.006, (c) media decay ¢ = 0.04, 0.05, 0.06,
(d) delay 1, = 0, 10, 20 days.
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Figure 4. Evolution of symptomatic infections / under varying: (a) fractional order @ = 0.4,

0.6, 0.8, (b) media impact & = 0.004, 0.005, 0.006, (c) media decay ¢ = 0.04, 0.05, 0.06, (d)
delay 7, = 0, 10, 20 days.
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Figure 5 depicts the evolution of unaware susceptible individuals S, under different parameter
settings. As « increases from 0.4 to 0.8, the decay rate of S| accelerates significantly. This phenomenon
can be explained by the fact that a higher a reduces the integral weight of historical states, enhancing
a system’s sensitivity to current media interventions. Moreover, with the strengthening of media
influence, the number of unaware susceptible individuals gradually decreases, while the number of
aware individuals increases. Thus, increasing & can promote the cognitive transition of unaware
susceptible individuals. A notable shift in S| is observed as media effect dissipation rate ¢ increases
from 0.04 to 0.06. Therefore, maintaining ¢ below 0.05 is advisable to sustain the effectiveness
of interventions. In addition, time delay should be carefully controlled to manage the size of S .
The synergistic optimization of fractional-order parameters, media effects, and time-delayed control
facilitates the effective conversion of unaware susceptible individuals, establishing a quantitative
dynamic basis for public health information intervention strategies.

Evolution of the model for the S‘ at different fractional orders Evolution of the model for the S‘ at different £

o
2

Percentage of S‘
o o
RS

Percentage of S 4

o
o

0.1

0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Time(days) Time(days)

Evolution of the model for the S at different ¢ Evolution of the model for the S at different 7,,(r, = 0)

0.8

Percentage of S‘
Percentage of S,

o
2

0 f; 1‘0 1‘5 2‘0 2‘5 3‘0 3‘5 4‘0 4‘5 50 0 ; 1 ‘0 1 ‘5 2‘0 2‘5 3‘0 (;5 4‘0 4‘5 5;0
Time(days) Time(days)
Figure 5. Evolution of unaware susceptible S, under varying: (a) fractional order @ = 0.4,

0.6, 0.8, (b) media impact & = 0.004, 0.005, 0.006, (c) media decay ¢ = 0.04, 0.05, 0.06, (d)
delay 7, = 0, 10, 20 days.

Figure 6 displays the dynamics of asymptomatic infections A, symptomatic infections /, and
unaware susceptible individuals S; under varying time delays 7,. The results show that as 7
increases from 1 day to 20 days, the initial decay rate of A considerably slows down. Concurrently,
longer delays lead to elevated levels of I and §;. These patterns indicate that increased 7; delays
intervention effectiveness, prolonging the transmission cycles of A and I while reducing the efficiency
of transitioning S| into aware states.
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Figure 6. The system dynamics of asymptomatic infectors A, symptomatic infectors /, and
unaware susceptibles S| under different time delays 7,.

7.2. Optimal control numerical simulation and discussion

In addressing the optimal control problem for model (6.3), the solution procedure is implemented
using the forward-backward sweep iterative method, with numerical computations performed via a
fourth-order Runge-Kutta algorithm. Figure 7 compares the dynamics of asymptomatic infectors A,
symptomatic infectors /, and unaware susceptibles §; under controlled and uncontrolled scenarios.
The results demonstrate that the implementation of control measures leads to a marked reduction in
infection prevalence and accelerates the convergence of the system to equilibrium. Moreover, the size
of S is effectively managed within the first 80 days under the optimal control strategy.

Although the objective function may also attain its minimum value without control, such a scenario
corresponds to the maximum density of infected individuals. By contrast, infection density is
minimized under the optimal control strategy, and the associated objective function value is lower than
that under maximal control intensity. This finding implies that optimal control not only effectively
suppresses infection density but also maintains intervention costs at their lowest feasible level.
Consequently, an ideal balance is achieved between mitigating epidemic scale and optimizing resource
allocation, providing a rigorous foundation for relevant decision-making.
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Figure 7. System dynamics in controlled and uncontrolled asymptomatically infected A,
symptomatically infected /, and unawarely susceptible S| individuals.

8. Conclusions

This study presents the fractional-order SEAIQRM epidemic model that incorporates dual time
delays, media effects, and vaccination-isolation control strategies. The framework stratifies susceptible
individuals into aware and unaware classes, while integrating asymptomatic transmission, quarantine
mechanisms, and media-related delays. The basic reproduction number Ry is analytically derived,
and the existence and uniqueness of the model solutions are rigorously established. A normalized
forward sensitivity analysis identifies key parameters that influence R, leading to the selection of
vaccination rate and isolation rate as control variables in the associated optimal control problem.
Theoretical support for optimizing prevention and control strategies can be provided based on
the theoretical optimality conditions. Numerical simulations confirm that combining strengthened
isolation measures, active media communication, and public awareness initiatives with optimal control
strategies leads to significant improvement in outbreak containment. The proposed model incorporates
simplifying assumptions, particularly with regards to its limited capability to account for the spatial
heterogeneity observed in real-world social systems. Moreover, the model considers direct inter-
individual transmission as the primary route of infection, while not incorporating other complex
pathways, such as indirect transmission. Future effort should prioritize the following: (1) constructing
more biologically grounded disease models, (2) implementing network-based simulations that better
capture real-world contact heterogeneity, and (3) incorporating additional contextual dimensions to
improve the model’s practical fidelity.
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