Understanding the dynamics of the propagation of computer viruses is crucial for the development of effective cybersecurity strategies. This paper proposes a novel compartmental model based on the traditional SIR framework, which incorporats the Beddington-DeAngelis functional response to capture the inhibitory effects of the modern operating systems' built-in security mechanisms. We rigorously establish the well-posedness of the model by proving the non-negativity and boundedness of solutions. The existence and stability of equilibrium points are thoroughly analyzed using the Hurwitz criterion, Lyapunov functions, and Dulac criterion. Numerical simulations validate our theoretical findings and demonstrate the significant role of the system self-protection parameters in controlling virus spread. Unlike previous models, our approach provides explicit connections between the model parameters and real-world cybersecurity metrics, thus offering practical insights for network defense strategies. The model's ability to maintain a persistent infected state aligns with the observed behaviors of modern malware, thus providing a more realistic representation of the dynamics of computer viruses. The study employs advanced visualization techniques, including three-dimensional surface plots to elucidate the complex interactions between protection parameters, thus providing actionable insights for the design and implementation of cybersecurity policies.
Citation: Honglei Lu, Erxi Zhu. A novel SIR-based computer virus propagation model with Beddington-DeAngelis functional response: Stability analysis and practical implications[J]. AIMS Mathematics, 2025, 10(11): 27412-27439. doi: 10.3934/math.20251205
Understanding the dynamics of the propagation of computer viruses is crucial for the development of effective cybersecurity strategies. This paper proposes a novel compartmental model based on the traditional SIR framework, which incorporats the Beddington-DeAngelis functional response to capture the inhibitory effects of the modern operating systems' built-in security mechanisms. We rigorously establish the well-posedness of the model by proving the non-negativity and boundedness of solutions. The existence and stability of equilibrium points are thoroughly analyzed using the Hurwitz criterion, Lyapunov functions, and Dulac criterion. Numerical simulations validate our theoretical findings and demonstrate the significant role of the system self-protection parameters in controlling virus spread. Unlike previous models, our approach provides explicit connections between the model parameters and real-world cybersecurity metrics, thus offering practical insights for network defense strategies. The model's ability to maintain a persistent infected state aligns with the observed behaviors of modern malware, thus providing a more realistic representation of the dynamics of computer viruses. The study employs advanced visualization techniques, including three-dimensional surface plots to elucidate the complex interactions between protection parameters, thus providing actionable insights for the design and implementation of cybersecurity policies.
| [1] |
S. Li, X. Yang, G. Cheng, W. Liu, H. Hu, SA-MDRAD: Sample-adaptive multi-teacher dynamic rectification adversarial distillation, Multimedia Syst., 30 (2024), 225. https://doi.org/10.1007/s00530-024-01416-7 doi: 10.1007/s00530-024-01416-7
|
| [2] |
X. Shu, Z. Ruan, How the reversible change of contact networks affects the epidemic spreading, Nonlinear Dyn., 112 (2024), 731–739. https://doi.org/10.1007/s11071-023-09078-2 doi: 10.1007/s11071-023-09078-2
|
| [3] |
S. Muthukumar, M. Senthilkumar, C. Veeramani, Optimal control of computer virus spreading model with partial immunization, Wireless Pers. Commun., 134 (2024), 2287–2313. https://doi.org/10.1007/s11277-024-11013-6 doi: 10.1007/s11277-024-11013-6
|
| [4] |
M. W. Yasin, S. M. H. Ashfaq, N. Ahmed, A. Raza, M. Rafiq, A. Akgül, Numerical modeling of reaction–diffusion e-epidemic dynamics, Eur. Phys. J. Plus, 139 (2024), 431. https://doi.org/10.1140/epjp/s13360-024-05209-9 doi: 10.1140/epjp/s13360-024-05209-9
|
| [5] |
Z. Yaagoub, M. Sadki, K. Allali, A generalized fractional hepatitis B virus infection model with both cell-to-cell and virus-to-cell transmissions, Nonlinear Dyn., 112 (2024), 16559–16585. https://doi.org/10.1007/s11071-024-09867-3 doi: 10.1007/s11071-024-09867-3
|
| [6] |
F. Cohen, Computer viruses: Theory and experiments, Comput. Secur., 6 (1987), 22–35. https://doi.org/10.1016/0167-4048(87)90122-2 doi: 10.1016/0167-4048(87)90122-2
|
| [7] |
E. Zhu, M. Xu, D. Pi, Anti-control of Hopf bifurcation for high-dimensional chaotic system with coexisting attractors, Nonlinear Dyn., 110 (2022), 1867–1877. https://doi.org/10.1007/s11071-022-07723-w doi: 10.1007/s11071-022-07723-w
|
| [8] |
W. Wang, Q. H. Liu, L. F. Zhong, M. Tang, H. Gao, H. E. Stanley, Predicting the epidemic threshold of the susceptible-infected-recovered model, Sci. Rep., 6 (2016), 24676. https://doi.org/10.1038/srep24676 doi: 10.1038/srep24676
|
| [9] |
W. H. Murray, The application of epidemiology to computer viruses, Comput. Secur., 7 (1988), 139–145. https://doi.org/10.1016/0167-4048(88)90327-6 doi: 10.1016/0167-4048(88)90327-6
|
| [10] | J. O. Kephart, S. R. White, Direct-graph epidemiological models of computer virus, In: Proceedings. 1991 IEEE computer society symposium on research in security and privacy, 1991, 343–359. https://doi.org/10.1109/RISP.1991.130801 |
| [11] |
C. Li, R. V. D. Bovenkamp, P. V. Mieghem, Susceptible-infected-susceptible model: A comparison of N-intertwined and heterogeneous mean-field approximations, Phys. Rev. E, 86 (2012), 026116. https://doi.org/10.1103/PhysRevE.86.026116 doi: 10.1103/PhysRevE.86.026116
|
| [12] |
A. Fall, A. Iggidr, G. Sallet, J. J. Tewa, Epidemiological models and Lyapunov functions, Math. Model. Nat. Phenom., 2 (2007), 62–83. https://doi.org/10.1051/mmnp:2008011 doi: 10.1051/mmnp:2008011
|
| [13] |
X. Han, Q. L. Tan, Dynamical behavior of computer virus on Internet, Appl. Math. Comput., 217 (2010), 2520–2526. https://doi.org/10.1016/j.amc.2010.07.064 doi: 10.1016/j.amc.2010.07.064
|
| [14] |
J. R. S. Piqueira, B. F. Navarro, L. H. A. Monteiro, Epidemiological models applied to viruses in computer networks, J. Comput. Sci., 1 (2005), 31–34. https://doi.org/10.3844/JCSSP.2005.31.34 doi: 10.3844/JCSSP.2005.31.34
|
| [15] | R. W. Thommes, M. J. Coates, Modeling virus propagation in peer-to-peer networks, In: 2005 5th International conference on information, communications and signal processing, 2005, 981–985. https://doi.org/10.1109/ICICS.2005.1689197 |
| [16] | F. Liu, S. Huang, S. Zheng, H. O. Wang, Stability analysis and bifurcation control for a fractional order SIR epidemic model with delay, In: 2020 39th Chinese control conference, 2020. https://doi.org/10.23919/CCC50068.2020.9188952 |
| [17] |
M. Peng, X. He, J. Huang, T. Dong, Modeling computer virus and its dynamics, Math. Probl. Eng., 2013 (2013), 842614. https://doi.org/10.1155/2013/842614 doi: 10.1155/2013/842614
|
| [18] |
J. Ren, X. Yang, Q. Zhu, L. X. Yang, C. Zhang, A novel computer virus model and its dynamics, Nonlinear Anal. Real World Appl., 13 (2012), 376–384. https://doi.org/10.1016/j.nonrwa.2011.07.048 doi: 10.1016/j.nonrwa.2011.07.048
|
| [19] | V. M. Preciado, M. Zargham, C. Enyioha, A. Jadbabaie, G. Pappas, Optimal vaccine allocation to control epidemic outbreaks in arbitrary networks, In: 52nd IEEE conference on decision and control, 2013 (2013), 7486–7491. https://doi.org/10.1109/CDC.2013.6761078 |
| [20] |
J. Liu, K. Wang, Hopf bifurcation of a delayed SIQR epidemic model with constant input and nonlinear incidence rate, Adv. Differ. Equ., 2016 (2016), 168. https://doi.org/10.1186/s13662-016-0899-y doi: 10.1186/s13662-016-0899-y
|
| [21] |
D. Nithya, V. Madhusudanan, B. S. N. Murthy, R. Geetha, N. X. Mung, N. N. Dao, et al., Delayed dynamics analysis of SEI2RS malware propagation models in cyber–Physical systems, Comput. Netw., 248 (2024), 110481. https://doi.org/10.1016/j.comnet.2024.110481 doi: 10.1016/j.comnet.2024.110481
|
| [22] |
S. Shao, Z. Li, Distributed immune time-delay SEIR-S model for new power system information network virus propagation, J. Intell. Fuzzy Syst., 44 (2023), 6865–6876. https://doi.org/10.3233/jifs-220575 doi: 10.3233/jifs-220575
|
| [23] |
M. T. Hoang, Dynamical analysis of two fractional-order SIQRA malware propagation models and their discretizations, Rend. Circ. Mat. Palermo Ⅱ Ser., 72 (2023), 751–771. https://doi.org/10.1007/s12215-021-00707-6 doi: 10.1007/s12215-021-00707-6
|
| [24] |
Z. Sabir, M. A. Z. Raja, N. Mumtaz, I. Fathurrochman, R. Sadat, M. R. Ali, An investigation through stochastic procedures for solving the fractional order computer virus propagation mathematical model with kill signals, Neural Process. Lett., 55 (2023), 1783–1797. https://doi.org/10.1007/s11063-022-10963-x doi: 10.1007/s11063-022-10963-x
|
| [25] |
Q. Zhu, C. Cen, A novel computer virus propagation model under security classification, Discrete Dyn. Nat. Soc., 2017 (2017), 8609082. https://doi.org/10.1155/2017/8609082 doi: 10.1155/2017/8609082
|
| [26] |
S. Hosseini, M. A. Azgomi, The dynamics of an SEIRS-QV malware propagation model in heterogeneous networks, Physica A, 512 (2018), 803–817. https://doi.org/10.1016/j.physa.2018.08.081 doi: 10.1016/j.physa.2018.08.081
|
| [27] |
L. Yang, X. Yang, Q. Zhu, L. Wen, A computer virus model with graded cure rates, Nonlinear Anal. Real World Appl., 14 (2013), 414–422. https://doi.org/10.1016/j.nonrwa.2012.07.005 doi: 10.1016/j.nonrwa.2012.07.005
|
| [28] |
S. Lazfi, S. Lamzabi, A. Rachadi, H. Ez-Zahraouy, The impact of neighboring infection on the computer virus spread in packets on scale-free networks, Int. J. Mod. Phys. B, 31 (2017), 1750228. https://doi.org/10.1142/S0217979217502289 doi: 10.1142/S0217979217502289
|
| [29] |
Y. Nath, K. K. Shukla, Retraction notice to: "Post-bucking of angle-ply laminated plates under thermal loading", Commun. Nonlinear Sci. Numer. Simul., 126 (2023), 107442. https://doi.org/10.1016/j.cnsns.2023.107442 doi: 10.1016/j.cnsns.2023.107442
|
| [30] |
T. Li, Y. Guo, Optimal control and cost-effectiveness analysis of a new COVID-19 model for Omicron strain, Physica A, 606 (2022), 128134. https://doi.org/10.1016/j.physa.2022.128134 doi: 10.1016/j.physa.2022.128134
|