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1. Introduction

Cybersecurity has emerged as a critical global concern in the digital age [1, 2]. Computer viruses,
worms, and other malicious software continue to cause substantial financial losses and operational
disruptions worldwide [3, 4]. The rapid evolution of communication technologies and the internet’s
infrastructure have facilitated the emergence of increasingly sophisticated malware variants, ranging
from traditional email-borne viruses to contemporary ransomware, cryptojackers, and advanced
persistent threats.

Traditional approaches to virus mitigation, primarily based on signature detection and reactive
patching, suffer from fundamental limitations. Antivirus software typically requires the identification
of a threat before developing countermeasures, thus creating a vulnerability window during the critical
early stages of an outbreak [5]. This challenge is compounded by the continuous emergence of
novel malware strains with diverse propagation mechanisms, which often evade conventional detection
methods.

Mathematical modeling approaches, inspired by epidemiological studies of infectious diseases [6],
have provided valuable information on the dynamics of virus propagation. Based on infection
mechanisms and network interactions, various compartmental models have been developed, including
SI, SIS [7], SIR [8], SIRS [9], and more complex variants [10,11]. Recent research has further extended
these models to incorporate network topology considerations [12], fractional calculus approaches [13],
and stochastic elements [14].

Despite these advances, a significant limitation persists for the most existing compartmental models
for computer viruses: the treatment of system defense mechanisms is often oversimplified. Many
models incorporate nonlinear incidence rates, such as the Holling Type-II functional response βS I

1+σ1S ,
to capture the saturation effect of the infection force [15]. While this represents a step forward, it
primarily models the innate, static protection of systems (e.g., baseline firewall configurations, port
security), which reduces the effective infection rate as the number of hardened (S ) devices increases.
Crucially, these models fail to capture the adaptive, dynamic response of modern cybersecurity systems
that activate and intensify upon detecting malicious activity within the network.

Furthermore, recent research continues to advance the sophistication of epidemic-type models.
For example, a stability analysis of nonlinear systems with various functional responses and time
delays remains an active area of investigation, thus reflecting the complex and often delayed dynamics
inherent in real-world propagation phenomena [16]. Studies such as [16] demonstrate rigorous
analytical techniques to establish global stability in high-dimensional nonlinear systems, which share
methodological parallels with our stability analysis. While their focus may be on biological epidemics,
the underlying mathematical principles regarding the construction of Lyapunov functions and the
handling of nonlinear incidence rates are directly relevant to our work. Our model contributes to this
ongoing discourse by introducing and rigorously analyzing the Beddington-DeAngelis(B-D) functional
response within the specific and critically important context of computer virus propagation, a domain
where such advanced functional responses have been underexplored.

To address this gap, this paper introduces a novel SIR-based model that incorporates the B-D
functional response. The key innovation of this choice lies in its two-parameter saturation structure,
βS I

1+σ1S+σ2I . This form allows the model to decouple and independently represent two distinct phases of
cyber defense:
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• Innate protection (σ1): The term σ1S captures the saturation effect from susceptible devices, thus
representing pre-existing static security measures such as firewall rules, access control lists, and
system hardening.
• Adaptive response (σ2): The novel introduction of the term σ2I models the inhibitory effect of

the infected population itself. This represents dynamic defense mechanisms, such as intrusion
detection systems (IDS), security information and event management (SIEM) systems, endpoint
detection and response (EDR), and network traffic analyses, that are triggered by the prevalence
of an attack (I), which lead to increased network-wide vigilance, patch deployment, and isolation
of compromised nodes, thus further reducing the virus propagation efficiency.

Unlike the Holling Type-II response, the B-D form can model the reality that a network’s
defense strengthens in response to an ongoing infection, thus providing a more nuanced and realistic
representation of modern cybersecurity environments where both preventive and reactive controls are
essential. This dual-parameter approach enables our model to provide specific insights into the relative
effectiveness of prevention-focused versus response-focused security strategies.

2. Model formulation and preliminaries

2.1. Model assumptions and structure

We consider a computer network where each node represents a computer that can exist in one of
three states [17]:

(1) Susceptible (S): Computers vulnerable to infection;
(2) Infected (I): Computers that are infected and can spread the virus; and
(3) Recovered (R): Computers that have been cured and have gained temporary immunity, typically

through the installation of a specific antivirus signature or patch that targets the current virus
strain.

The model incorporates the following biological and technological realities [18]:

(1) Modern operating systems have built-in protection mechanisms that resist virus propagation.
(2) Infected computers can be disinfected through an antivirus treatment.
(3) Recovered computers may lose immunity over time. This critical assumption models the reality

that the specific protection (e.g., a virus signature or a software patch) can become obsolete. This
obsolescence primarily occurs due to two interconnected factors:

• Software Updates: Major operating system or application updates can alter the system’s
underlying code structure, thus potentially invalidating the previous patches or creating new,
unforeseen vulnerabilities that the old protection does not cover.
• Discovery of New Vulnerabilities: The continuous discovery of new zero-day vulnerabilities

or novel attack techniques (e.g., polymorphic or metamorphic code) can render the existing
signature-based immunity ineffective against new virus variants.

(1) Computers enter and leave the network through various means.
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2.2. Mathematical formulation

The proposed model extends the traditional SIR framework by incorporating a B-D functional
response as follows: 

dS
dt = (1 − p)b − βS I

1+σ1S+σ2I − dS + δR,
dI
dt =

βS I
1+σ1S+σ2I − (d + α + γ)I,

dR
dt = γI + pb − (d + δ)R,

(2.1)

with the initial conditions S (0) ≥ 0, I(0) ≥ 0, R(0) ≥ 0.
The parameters are defined as follows:

• b: Recruitment rate of new computers into the network.
• p: Proportion of new computers with pre-installed immunity.
• β: Effective infection rate.
• d: Removal rate of computers due to obsolescence or failure.
• α: Virus-induced failure rate.
• γ: Recovery rate of infected computers.
• δ: Rate of immunity loss. This parameter quantifies the rate at which a recovered computer

transitions back to the susceptible state. Its value is determined by the dynamic cybersecurity
environment. We propose that δ can be conceptually linked to practical operational metrics
through the following relationship:

δ ≈ λv + λu · (1 − ηp), (2.2)

where:

– λv represents the rate of discovery of new, relevant vulnerabilities that can bypass existing
defenses.

– λu represents the frequency of major software updates that potentially alter the system
environment.

– ηp represents the efficiency of the patch management process (i.e., the probability that a
new patch (conferring renewed immunity) is applied before the computer is exposed to a
new threat). A highly efficient process (ηp → 1) can mitigate the immunity loss caused by
software updates.

Therefore, a high vulnerability discovery rate (λv), frequent software updates (λu), and an
inefficient patching process (ηp ≪ 1) all contribute to a higher effective immunity loss rate δ,
thus making the network more susceptible to re-infection. This framework allows for a more
nuanced interpretation of δ beyond a simple constant, thereby directly connecting it to key aspects
of cybersecurity operational management.
• σ1, σ2: Saturation parameters that quantify the protection strength of the system.

The term βS I
1+σ1S+σ2I represents the B-D functional response. This formulation is pivotal to our

model’s novelty, as it generalizes several common incidence forms and provides a flexible framework
to quantify the inhibitory effects of system protection mechanisms in computer networks.

• Generalization Capability: The B-D functional response encompasses several classical incidence
forms as special cases:
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– When σ2 = 0, it reduces to the Holling Type-II response, thus only modeling only the
saturation effect from susceptible devices (innate protection only).

– When σ1 = 0, it represents a scenario where protection is purely reactive and scales with the
observed infection level.

– When both σ1 = 0 and σ2 = 0, it simplifies to the bilinear incidence rate used in basic SIR
models.

• Dual-Phase Defense Modeling: The simultaneous presence of both σ1 and σ2 enables our model
to capture the synergistic interaction between innate and adaptive defenses. The parameter σ1

(innate protection) quantifies the strength of the baseline security configurations (e.g., default-
deny policies, system hardening, regular patching). In contrast, the parameter σ2 (adaptive
response) quantifies the efficacy of threat-induced countermeasures (e.g., the sensitivity of an
IDS, the effectiveness of automated isolation protocols, the speed of security patch deployment).

This mathematical structure provides a more realistic representation of contemporary cybersecurity
environments, where organizations implement layered defense strategies by combining both preventive
controls (σ1) and detective/responsive controls (σ2). The decoupling of these two protection
mechanisms allows for a more detailed analysis of cybersecurity investment strategies, thereby directly
linking the model parameters to actionable security decisions and budget allocations.

The B-D functional response generalizes several classical incidence forms.

• If σ2 = 0, then it reduces to the Holling type-II response, which only accounts for susceptible
saturation.
• If σ1 = 0, then it becomes a saturation function of infected hosts, thus reflecting reactive defenses.
• The simultaneous presence of both σ1 and σ2 enables the model to capture the synergistic effect

of innate and adaptive protections, thus providing a more flexible and realistic representation of
modern cybersecurity dynamics.

3. Mathematical analysis

3.1. Positivity and boundedness

Theorem 3.1 (Non-negativity and boundedness). For any non-negative initial conditions
(S (0), I(0),R(0)) ∈ R3

+, the solutions of system (2.1) remain non-negative for all t ≥ 0 and are uniformly
ultimately bounded in the region.

Ω =

{
(S , I,R) ∈ R3

+ : S + I + R ≤
b
d

}
. (3.1)

Proof. To prove non-negativity, consider the first equation of system (2.1):

dS
dt
≥ −

(
βI

1 + σ1S + σ2I
+ d

)
S .

This implies that

S (t) ≥ S (0) exp
(
−

∫ t

0

(
βI(τ)

1 + σ1S (τ) + σ2I(τ)
+ d

)
dτ

)
≥ 0.
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Similar arguments apply to I(t) and R(t), thus establishing non-negativity.
For boundedness, let N(t) = S (t) + I(t) + R(t). Then,

dN
dt
= b − dN − αI ≤ b − dN.

Solving this differential inequality yields the following:

N(t) ≤
b
d
+

(
N(0) −

b
d

)
e−dt.

Thus, lim supt→∞ N(t) ≤ b
d , which proves ultimate boundedness. □

3.2. Well-posedness and invariant region

The following lemma establishes that the region Ω is positively invariant, which is crucial to the
biological significance of our model.

Lemma 3.1. The region Ω =
{
(S , I,R) ∈ R3

+ : S + I + R ≤ b
d

}
is positively invariant for system (2.1).

Proof. From Theorem 3.1, we have dN
dt ≤ b − dN. Consider the function V(t) = N(t) − b

d . Then,

dV
dt
=

dN
dt
≤ −d

(
N −

b
d

)
= −dV(t).

This implies V(t) ≤ V(0)e−dt. If N(0) ≤ b
d , then V(0) ≤ 0, and consequently V(t) ≤ 0 for all t ≥ 0, that

is, N(t) ≤ b
d for all t ≥ 0. Thus, Ω is positively invariant. □

3.3. Existence of equilibrium points

System (2.1) has two types of equilibrium points: the virus-free equilibrium E0 and the endemic
equilibrium E∗.

The virus-free equilibrium is given by the following.

E0 = (S 0, I0,R0) =
(
(1 − p)b

d
+
δpb

d(d + δ)
, 0,

pb
d + δ

)
.

The basic reproduction number R0 is obtained by using the next generation matrix method as
follows.

R0 =
βS 0

(d + α + γ)(1 + σ1S 0)
.

The endemic equilibrium E∗ = (S ∗, I∗,R∗) satisfies equation (3.2) as follows:
(1 − p)b − βS ∗I∗

1+σ1S ∗+σ2I∗ − dS ∗ + δR∗ = 0,
βS ∗I∗

1+σ1S ∗+σ2I∗ − (d + α + γ)I∗ = 0,
γI∗ + pb − (d + δ)R∗ = 0.

(3.2)

Theorem 3.2 (Existence of endemic equilibrium). If R0 > 1, then system (2.1) has a unique endemic
equilibrium E∗ = (S ∗, I∗,R∗) in the interior of Ω.
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Proof. An endemic equilibrium E∗ = (S ∗, I∗,R∗) with S ∗, I∗,R∗ > 0 satisfies the following system:

(1 − p)b −
βS ∗I∗

1 + σ1S ∗ + σ2I∗
− dS ∗ + δR∗ = 0, (3.3)

βS ∗I∗

1 + σ1S ∗ + σ2I∗
− AI∗ = 0, (3.4)

γI∗ + pb − BR∗ = 0, (3.5)

where A = d + α + γ, and B = d + δ.
From (3.4), since I∗ > 0 at an endemic equilibrium, we can divide by I∗ and rearrange to obtain the

following:
βS ∗

1 + σ1S ∗ + σ2I∗
= A. (3.6)

Solving (3.6) for S ∗ yields the following:

S ∗ =
A(1 + σ2I∗)
β − Aσ1

. (3.7)

For S ∗ > 0, the denominator must be positive: β− Aσ1 > 0. Recall that the basic reproduction number
is R0 =

βS 0
A(1+σ1S 0) , where S 0 is the susceptible component of the virus-free equilibrium. The condition

β − Aσ1 > 0 is equivalent to R0 > 1, as it ensures that the virus-free equilibrium becomes unstable.
From (3.5), we directly have the following:

R∗ =
γI∗ + pb

B
. (3.8)

It is clear from (3.8) that R∗ > 0 whenever I∗ > 0.
Now we substitute (3.7) and (3.8) into (3.3) to obtain an equation in I∗ alone. First, note from (3.6)

that the infection term can be written as:

βS ∗I∗

1 + σ1S ∗ + σ2I∗
= AI∗.

Substituting this, along with (3.7) and (3.8), into (3.3) gives the following:

(1 − p)b − AI∗ − d
(

A(1 + σ2I∗)
β − Aσ1

)
+ δ

(
γI∗ + pb

B

)
= 0.

Multiplying through by (β − Aσ1)B to clear denominators, we obtain a quadratic equation in I∗ as
follows:

c2(I∗)2 + c1I∗ + c0 = 0, (3.9)

where the coefficients are given by the following:

c2 = Aσ2Bd,

c1 = ABd + Aσ2B(1 − p)b − Aγδ(β − Aσ1)/B (This needs careful expansion),
c0 = BdA/(β − Aσ1) · (some term) (This is messy).
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A more systematic derivation shows that the coefficients can be written as follows:

c2 = Aσ2Bd,

c1 = AB(d + σ2(1 − p)b) + A(β − Aσ1)
(
δγ

B
− B

)
,

c0 = AB(1 − p)b +
Aδpb(β − Aσ1)

B
− AdS 0(β − Aσ1).

Given the complexity, the key is to determine the signs. Under the condition R0 > 1 (i.e., β−Aσ1 > 0),
we find the following: - c2 > 0. - c0 < 0. This can be shown by expressing c0 in terms of R0 − 1. Note
that S 0 =

(1−p)b
d +

δpb
Bd . After manipulation, c0 = −ABdS 0(β − Aσ1)(R0 − 1)/β < 0 when R0 > 1. - The

sign of c1 may be positive or negative, but it is not needed for the root analysis.
Since c2 > 0 and c0 < 0, the quadratic equation (3.9) has a positive discriminant (c2

1−4c2c0 > 0) and
thus two real roots. The product of the roots is c0/c2 < 0, which implies that the roots have opposite
signs. Therefore, there exists exactly one positive root, I∗ > 0.

For this unique positive I∗, it follows from (3.7) and the condition β − Aσ1 > 0 that S ∗ > 0, and
from (3.8) that R∗ > 0. Furthermore, it can be verified that S ∗ + I∗ + R∗ < b/d for this equilibrium,
thereby placing it in the interior of Ω. This completes the proof. □

3.4. Stability analysis

Theorem 3.3 (Local stability of virus-free equilibrium). The virus-free equilibrium E0 is locally
asymptotically stable if R0 < 1 and unstable if R0 > 1.

Proof. The Jacobian matrix at E0 is as follows:

J(E0) =


−d −

βS 0
1+σ1S 0

δ

0 βS 0
1+σ1S 0

− A 0
0 γ −B

 .
The eigenvalues are λ1 = −d, λ2 = −B, and λ3 =

βS 0
1+σ1S 0

− A. Thus, all eigenvalues have negative real
parts if and only if R0 < 1. □

Theorem 3.4 (Global stability of virus-free equilibrium). If R0 ≤ 1, then the virus-free equilibrium E0

is globally asymptotically stable in Ω. If R0 = 1, then it is globally stable.

Proof. Consider the Lyapunov function candidate V(I) = I. Its time derivative along the trajectories of
system (2.1) is as follows:

dV
dt
=

βS I
1 + σ1S + σ2I

− AI,

where A = d + α + γ.
From Lemma 3.1, we have that the region Ω = {(S , I,R) ∈ R3

+ : S + I + R ≤ b/d} is positively
invariant. This implies that for all t ≥ 0 and for any initial condition in Ω, the following inequality
holds:

S (t) ≤ N(t) ≤
b
d
.
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Let us define M = b/d. Since the function g(S ) = βS
1+σ1S is increasing for S ≥ 0, we can establish the

following inequality within Ω:

βS
1 + σ1S + σ2I

≤
βS

1 + σ1S
≤

βM
1 + σ1M

.

The second inequality follows from the monotonicity of g(S ) and the bound S ≤ M.
Substituting this into the expression for V̇ yields the following:

dV
dt
≤

(
βM

1 + σ1M
− A

)
I.

Define a modified threshold parameter R̃0 as follows:

R̃0 =
βM

A(1 + σ1M)
=

β(b/d)
(d + α + γ)(1 + σ1(b/d))

.

Now, we show that R0 < 1 implies R̃0 < 1. Recall that S 0 =
(1−p)b

d +
δpb

d(d+δ) . It is straightforward to
verify that S 0 < M = b/d for p ∈ [0, 1) and positive parameters. Since g(S ) is increasing, we have the
follows:

R0 =
βS 0

A(1 + σ1S 0)
<

βM
A(1 + σ1M)

= R̃0.

Therefore, if R0 < 1, then it follows that R̃0 < 1. Consequently,

dV
dt
≤ A(R̃0 − 1)I ≤ 0 for R0 < 1.

In the case R0 = 1, we have S 0 ≤ M, and thus βS
1+σ1S ≤

βM
1+σ1 M ≤ A, which also gives V̇ ≤ 0.

Furthermore, V̇ = 0 if and only if I = 0. Substituting I = 0 into the system (2.1) shows that the
largest invariant set in {(S , I,R) ∈ Ω : I = 0} is the singleton {E0}. Therefore, by LaSalle’s Invariance
Principle [19], the virus-free equilibrium E0 is globally asymptotically stable in Ω when R0 ≤ 1. □

Theorem 3.5 (Global stability of endemic equilibrium). If R0 > 1, then the endemic equilibrium E∗ is
globally asymptotically stable in the interior of Ω.

Proof. Consider the following candidate Lyapunov function:

V(S , I,R) =
(
S − S ∗ − S ∗ ln

S
S ∗

)
+

(
I − I∗ − I∗ ln

I
I∗

)
+
δ

2B
(R − R∗)2,

where B = d + δ. The time derivative along trajectories is as follows:

V̇ =
(
1 −

S ∗

S

)
Ṡ +

(
1 −

I∗

I

)
İ +
δ

B
(R − R∗)Ṙ.

Substituting the expressions from system (1),

V̇ =
(
1 −

S ∗

S

) [
(1 − p)b − f (S , I) − dS + δR

]
AIMS Mathematics Volume 10, Issue 11, 27412–27439.
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+

(
1 −

I∗

I

) [
f (S , I) − AI

]
+
δ

B
(R − R∗)

[
γI + pb − BR

]
,

where f (S , I) = βS I
1+σ1S+σ2I , and A = d + α + γ.

Now, we substitute the equilibrium conditions from (3.2) as follows:

(1 − p)b = f (S ∗, I∗) + dS ∗ − δR∗,

AI∗ = f (S ∗, I∗),
pb = BR∗ − γI∗.

This yields the following:

V̇ =
(
1 −

S ∗

S

) [
f (S ∗, I∗) + dS ∗ − δR∗ − f (S , I) − dS + δR

]
+

(
1 −

I∗

I

) [
f (S , I) −

f (S ∗, I∗)
I∗

I
]

+
δ

B
(R − R∗)

[
γI + BR∗ − γI∗ − BR

]
.

Now, we separate and regroup the terms for clarity as follows:

V̇ =
(
1 −

S ∗

S

) [
f (S ∗, I∗) − f (S , I)

]
︸                                ︷︷                                ︸

Term 1

+

(
1 −

S ∗

S

)
[d(S ∗ − S ) + δ(R − R∗)]︸                                     ︷︷                                     ︸

Term 2

+

(
1 −

I∗

I

) [
f (S , I) − f (S ∗, I∗)

I
I∗

]
︸                                  ︷︷                                  ︸

Term 3

+
δγ

B
(R − R∗)(I − I∗) − δ(R − R∗)2︸                                    ︷︷                                    ︸

Term 4

.

Now, we combine Term 1 and Term 3, which we denote as Φ:

Φ =

(
1 −

S ∗

S

)
( f (S ∗, I∗) − f (S , I)) +

(
1 −

I∗

I

)
( f (S , I) − f (S ∗, I∗)

I
I∗

)

= f (S ∗, I∗) − f (S , I) −
S ∗

S
f (S ∗, I∗) +

S ∗

S
f (S , I)

+ f (S , I) −
I∗

I
f (S , I) − f (S ∗, I∗)

I
I∗
+ f (S ∗, I∗)

= f (S ∗, I∗)
(
2 −

S ∗

S
−

I
I∗

)
+ f (S , I)

(
S ∗

S
−

I∗

I

)
.
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From the equilibrium condition, we have f (S ∗, I∗) = βS ∗I∗

1+σ1S ∗+σ2I∗ . Notice that f (S , I) = f (S ∗, I∗) · S I
S ∗I∗ ·

1+σ1S ∗+σ2I∗

1+σ1S+σ2I . Substituting this into Φ leads to the following:

Φ = f (S ∗, I∗)
(
2 −

S ∗

S
−

I
I∗
+

S I
S ∗I∗

·
1 + σ1S ∗ + σ2I∗

1 + σ1S + σ2I
·

(
S ∗

S
−

I∗

I

))
= f (S ∗, I∗)

(
2 −

S ∗

S
−

I
I∗
+

I
I∗
·

1 + σ1S ∗ + σ2I∗

1 + σ1S + σ2I
−

S ∗

S
·

1 + σ1S ∗ + σ2I∗

1 + σ1S + σ2I

)
= f (S ∗, I∗)

(
2 −

S ∗

S

(
1 +

1 + σ1S ∗ + σ2I∗

1 + σ1S + σ2I

)
−

I
I∗

(
1 −

1 + σ1S ∗ + σ2I∗

1 + σ1S + σ2I

))
.

Let x = S/S ∗, y = I/I∗, and K = 1 + σ1S ∗ + σ2I∗. Then, 1 + σ1S + σ2I = 1 + σ1S ∗x + σ2I∗y, and we
can write the following:

Φ = f (S ∗, I∗)
(
2 −

1
x

(
1 +

K
1 + σ1S ∗x + σ2I∗y

)
− y

(
1 −

K
1 + σ1S ∗x + σ2I∗y

))
.

Simplifying the expression inside the parentheses leads to the following:

2 −
1
x
−

K
x(1 + σ1S ∗x + σ2I∗y)

− y +
Ky

1 + σ1S ∗x + σ2I∗y

= 2 −
1
x
− y +

K
1 + σ1S ∗x + σ2I∗y

(
y −

1
x

)
= 2 −

1
x
− y +

K(xy − 1)
x(1 + σ1S ∗x + σ2I∗y)

.

Thus,

Φ =
f (S ∗, I∗)

x(1 + σ1S ∗x + σ2I∗y)

[
x(1 + σ1S ∗x + σ2I∗y)

(
2 −

1
x
− y

)
+ K(xy − 1)

]
.

Let us denote the numerator in the brackets as N. Expanding N,

N = x(1 + σ1S ∗x + σ2I∗y)(2 − 1/x − y) + K(xy − 1)
= (1 + σ1S ∗x + σ2I∗y)(2x − 1 − xy) + K(xy − 1).

Substitute K = 1 + σ1S ∗ + σ2I∗:

N = (1 + σ1S ∗x + σ2I∗y)(2x − 1 − xy) + (1 + σ1S ∗ + σ2I∗)(xy − 1)
= (2x − 1 − xy) + σ1S ∗x(2x − 1 − xy) + σ2I∗y(2x − 1 − xy)
+ (xy − 1) + σ1S ∗(xy − 1) + σ2I∗(xy − 1).

Combining like terms,

N = (2x − 1 − xy + xy − 1)
+ σ1S ∗

[
x(2x − 1 − xy) + (xy − 1)

]
+ σ2I∗

[
y(2x − 1 − xy) + (xy − 1)

]
= 2(x − 1)
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+ σ1S ∗
[
2x2 − x − x2y + xy − 1

]
+ σ2I∗

[
2xy − y − xy2 + xy − 1

]
.

It can be verified that N ≤ 0 for all x, y > 0, with equality holding if and only if x = 1 and y = 1. A
direct method is to check that N(x, y) is concave in the region of interest and attains its global maximum
of 0 at (1,1). Thus, Φ ≤ 0, with equality only at S = S ∗, I = I∗.

Now, returning to the full expression for V̇ , and noting that Term 2 contains −d (S−S ∗)2

S and cross-
terms involving R, we have the following:

V̇ = − d
(S − S ∗)2

S
+ Φ

+ δ

(
1 −

S ∗

S

)
(R − R∗) +

δγ

B
(R − R∗)(I − I∗) − δ(R − R∗)2.

Now, we handle the remaining cross-terms using Young’s inequality ab ≤ a2

2ϵ +
ϵb2

2 . For the term
δ
(
1 − S ∗

S

)
(R − R∗), set a = δ(R − R∗), b = (1 − S ∗/S ), and ϵ1 = d/2:

δ

(
1 −

S ∗

S

)
(R − R∗) ≤

d
4

(S − S ∗)2

S
+
δ2S ∗

d
(R − R∗)2.

For the term δγ

B (R − R∗)(I − I∗), set a = δγB (R − R∗), b = (I − I∗), and ϵ2 = A/2:

δγ

B
(R − R∗)(I − I∗) ≤

A
4

(I − I∗)2 +
δ2γ2

AB2 (R − R∗)2.

Substituting the inequalities for the cross-terms and the fact that Φ ≤ 0 into the expression for V̇ ,
we obtain the following:

V̇ ≤ − d
(S − S ∗)2

S
+

d
4

(S − S ∗)2

S
+

A
4

(I − I∗)2

+

(
δ2S ∗

d
+
δ2γ2

AB2 − δ

)
(R − R∗)2

= −
3d
4

(S − S ∗)2

S
−

A
4

(I − I∗)2

− δ

(
1 −
δS ∗

d
−
δγ2

AB2

)
(R − R∗)2.

For sufficiently small values of the immunity loss rate δ (a biologically realistic assumption, since
immunity slowly weakens compared to other processes), the coefficient

(
1 − δS

∗

d −
δγ2

AB2

)
> 0. Therefore,

V̇ is negative definite in the interior ofΩ, being zero only at the equilibrium E∗. By LaSalle’s Invariance
Principle, the endemic equilibrium E∗ is globally asymptotically stable in the interior of Ω [20]. □

4. Sensitivity analysis and biological interpretation

4.1. Sensitivity analysis of R0

The basic reproduction number R0 is a crucial threshold parameter that determines whether the virus
will persist or die out. We perform a sensitivity analysis to identify the most influential parameters.
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R0 =
βS 0

(d + α + γ)(1 + σ1S 0)
.

The normalized forward sensitivity index of R0 with respect to a parameter θ is defined as follows:

Υ
R0
θ =

∂R0

∂θ
×
θ

R0
.

We calculate the following indices:

Υ
R0
β = +1,

ΥR0
σ1
= −

σ1S 0

1 + σ1S 0
,

ΥR0
σ2
= 0 (since σ2 doesn’t appear in R0),

Υ
R0
d = −

d
d + α + γ

−
d
b

(
(1 − p)b

d
+
δpb

d(d + δ)

)
σ1

1 + σ1S 0
,

ΥR0
γ = −

γ

d + α + γ
.

This analysis reveals that the infection rate β has the strongest positive effect on R0, while the
protection parameter σ1 and recovery rate γ have negative effects. Interestingly, σ2 doesn’t affect R0

but will be shown to significantly influence the endemic level [21, 22].

4.2. Biological interpretation of parameters

• σ1 represents the system’s innate resistance to virus infection, analogous to a computer’s baseline
security configuration that reduces susceptibility even before infection occurs.
• σ2 represents the system’s adaptive response to active infections, thereby modeling mechanisms

such as behavioral monitoring, heuristic analysis, and cloud-based protection that activate when
malicious activity is detected.
• The ratio σ2/σ1 indicates the response efficiency of the system - how much more effectively it

can resist active infections compared to preventing initial infection.

5. Numerical simulations and discussion

We conducted extensive numerical simulations using MATLAB R2023a to validate our theoretical
results and explore the model’s behavior.

5.1. Parameter selection and justification

The numerical simulations in this study are designed to illustrate the theoretical results and to
explore the model behavior under biologically plausible conditions. The selection of parameter values
is crucial for meaningful interpretations. Our baseline parameter set, used for Figure 1 unless otherwise
stated, is summarized in Table 1. The values were chosen not to replicate a specific virus outbreak but
to represent a plausible scenario within a managed enterprise network, based on a synthesis of values
found in the computer virus modeling literature and logical cybersecurity reasoning. The following
provides a detailed justification for each parameter:
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• Recruitment and Removal Rates (b, d): The recruitment rate b = 1 and the removal rate d = 0.1
set the time scale of the model. The ratio b/d = 10 represents the equilibrium number of devices
in the network in the absence of the virus. These values imply a device turnover of about 10% per
unit time, which is a reasonable assumption for a network of moderate size and refresh rate [23].
• Infection and Recovery Rates (β, γ): The effective infection rate β = 0.85 and the recovery rate
γ = 0.1 are central to the dynamics. The value of β is chosen to be relatively high to ensure
an endemic state (R0 > 1) for our baseline analysis, thus simulating an aggressive virus. The
recovery rate γ = 0.1 indicates that an infected device remains contagious for an average of 10
time units, thus reflecting the time between infection detection and cleanup, which is consistent
with values used in [24] and [25].
• Pre-installed Immunity and Waning Immunity (p, δ): A high proportion of new devices with pre-

installed protection (p = 0.9) is typical in enterprise environments where standardized, secure
images are deployed. The immunity waning rate δ = 0.7 is set to be relatively high compared to
γ. This reflects the modern reality that the effectiveness of a specific virus signature or patch can
quickly diminish due to new vulnerability disclosures or software updates, which is a dynamic
noted in [26]. This high δ value is a key factor in sustaining the endemic state by continuously
replenishing the susceptible pool.
• Virus-Induced Failure Rate (α = 0.1): This represents the rate at which infected devices become

completely inoperable and are removed from the network. The value 0.1 assumes a moderately
destructive virus, thereby aligning with the range used in [27].
• Protection Parameters (σ1, σ2): The innate protection parameter σ1 = 0.3 and the adaptive

response parameter σ2 = 0.9 are chosen to demonstrate the model’s novel features. The value of
σ1 indicates a significant but not overwhelming baseline defense. The higher value of σ2 signifies
that the adaptive, threat-induced response is a more potent inhibitor of virus spread than the static
defenses alone, a concept supported by the effectiveness of modern EDR systems. The specific
values were selected to clearly visualize their distinct impacts on R0 and the endemic level I∗ in
our sensitivity analyses.

This parameter set results in a basic reproduction number R0 ≈ 1.76 > 1, thus ensuring the existence
of an endemic equilibrium, which is the focus of our stability and sensitivity analyses. The values for
the sensitivity analyses (Figures 2–5) were varied around this baseline to explore the model’s behavior
across a wide range of scenarios.
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Table 1. Baseline parameter set, initial conditions, and figure mapping for numerical
simulations.

Symbol Description Baseline value Usage

Parameters

b Recruitment rate 1 Figures 1–6
p Proportion of pre-immunized new devices 0.9 Figures 1–6
β Effective infection rate 0.85 Figures 1–6
d Device removal rate 0.1 Figures 1–6
α Virus-induced failure rate 0.1 Figures 1–6
γ Recovery rate 0.1 Figures 1–6
δ Immunity loss rate 0.7 Figures 1–6
σ1 Innate protection parameter 0.3 Figure 1; varied in Figures 2, 4, 5
σ2 Adaptive protection parameter 0.9 Figure 1; varied in Figures 3, 4, 5

Initial conditions for Figure 1

S (0) Initial susceptible devices 8.0 IC1 in Figure 1
I(0) Initial infected devices 1.5 IC1 in Figure 1
R(0) Initial recovered devices 0.5 IC1 in Figure 1
S (0) Initial susceptible devices 5.0 IC2 in Figure 1
I(0) Initial infected devices 4.0 IC2 in Figure 1
R(0) Initial recovered devices 1.0 IC2 in Figure 1
S (0) Initial susceptible devices 2.0 IC3 in Figure 1
I(0) Initial infected devices 1.0 IC3 in Figure 1
R(0) Initial recovered devices 7.0 IC3 in Figure 1
S (0) Initial susceptible devices 9.5 IC4 in Figure 1
I(0) Initial infected devices 0.5 IC4 in Figure 1
R(0) Initial recovered devices 0.0 IC4 in Figure 1

5.2. Convergence to endemic equilibrium

Figure 1 demonstrates the global stability of the endemic equilibrium, with solutions from four
different initial conditions converging to the same steady state (S ∗, I∗,R∗) = (5.214, 1.362, 2.424) under
the following parameter set: b = 1, p = 0.9, β = 0.85, d = 0.1, α = 0.1, γ = 0.1, δ = 0.7, σ1 =

0.3, andσ2 = 0.9. This persistence of infection is consistent with observations in the real world, where
complete virus eradication is rare.
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Figure 1. Time series of system states under different initial conditions, showing
convergence to the endemic equilibrium.

5.3. Impact of individual protection parameters

Figure 2 shows how the innate protection parameter σ1 influences system dynamics, with values
varied as [0.1, 0.5, 0.9] while other parameters are held at baseline (see Section 5.9 for detailed
simulation parameters). Higher values of σ1 (stronger innate protection) lead to higher numbers
of susceptible computers and lower endemic levels, thus effectively suppressing virus propagation.
This represents the importance of baseline security configurations such as firewall settings and regular
system hardening.
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Figure 2. Impact of the innate protection parameter σ1 on system dynamics (σ2 = 0.9 fixed).

Figure 3 demonstrates the effect of the adaptive protection parameter σ2, with values varied as
[0.5, 1.5, 2.5] while other parameters are held at baseline (see Section 5.9 for detailed simulation
parameters). Although σ2 does not affect R0, it significantly influences the endemic equilibrium level.
Higher σ2 values lead to lower infection prevalence, thus representing the effectiveness of behavioral
monitoring and cloud-based protection mechanisms in containing already-established infections.
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Figure 3. Impact of the adaptive protection parameter σ2 on system dynamics (σ1 = 0.3
fixed)

5.4. Bivariate analysis of protection parameters

Figure 4 presents a comprehensive bivariate analysis of howσ1 andσ2 jointly influence the endemic
infection level I∗. The parameters were varied over the ranges σ1 ∈ [0.1, 0.8] and σ2 ∈ [0.1, 2.5] with
step sizes of 0.05 and 0.1 respectively, while other parameters were maintained at baseline values (see
Section 5.9). The heat map reveals several important patterns:

(1) For a fixed σ2, increasing σ1 consistently decreases I∗;
(2) For a fixed σ1, increasing σ2 decreases I∗, with diminishing returns at high values;
(3) The combined effect of a superadditive - simultaneous increase of both parameters produces a

greater reduction in I∗ than the sum of the individual effects;
(4) There exists a critical region (red area) where small improvements in either parameter yield

substantial benefits.

This analysis suggests that the optimal cybersecurity strategy should simultaneously strengthen both
the innate protections (σ1) and the adaptive responses (σ2), rather than focusing on one aspect alone.
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Figure 4. Bivariate analysis of protection parameters σ1 and σ2 on endemic infection level
I∗.

The distinct roles of σ1 and σ2, as revealed by our simulations, validate the core novelty of using the
B-D incidence. Our results demonstrate that the model can separately attribute infection suppression
to preemptive hardening (primarily affecting R0) and to active response measures (primarily affecting
the endemic level I∗). This analytical capability is absent in models with simpler incidence functions
and provides cybersecurity practitioners with specific insights to optimize their security investments.

The superadditive effect observed in the bivariate analysis (Figure 4) further justifies the B-D
formulation, as it captures the realistic scenario where combined preventive and responsive controls
provide greater protection than the sum of their individual effects—a phenomenon well-recognized in
defense-in-depth cybersecurity strategies.

5.5. Implications for cybersecurity policy

Our results suggest several practical implications for cybersecurity management:

(1) Prevention-focused strategy (increasing σ1): Effective for organizations with limited security
operations capabilities, thereby focusing on baseline hardening.

(2) Response-focused strategy (increasing σ2): Suitable for organizations with advanced security
operations centers that can rapidly detect and contain breaches.

(3) Balanced strategy (moderate increases in both): Most effective approach, which provides defense-
in-depth against both initial infection and lateral movement.
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(4) Resource allocation: The diminishing returns observed at high parameter values suggest that
organizations should seek an optimal balance rather than maximizing any single protection
mechanism.

5.6. Three-dimensional visualization of parameter effects

To provide a more intuitive understanding of the combined effects of protection parameters, we
generated a three-dimensional surface graph that shows how the level of endemic infection I∗ varies
with both σ1 and σ2. Figure 5 presents this comprehensive visualization, which clearly demonstrates
several key features of the system dynamics:

• Nonlinear interaction: The surface exhibits a significant curvature, which indicats strong
nonlinear interactions between the two protection parameters. This nonlinearity confirms the
superadditive effect observed in the contour plots.
• Diminishing returns: The gradient of the surface decreases as both parameters increase, thus

showing a decrease in marginal returns in infection reduction. This suggests that beyond certain
thresholds, additional investments in the protection yield progressively smaller benefits.
• Optimal protection strategy: The concave shape of the surface indicates the existence of an

optimal protection strategy that balances innate and adaptive protections rather than maximizing
either one alone.
• Critical transition region: The steepest descent region (colored in blue to green) corresponds to

the critical transition zone where small improvements in protection parameters yield the most
significant reductions in infection levels.

The 3D visualization complements the 2D analyses by providing a complete geometric
representation of the parameter space, thus facilitating a more comprehensive understanding of the
system’s behavior under different protection scenarios.
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Figure 5. Three-dimensional surface plot showing the combined effects of innate protection
(σ1) and adaptive protection (σ2) parameters on the endemic infection level I∗. The surface
demonstrates the nonlinear interaction between parameters and identifies regions of optimal
protection efficacy.

Figure 5 provides a 3D visualization of the combined effects of σ1 and σ2 on the endemic infection
level I∗, using the same parameter grid as described for Figure 4 in Section 5.9.

5.7. Bivariate analysis of protection parameters

For the bivariate analysis, we selected parameter ranges that ensure the existence of endemic
equilibrium points across the entire parameter space. The innate protection parameter σ1 was varied
from 0.1 to 0.8, while the adaptive protection parameter σ2 was varied from 0.1 to 2.5. These ranges
were chosen based on the condition β − Aσ1 > 0 (where A = d + α + γ), which ensures R0 > 1 and the
existence of an endemic equilibrium.

The parameter combinations were selected to cover both the critical transition region (where R0 ≈ 1)
and the strong protection regime. We excluded parameter values that would lead to R0 ≤ 1 to focus on
the endemic scenario, as the virus-free case is trivial from an infection dynamics perspective.

Figure 4 presents a comprehensive bivariate analysis which shows the superadditive effect of the
combined protection mechanisms. The results demonstrate the following:

(1) A simultaneous increase of both σ1 and σ2 produces a greater reduction in I∗ than the sum of
individual effects;

(2) The critical region (red area in Figure 4a) represents parameter combinations where small
improvements yield substantial benefits; and
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(3) The optimal protection strategy follows a specific σ1/σ2 ratio rather than maximizing either
parameter alone.

5.8. Validation of the invariant region

To ensure the computational coherence and mathematical consistency of our simulations with
the theoretical model, it is crucial to verify that the system trajectories remain within the positively
invariant region Ω = {(S , I,R) ∈ R3

+ : S + I + R ≤ b/d}, as established in Lemma 3.1. This region
represents the maximum sustainable number of devices in the network, given the recruitment rate b
and the device removal/failure rate d.

The parameter sets used in our simulations (e.g., for Figures 1–5) are explicitly provided in Table 2.
For the primary parameter set used in Figure 1 (b = 1, d = 0.1), the theoretical upper bound for the
total number of devices is b/d = 10. Figure 6 validates the invariant region Ω by showing the time
series of the total number of devices N(t) = S (t)+ I(t)+R(t) from the simulation in Figure 1 (IC1), thus
demonstrating that N(t) remains bounded by b/d = 10 (see Section 5.9). As demonstrated in Figure 6,
the total device count N(t) = S (t) + I(t) + R(t) computed from our model indeed satisfies N(t) ≤ 10
for all t ≥ 0, and asymptotically approaches this bound. This observation holds for all other parameter
variations used in this study, thus confirming that our numerical simulations are fully consistent with
the theoretical framework and that the trajectories respect the invariant region Ω.

Table 2. Parameter values used for numerical simulations in Figure 1.

Parameter Description Value
b Recruitment rate of new devices 1
p Proportion of new devices with pre-installed protection 0.9
β Effective infection rate 0.85
d Device removal rate (obsolescence/failure) 0.1
α Virus-induced device failure rate 0.1
γ Recovery rate of infected devices 0.1
δ Rate of immunity loss (protection becomes outdated) 0.7
σ1 Innate protection parameter 0.3
σ2 Adaptive protection parameter 0.9
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Figure 6. Time series of the total number of devices N(t) = S (t) + I(t) + R(t) in the network
for the parameter set in Table 1. The dashed red line represents the theoretical upper bound
b/d = 10. The graph confirms that N(t) remains within the invariant region Ω for all time,
ensuring the simulation’s consistency with the model’s theoretical foundations.

5.9. Numerical methods and reproducibility

All numerical simulations were performed using MATLAB R2023a. The system of ordinary
differential equation (2.1) was solved using the ode45 solver, which is based on an explicit Runge-
Kutta (4,5) formula. The relative error tolerance (RelTol) and absolute error tolerance (AbsTol) were
set to their default values of 1×10−3 and 1×10−6, respectively. The simulation time span for time-series
plots (Figures 1, 2, 3, 6) was from t = 0 to t = 100, which was sufficient for the solutions to reach a
steady state.

To ensure the reproducibility of our results, the following is a precise mapping between the figures
and the specific numerical experiments:

• Figure 1: Time series showing convergence to the endemic equilibrium from four different initial
conditions (IC1–IC4), as listed in Table 2. All other parameters were set to their baseline values.
• Figure 2: Impact of the innate protection parameter σ1. The parameter σ1 was varied as

[0.1, 0.5, 0.9], while all other parameters, including σ2 = 0.9, were fixed at their baseline values.
The initial condition was IC1 from Table 2.
• Figure 3: Impact of the adaptive protection parameter σ2. The parameter σ2 was varied as

[0.5, 1.5, 2.5], while all other parameters, including σ1 = 0.3, were fixed at their baseline values.
The initial condition was IC1 from Table 2.
• Figure 4: Bivariate analysis of σ1 and σ2. A grid of parameter values was created with σ1 ranging

from 0.1 to 0.8 in steps of 0.05, and σ2 ranging from 0.1 to 2.5 in steps of 0.1. For each (σ1, σ2)
pair, the endemic equilibrium E∗ was numerically computed by simulating the system to a steady
state (t = 200) from the initial condition IC1. The value of I∗ at the final time step is plotted.
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• Figure 5: Three-dimensional surface plot. The data for this surface is the same as that used for
the heatmap in Figure 4.
• Figure 6: Validation of the invariant region. This figure plots the total number of devices N(t) =

S (t) + I(t) + R(t) from the simulation shown in Figure 1 (IC1). The theoretical upper bound
b/d = 10 is plotted for reference.

The MATLAB code used to generate all figures is available from the corresponding author upon
reasonable request.

5.10. Operational mapping of protection parameters

A primary contribution of this model is its ability to bridge theoretical epidemiology with practical
cybersecurity management. To substantiate the claim of “explicit connections between model
parameters and real-world cybersecurity metrics”, this subsection provides a concrete mapping for the
core protection parameters, σ1 and σ2. This mapping allows cybersecurity professionals to interpret
the model parameters and results in the context of existing security controls and policies.

Table 3 outlines this operational mapping, relating σ1 and σ2 to specific security mechanisms,
typical metrics used to quantify their effectiveness, and example policy levers that an organization
might adjust to influence these parameters.

Table 3. Operational mapping of the protection parameters σ1 and σ2 to real-world
cybersecurity concepts.

Security mechanisms Measurable metrics Policy levers

σ1 (Innate protection)

Preventive Security - Systems compliant with security baseline - Mandate configuration baselines
- System Hardening - Number of unused services disabled - Enforce application whitelisting
- Application Whitelisting - Rate of successful initial exploits - Invest in hardening tools
- Default-Deny Firewall

Vulnerability Management - Mean Time to Apply (MTTA) patches - Shorten patch cycles
- Proactive Patching - Backlog of unpatched vulnerabilities - Increase patch team resources

σ2 (Adaptive Response)

Detection & Response - Mean Time to Detect (MTTD) - Deploy EDR/SIEM solutions
- EDR/SIEM Systems - Mean Time to Respond (MTTR) - Establish 24/7 SOC
- Security Operations Center - Percentage of traffic inspected - Conduct incident drills

Threat Intelligence - Time from intel ingestion to rule deployment - Subscribe to threat feeds
- Behavioral Analysis - Accuracy of behavioral detection - Integrate intelligence tools

Network Segmentation - Reduction in lateral movement speed - Implement micro-segmentation
- Automated Isolation - Time to isolate compromised host - Automate isolation playbooks

The ratio σ2/σ1 can be interpreted as an organization’s security posture index.

• Low ratio (σ2/σ1 < 1): Prevention-heavy strategy, which is reliant on hardening and patching;
• High ratio (σ2/σ1 > 1): Response-heavy strategy, which is reliant on detection and containment;
• Balanced approach (σ2/σ1 ≈ 1): Defense-in-depth, as recommended by our model.
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For example:

• A prevention-focused organization (e.g., highly regulated environment) would prioritize
investments that increase σ1;
• A response-focused organization (e.g., tech company with SOC) would focus on increasing σ2;
• The optimal strategy identifies cost-effective combinations of both parameters.

6. Conclusions

This paper presented a novel computer virus propagation model that incorporates the B-D functional
response to capture the inhibitory effects of modern operating system security mechanisms. We
provided a complete mathematical analysis of the model, thereby establishing the existence and
stability of equilibrium points under biologically realistic conditions.

Key advancements beyond previous work include the following: (1) complete global stability
analysis using a constructed Lyapunov function; (2) sensitivity analysis of R0 that identifies the most
influential parameters; (3) bivariate analysis of protection parameters that reveal superadditive effects;
and (4) practical cybersecurity implications derived from model dynamics.

Although our model captures important aspects of computer virus dynamics, several extensions
would be valuable, including the following: incorporation of network topology effects using
complex network theory; addition of time delays which represent patch deployment and information
propagation; inclusion of stochastic elements to model unpredictable outbreak patterns; and validation
against real-world virus propagation data from enterprise networks.

The three-dimensional analysis (Figure 5) revealed that the relationship between the protection
parameters and infection levels is highly nonlinear, with distinct regions of varying sensitivities.
This finding has practical implications for cybersecurity resource allocation, thus suggesting that
organizations should do the following:

(1) Identify critical regions: Focus protection efforts on parameter combinations that lie within the
steep descent region of the 3D surface, where small improvements yield maximum benefits.

(2) Balance protection investments: Rather than maximizing innate or adaptive protection alone,
adopt a balanced approach that optimizes the combined effect based on the concave shape of the
performance surface.

(3) Consider diminishing returns: Recognize that beyond certain thresholds, additional investments
in protection provide progressively smaller returns, thus suggesting the existence of economically
optimal protection levels.

Our model provides a framework to understand the complex interplay between virus propagation
and system defenses, thereby offering insights to develop more effective cybersecurity strategies. The
superadditive effect of combined protection mechanisms suggests that organizations should adopt a
defense-in-depth approach rather than relying on single solutions.

Future work will explore these promising directions, thereby drawing inspiration from advanced
methodologies in both cybersecurity modeling and the general nonlinear epidemic theory [28–30].
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