This study thoroughly examined the complex electro-magnetohydrodynamic (EMHD) boundary layer flow of ternary hybrid nanofluids (THNP), specifically, Ti 6Al4V-ZnO-Fe2O3, over stretching-shrinking and permeable surfaces, and recognized the important impact of the nonlinear Darcy-Forchheimer law and thermal radiation. The THNP, comprised of three distinct nanoparticles including: titanium alloy Ti6Al4V (6% aluminum, 4% vanadium, balance titanium), zinc oxide ZnO, and iron oxide Fe2O3 suspended in a base fluid, is used to enhance both thermal and flow properties. The model comprehensively addressed inertial effects in porous media through the Darcy-Forchheimer drag, as well as the electromagnetic forces and thermal radiation. The governing partial differential equations were transformed into nonlinear ordinary differential equations via similarity transformations, which were solved through an intelligent numerical approach using artificial neural networks (ANN). A thorough analysis was conducted on the effect of important parameters such as the Darcy-Forchheimer permeability, nanoparticle volume fractions, stretching/shrinking rates, surface permeability, and radiation intensity on the velocity and temperature profiles. The results are shown graphically and discussed, providing insight related to the fluid dynamics and heat-transfer phenomena in such advanced systems.
Citation: Abdulaziz H. Alharbi, El Hadi Boussaha, Ali M. Alhartomi, Hicham Salhi, Raed Alrdadi, Mohamed Kezzar, Mohamed Rafik Sari. AI-driven analysis of Darcy-Forchheimer EMHD boundary layer flow in thermal hybrid nanofluids[J]. AIMS Mathematics, 2025, 10(11): 27129-27151. doi: 10.3934/math.20251192
This study thoroughly examined the complex electro-magnetohydrodynamic (EMHD) boundary layer flow of ternary hybrid nanofluids (THNP), specifically, Ti 6Al4V-ZnO-Fe2O3, over stretching-shrinking and permeable surfaces, and recognized the important impact of the nonlinear Darcy-Forchheimer law and thermal radiation. The THNP, comprised of three distinct nanoparticles including: titanium alloy Ti6Al4V (6% aluminum, 4% vanadium, balance titanium), zinc oxide ZnO, and iron oxide Fe2O3 suspended in a base fluid, is used to enhance both thermal and flow properties. The model comprehensively addressed inertial effects in porous media through the Darcy-Forchheimer drag, as well as the electromagnetic forces and thermal radiation. The governing partial differential equations were transformed into nonlinear ordinary differential equations via similarity transformations, which were solved through an intelligent numerical approach using artificial neural networks (ANN). A thorough analysis was conducted on the effect of important parameters such as the Darcy-Forchheimer permeability, nanoparticle volume fractions, stretching/shrinking rates, surface permeability, and radiation intensity on the velocity and temperature profiles. The results are shown graphically and discussed, providing insight related to the fluid dynamics and heat-transfer phenomena in such advanced systems.
| [1] |
S. Abbasbandy, T. Hayat, A. Alsaedi, M. M. Rashidi, Numerical and analytical solutions for Falkner-Skan flow of MHD Oldroyd-B fluid, Int. J. Numer. Method. H., 24 (2014), 390–401. https://doi.org/10.1108/HFF-05-2012-0096 doi: 10.1108/HFF-05-2012-0096
|
| [2] |
T. Hayat, A Shafiq, A Alsaedi, S Asghar, Effect of inclined magnetic field in flow of third grade fluid with variable thermal conductivity, AIP Adv., 5 (2015), 087108. https://doi.org/10.1063/1.4928321 doi: 10.1063/1.4928321
|
| [3] |
M. R. Eid, K. L. Mahny, Unsteady MHD heat and mass transfer of a non-Newtonian nanofluid flow of a two-phase model over a permeable stretching wall with heat generation/absorption, Adv Powder Technol., 28 (2017), 3063–3073. https://doi.org/10.1016/j.apt.2017.09.021 doi: 10.1016/j.apt.2017.09.021
|
| [4] |
S. Gherieb, M. Kezzar, A. Nehal, M. R. Sari, A new improved generalized decomposition method (improved-GDM) for hydromagnetic boundary layer flow, Int. J. Numer. Method. H., 30 (2020), 4607–4628. https://doi.org/10.1108/HFF-08-2019-0655 doi: 10.1108/HFF-08-2019-0655
|
| [5] |
L. Ali, B. Ali, K. K. Asogwa, R. Apsari, Transient rotating three-dimensional flow of micropolar fluid induced by Riga plate: finite element approach, Numer. Heat Tr. A-Appl., 85 (2024), 1889–1902. https://doi.org/10.1080/10407782.2023.2212861 doi: 10.1080/10407782.2023.2212861
|
| [6] |
L. Ali, R. Apsari, A. Abbas, P. Tak, Entropy generation on the dynamics of volume fraction of nano-particles and coriolis force impacts on mixed convective nanofluid flow with significant magnetic effect, Numer. Heat Tr. A-Appl., 86 (2025), 8509–8524. https://doi.org/10.1080/10407782.2024.2360652 doi: 10.1080/10407782.2024.2360652
|
| [7] |
M. Sheikholeslami, D. D. Ganji, Nanofluid convective heat transfer using semi analytical and numerical approaches: A review, J. Taiwan Inst. Chem. E., 65 (2016), 43–77. https://doi.org/10.1016/j.jtice.2016.05.014 doi: 10.1016/j.jtice.2016.05.014
|
| [8] |
O. Mahian, A. Kianifar, S. A. Kalogirou, I. Pop, S. Wongwises, A review of the applications of nanofluids in solar energy, Int. J. Heat Mass Tran., 57 (2013), 582–594. https://doi.org/10.1016/j.ijheatmasstransfer.2012.10.037 doi: 10.1016/j.ijheatmasstransfer.2012.10.037
|
| [9] |
M. M. Rashidi, N. V. Ganesh, A. K. A. Hakeem, B. Ganga, Buoyancy effect on MHD flow of nanofluid over a stretching sheet in the presence of thermal radiation, J. Mol. Liq., 198 (2014), 234–238. https://doi.org/10.1016/j.molliq.2014.06.037 doi: 10.1016/j.molliq.2014.06.037
|
| [10] | P. Z. Forchheimer, Wasserbewegung durch boden, Zeitschrift des Vereines Deutscher Ingenieure, 45 (1901), 1781–1788. |
| [11] |
M. A. Seddeek, Influence of viscous dissipation and thermophoresis on Darcy-Forchheimer mixed convection in a fluid saturated porous media, J. Colloid Interf. Sci., 293 (2006), 137–142. https://doi.org/10.1016/j.jcis.2005.06.039 doi: 10.1016/j.jcis.2005.06.039
|
| [12] | P. A. Davidson, Introduction to magnetohydrodynamics, 2 Eds., Cambridge: Cambridge University Press, 2016. https://doi.org/10.1017/9781316672853 |
| [13] |
L. Ali, P. Kumar, H. Poonia, S. Areekara, R. Apsari, The significant role of Darcy-Forchheimer and thermal radiation on Casson fluid flow subject to stretching surface: A case study of dusty fluid, Mod. Phys. Lett. B, 38 (2024), 2350215. https://doi.org/10.1142/S0217984923502159 doi: 10.1142/S0217984923502159
|
| [14] | G. W. Sutton, A. Sherman, Engineering magnetohydrodynamics, New York: Dover Publications, 2006. |
| [15] | R. Moreau, Magnetohydrodynamics, Dordrecht: Springer, 2013. |
| [16] |
R. R. Sahoo, V. Kumar, Development of a new correlation to determine the viscosity of ternary hybrid nanofluid, Int. Commun. Heat Mass, 111 (2020), 104451. https://doi.org/10.1016/j.icheatmasstransfer.2019.104451 doi: 10.1016/j.icheatmasstransfer.2019.104451
|
| [17] |
H. Adun, D. Kavaz, M. Dagbasi, Review of ternary hybrid nanofluid: Synthesis, stability, thermophysical properties, heat transfer applications, and environmental effects, J. Clean. Prod., 328 (2021), 129525. https://doi.org/10.1016/j.jclepro.2021.129525 doi: 10.1016/j.jclepro.2021.129525
|
| [18] |
S. M. Mousavi, F. Esmaeilzadeh, X. P. Wang, A detailed investigation on the thermo-physical and rheological behavior of MgO/TiO2/water-ethylene glycol hybrid nanofluid, J. Mol. Liq., 282 (2019), 323–339. https://doi.org/10.1016/j.molliq.2019.02.100 doi: 10.1016/j.molliq.2019.02.100
|
| [19] |
Z. H. Xuan, Y. L. Zhai, M. Y. Ma, Y. H. Li, H. Wang, Thermo-economic performance and sensitivity analysis of ternary hybrid nanofluids, J. Mol. Liq., 323 (2021), 114889. https://doi.org/10.1016/j.molliq.2020.114889 doi: 10.1016/j.molliq.2020.114889
|
| [20] |
T. Hayat, M. Waqas, S. A. Shehzad, A. Alsaedi, Stretched flow of Carreau nanofluid with convective boundary condition, Pramana, 86 (2016), 3–17. https://doi.org/10.1007/s12043-015-1137-y doi: 10.1007/s12043-015-1137-y
|
| [21] |
W. A. Khan, I. Pop, Boundary-layer flow of a nanofluid past a stretching sheet, Int. J. Heat Mass Tran., 53 (2010), 2477–2483. https://doi.org/10.1016/j.ijheatmasstransfer.2010.01.032 doi: 10.1016/j.ijheatmasstransfer.2010.01.032
|
| [22] |
A. Wakif, M. Zaydan, R. Sehaqui, Aspects of EMHD boundary layer flows for alumina-water nanofluidic mixtures in a porous medium, J. Umm Al-Qura Univ. Appll. Sci., (2024). https://doi.org/10.1007/s43994-024-00174-6 doi: 10.1007/s43994-024-00174-6
|
| [23] |
P. Mushahary, S. Enamul, S. Ontela, Thermal analysis of mixed convective electro-osmotic thermally radiative EMHD flow of couple stress hybrid nanofluid in a vertical porous channel, Chinese J. Phys., 97 (2025), 385–410. https://doi.org/10.1016/j.cjph.2025.03.011 doi: 10.1016/j.cjph.2025.03.011
|
| [24] |
I. E. Lagaris, A. Likas, D. I. Fotiadis, Artificial neural networks for solving ordinary and partial differential equations, IEEE T. Neural Networ., 9 (1998), 987–1000. https://doi.org/10.1109/72.712178 doi: 10.1109/72.712178
|
| [25] |
M. Raissi, P. Perdikaris, G. E. Karniadakis, Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, J. Comput. Phys., 378 (2019), 686–707. https://doi.org/10.1016/j.jcp.2018.10.045 doi: 10.1016/j.jcp.2018.10.045
|
| [26] |
M. W. M. G. Dissanayake, N. Phan‐Thien, Neural‐network‐based approximations for solving partial differential equations, Commun. Numer. Meth. En., 10 (1994), 195–201. https://doi.org/10.1002/cnm.1640100303 doi: 10.1002/cnm.1640100303
|
| [27] |
K. Hornik, M. Stinchcombe, H. White, Multilayer feedforward networks are universal approximators, Neural Networks, 2 (1989), 359–366. https://doi.org/10.1016/0893-6080(89)90020-8 doi: 10.1016/0893-6080(89)90020-8
|
| [28] |
M. Bahiraei, S. Heshmatian, H. Moayedi, Artificial intelligence in the field of nanofluids: A review on applications and potential future directions, Powder Technol., 353 (2019), 276–301. https://doi.org/10.1016/j.powtec.2019.05.034 doi: 10.1016/j.powtec.2019.05.034
|
| [29] |
F. Zia, J. Iqbal, N. Naheed, M. M. Alam, AI-powered analysis of thermally magnetized EMHD Casson hybrid nanofluid, Case Stud. Therm. Eng., 74 (2025), 106812. https://doi.org/10.1016/j.csite.2025.106812 doi: 10.1016/j.csite.2025.106812
|
| [30] |
N. A. Zainal, R. Nazar, K. Naganthran, I. Pop, Unsteady MHD hybrid nanofluid flow towards a horizontal cylinder, Int. Commun. Heat Mass, 134 (2022), 106020. https://doi.org/10.1016/j.icheatmasstransfer.2022.106020 doi: 10.1016/j.icheatmasstransfer.2022.106020
|
| [31] |
I. Mahariq, R. Saadeh, F. L. Rashid, A. Qazza, H. A. E. W. Khalifa, M. Kezzar, et al., Role of ternary hybrid nanoparticle and EMHD on boundary layer flow with stretching-shrinking plate: Optimization analyses using RMS, Results Phys., 74 (2025), 108315. https://doi.org/10.1016/j.rinp.2025.108315 doi: 10.1016/j.rinp.2025.108315
|