Research article Special Issues

Transformers vs. LSTM-MLP for option pricing

  • Published: 21 November 2025
  • MSC : 91G60, 68T07

  • In the realm of option pricing, parametric models originating from the Black-Scholes-Merton framework have proven extremely persistent. However, machine learning models have recently entered the field with success, arguably due to their flexible and non-parametric nature. A combined LSTM-MLP deep learning architecture that combines time series data with cross-sectional pricing information, avoiding explicit volatility estimates, has recently been proposed. This LSTM-MLP model outperforms relevant benchmarks in different dimensions. In this research, we investigated whether a transformer-based alternative is able to better capture the inter-temporal characteristics of the data than the LSTM-based LSTM-MLP model. We found that although the transformer performs better during the extreme market conditions of COVID-19, the LSTM-MLP architecture is overall superior.

    Citation: Boye A. Høverstad, Morten Risstad, Lavrans K. Sagen. Transformers vs. LSTM-MLP for option pricing[J]. AIMS Mathematics, 2025, 10(11): 27152-27170. doi: 10.3934/math.20251193

    Related Papers:

  • In the realm of option pricing, parametric models originating from the Black-Scholes-Merton framework have proven extremely persistent. However, machine learning models have recently entered the field with success, arguably due to their flexible and non-parametric nature. A combined LSTM-MLP deep learning architecture that combines time series data with cross-sectional pricing information, avoiding explicit volatility estimates, has recently been proposed. This LSTM-MLP model outperforms relevant benchmarks in different dimensions. In this research, we investigated whether a transformer-based alternative is able to better capture the inter-temporal characteristics of the data than the LSTM-based LSTM-MLP model. We found that although the transformer performs better during the extreme market conditions of COVID-19, the LSTM-MLP architecture is overall superior.



    加载中


    [1] F. Black, M. Scholes, The valuation of option contracts and a test of market efficiency, J. Financ., 27 (1972), 399. https://doi.org/10.2307/2978484 doi: 10.2307/2978484
    [2] R. C. Merton, Option pricing when underlying stock returns are discontinuous, J. Financ. Econ., 3 (1976), 125–144. https://doi.org/10.1016/0304-405X(76)90022-2 doi: 10.1016/0304-405X(76)90022-2
    [3] J. Hull, A. White, The pricing of options on assets with stochastic volatilities, J. Financ., 42 (1987), 281–300. https://doi.org/10.1111/j.1540-6261.1987.tb02568.x doi: 10.1111/j.1540-6261.1987.tb02568.x
    [4] S. L. Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency options, Rev. Financ. Stud., 6 (1993), 327–343. https://doi.org/10.1093/rfs/6.2.327 doi: 10.1093/rfs/6.2.327
    [5] P. C. Andreou, C. Charalambous, S. H. Martzoukos, Pricing and trading European options by combining artificial neural networks and parametric models with implied parameters, Eur. J. Oper. Res., 185 (2008), 1415–1433. https://doi.org/10.1016/j.ejor.2005.03.081 doi: 10.1016/j.ejor.2005.03.081
    [6] R. Culkin, R. D. Das, Machine learning in finance: The case of deep learning for option pricing, J. Invest. Manag., 15 (2017), 1–9.
    [7] Y. Cao, X. Liu, J. Zhai, Option valuation under no-arbitrage constraints with neural networks, Eur. J. Oper. Res., 293 (2021), 361–374. https://doi.org/10.1016/j.ejor.2020.12.003 doi: 10.1016/j.ejor.2020.12.003
    [8] L. Liang, X. Cai, Time-sequencing European options and pricing with deep learning—Analyzing based on interpretable ALE method, Expert Syst. Appl., 187 (2022). https://doi.org/10.1016/j.eswa.2021.115951
    [9] R. Pimentel, M. Risstad, S. Rogde, E. S. Rygg, J. Vinje, S. Westgaard, et al., Option pricing with deep learning: A long short-term memory approach, Decis. Econ. Financ., 1 (2025), 1–32. https://doi.org/10.1007/s10203-025-00518-9 doi: 10.1007/s10203-025-00518-9
    [10] J. Vinje, E. S. Rygg, C. Wu, M. Risstad, R. Pimentel, S. Westgaard, et al., Merged LSTM-MLP for option valuation, Quant. Financ., 1 (2025), 1–16. https://doi.org/10.1080/14697688.2025.2493965 doi: 10.1080/14697688.2025.2493965
    [11] D. Bahdanau, K. Cho, Y. Bengio, Neural machine translation by jointly learning to align and translate, arXiv preprint, 2014.
    [12] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, et al., Attention is all you need, Adv. Neur. Inform. Process. Syst., 2017.
    [13] Q. Wen, T. Zhou, C. Zhang, W. Chen, Z. Ma, J. Yan, et al., Transformers in time series: A survey, arXiv preprint, 2023. https://doi.org/10.48550/arXiv.2202.07125
    [14] B. Lim, S. Ö. Arık, N. Loeff, T. Pfister, Temporal fusion transformers for interpretable multi-horizon time series forecasting, Int. J. Forecasting, 37 (2021), 1748–1764. https://doi.org/10.1016/j.ijforecast.2021.03.012 doi: 10.1016/j.ijforecast.2021.03.012
    [15] J. L. Ba, J. R. Kiros, G. E. Hinton, Layer normalization, arXiv preprint, 2016. https://doi.org/10.48550/arXiv.1607.06450
    [16] J. Bergstra, Y. Bengio, Random search for hyper-parameter optimization, J. Mach. Learn. Res., 13 (2012), 281–305.
    [17] Y. N. Dauphin, A. Fan, M. Auli, D. Grangier, Language modeling with gated convolutional networks, In: Proceedings of the 34 th International Conference on Machine Learning, Sydney, Australia, 2017.
    [18] H. Wu, J. Xu, J. Wang, M. Long, Autoformer: Decomposition transformers with auto-correlation for long-term series forecasting, In: Advances in Neural Information Processing Systems 34 (NeurIPS 2021), 2021.
    [19] S. Eggen, T. J. Espe, K. Grude, M. Risstad, R. Sandberg, Financial time series uncertainty: A review of probabilistic AI applications, J. Econ. Surv., 2025. https://doi.org/10.1111/joes.70018
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(343) PDF downloads(23) Cited by(0)

Article outline

Figures and Tables

Figures(7)  /  Tables(11)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog