Research article Special Issues

Closed-form solutions of a nonlinear bidimensional difference system via generalized Fibonacci sequences

  • Published: 17 November 2025
  • MSC : 39A10, 40A05

  • This paper presents a new model for a two-dimensional nonlinear difference system that incorporates symmetric interactions between two sequences through a scaling parameter $ d $ and a continuous one-to-one transformation function $ f $. Explicit analytical solutions are derived, establishing a direct connection with the $ d $-Fibonacci sequence. The transformation function $ f $ plays a crucial role: It accommodates diverse nonlinear iteration patterns and provides a natural mechanism for regulating both growth dynamics and sequence interactions. Moreover, the use of a continuous one-to-one function guarantees that the analytical solutions of transformed systems can be recovered through its inverse mapping. The approach highlights a unified framework linking generalized Fibonacci-type recursions with nonlinear transformations, offering new insights into the structure and solvability of higher-order discrete systems. Several illustrative examples are provided to support the theoretical findings.

    Citation: Ahmed A. Al Ghafli. Closed-form solutions of a nonlinear bidimensional difference system via generalized Fibonacci sequences[J]. AIMS Mathematics, 2025, 10(11): 26545-26567. doi: 10.3934/math.20251167

    Related Papers:

  • This paper presents a new model for a two-dimensional nonlinear difference system that incorporates symmetric interactions between two sequences through a scaling parameter $ d $ and a continuous one-to-one transformation function $ f $. Explicit analytical solutions are derived, establishing a direct connection with the $ d $-Fibonacci sequence. The transformation function $ f $ plays a crucial role: It accommodates diverse nonlinear iteration patterns and provides a natural mechanism for regulating both growth dynamics and sequence interactions. Moreover, the use of a continuous one-to-one function guarantees that the analytical solutions of transformed systems can be recovered through its inverse mapping. The approach highlights a unified framework linking generalized Fibonacci-type recursions with nonlinear transformations, offering new insights into the structure and solvability of higher-order discrete systems. Several illustrative examples are provided to support the theoretical findings.



    加载中


    [1] H. Althagafi, A. Ghezal, Stability analysis of biological rhythms using three-dimensional systems of difference equations with squared terms, J. Appl. Math. Comput., 71 (2025), 3211–3232. https://doi.org/10.1007/s12190-024-02363-2 doi: 10.1007/s12190-024-02363-2
    [2] H. Althagafi, A. Ghezal, Solving a system of nonlinear difference equations with bilinear dynamics, AIMS Math., 9 (2024), 34067–34089. https://doi.org/10.3934/math.20241624 doi: 10.3934/math.20241624
    [3] H. Althagafi, Dynamics of difference systems: A mathematical study with applications to neural systems, AIMS Math., 10 (2025), 2869–2890. https://doi.org/10.3934/math.2025134 doi: 10.3934/math.2025134
    [4] A. Ghezal, O. Alzeley, Probabilistic properties and estimation methods for periodic threshold autoregressive stochastic volatility, AIMS Math., 9 (2024), 11805–11832. https://doi.org/10.3934/math.2024578 doi: 10.3934/math.2024578
    [5] O. Alzeley, A. Ghezal, On an asymmetric multivariate stochastic difference volatility: Structure and estimation, AIMS Math., 9 (2024), 18528–18552. https://doi.org/10.3934/math.2024902 doi: 10.3934/math.2024902
    [6] R. Abo-Zeid, C. Cinar, Global behavior of the difference equation $x_{n+1} = \left. Ax_{n-1}\right/ B-Cx_{n}x_{n-2}$, Bol. Soc. Paran. Mat., 31 (2013), 43–49.
    [7] E. M. Elsayed, On the solutions and periodicity of some rational systems of difference equations, B. Math. Soc. Sci. Math., 60 (2017), 159–171.
    [8] E. M. Elsayed, On a max type recursive sequence of order three, Miskolc Math. Notes, 17 (2016), 837–859. https://doi.org/10.18514/MMN.2017.534 doi: 10.18514/MMN.2017.534
    [9] E. M. Elsayed, Expression and behavior of the solutions of some rational recursive sequences, Math. Method. Appl. Sci., 39 (2016), 5682–5694. https://doi.org/10.1002/mma.3953 doi: 10.1002/mma.3953
    [10] M. Gümüş, Global asymptotic behavior of a discrete system of difference equations with delays, Filomat, 37 (2023), 251–264. https://doi.org/10.2298/FIL2301251G doi: 10.2298/FIL2301251G
    [11] M. Gümüş, R. Abo-Zeid, An explicit formula and forbidden set for a higher order difference equation, J. Appl. Math. Comput., 63 (2020), 133–142. https://doi.org/10.5553/IISL/2020063002005 doi: 10.5553/IISL/2020063002005
    [12] M. Gümüş, R. Abo-Zeid, Global behavior of a rational second order difference equation, J. Appl. Math. Comput., 62 (2020), 119–133. https://doi.org/10.1007/s12190-019-01276-9 doi: 10.1007/s12190-019-01276-9
    [13] M. Gümüş, The periodic character in a higher order difference equation with delays, Math. Method. Appl. Sci., 43 (2020), 1112–1123. https://doi.org/10.1002/mma.5915 doi: 10.1002/mma.5915
    [14] T. H. Tran, A. D. Nguyen, T. A. Pham, Global dynamics of some system of second-order difference equations, Electron. Res. Arch., 29 (2021), 4159–4175. http://dx.doi.org/10.3934/era.2021077 doi: 10.3934/era.2021077
    [15] A. Ghezal, N. Attia, Closed-form solutions of a new class of three-dimensional nonlinear difference equations, AIMS Math., 10 (2025), 23518–23533. http://dx.doi.org/2010.3934/math.20251044
    [16] M. Balegh, A. Ghezal, Dynamical analysis of a system of fuzzy difference equations with power terms, Int. J. Dynam. Control, 13 (2025), 364. https://doi.org/10.1007/s40435-025-01876-3 doi: 10.1007/s40435-025-01876-3
    [17] E. M. Elsayed, M. T. Alharthi, Analysis and qualitative behaviour of a tenth-order rational difference equation, Bol. Soc. Paran. Mat., 42 (2024), 1–13. https://doi.org/10.5269/bspm.64858 doi: 10.5269/bspm.64858
    [18] M. Kara, Y. Yazlik, N. Touafek, On a difference equation whose solution is related to Fibonacci numbers, Filomat, 38 (2024), 7199–7207. https://doi.org/10.2298/FIL2420199K doi: 10.2298/FIL2420199K
    [19] S. Elaydi, An introduction to difference equations, Springer, New York, 2005.
    [20] A. Ghezal, K. Zerari, I. Zemmouri, On solutions of a two-dimensional (m + 1)-order system of difference equations via Pell numbers, Bol. Soc. Paran. Mat., 43 (2025), 1–10. Available from: https://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/67451.
    [21] A. Ghezal, I. Zemmouri, Global stability of a multi-dimensional system of rational difference equations of higher-order with Pell-coefficients, Bol. Soc. Paran. Mat., 43 (2025), 1–9. Available from: https://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/67343.
    [22] A. Ghezal, I. Zemmouri, On a solvable bidimensional system of rational difference equations via Jacobsthal numbers, Bol. Soc. Paran. Mat., 43 (2025), 1–11. Available from: https://periodicos.uem.br/ojs/index.php/BSocParanMat/article/view/68245.
    [23] A. Ghezal, I. Zemmouri, Solvability of a bidimensional system of rational difference equations via Mersenne numbers, Palest. J. Math., 13 (2024), 84–93.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(309) PDF downloads(24) Cited by(0)

Article outline

Figures and Tables

Figures(4)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog