Research article Special Issues

Dynamics and control for a stochastic giving up smoking model

  • Published: 17 November 2025
  • MSC : 60H10, 92D25, 92D40, 93E15

  • This paper focused on a stochastic giving-up-smoking model with harmonic mean-type incidence rate, in which the population was divided into four types. Firstly, we showed that the model has a unique global positive solution. Then, stochastic permanence of the model was discussed, which means that the population described by the model will not grow wildly or disappear. Next, sufficient conditions for the elimination of smokers (including occasional smokers, chain smokers, and quit smokers) were established. Additionally, sufficient conditions for the existence of an ergodic stationary distribution were derived, meaning that all types of smokers can be persistent. Moreover, we discussed how to control the size of the smoker population from the perspective of economics. Finally, some numerical simulations were introduced.

    Citation: Xin Yi, Rong Liu, Yanmei Wang. Dynamics and control for a stochastic giving up smoking model[J]. AIMS Mathematics, 2025, 10(11): 26484-26510. doi: 10.3934/math.20251164

    Related Papers:

  • This paper focused on a stochastic giving-up-smoking model with harmonic mean-type incidence rate, in which the population was divided into four types. Firstly, we showed that the model has a unique global positive solution. Then, stochastic permanence of the model was discussed, which means that the population described by the model will not grow wildly or disappear. Next, sufficient conditions for the elimination of smokers (including occasional smokers, chain smokers, and quit smokers) were established. Additionally, sufficient conditions for the existence of an ergodic stationary distribution were derived, meaning that all types of smokers can be persistent. Moreover, we discussed how to control the size of the smoker population from the perspective of economics. Finally, some numerical simulations were introduced.



    加载中


    [1] Q. Din, M. Ozair, T. Hussain, U. Saeed, Qualitative behavior of a smoking model, Adv. Differ. Equ., 2016 (2016), 96. https://doi.org/10.1186/s13662-016-0830-6 doi: 10.1186/s13662-016-0830-6
    [2] O. Sharomi, A. B. Gumel, Curtailing smoking dynamics: A mathematical modeling approach, Appl. Math. Comput., 195 (2008), 475–499. https://doi.org/10.1016/j.amc.2007.05.012 doi: 10.1016/j.amc.2007.05.012
    [3] S. Uçar, E. Uçar, N. Özdemir, Z. Hammouch, Mathematical analysis and numerical simulation for a smoking model with Atangana–Baleanu derivative, Chaos Soliton. Fract., 118 (2019), 300–306. https://doi.org/10.1016/j.chaos.2018.12.003 doi: 10.1016/j.chaos.2018.12.003
    [4] J. R. Banegas, L. D. Gañán, J. G. Enríquez, F. V. Álvarez, F. Rodríguez-Artalejo, La mortalidad atribuible al tabaquismo comienza a disminuir en españa, Med. Clin., 124 (2005), 769–771. https://doi.org/10.1157/13075847 doi: 10.1157/13075847
    [5] F. Guerrero, F. Santonja, R. Villanueva, Analysing the spanish smoke-free legislation of 2006: A new method to quantify its impact using a dynamic model, Int. J. Drug Policy, 22 (2011), 247–251. https://doi.org/10.1016/j.drugpo.2011.05.003 doi: 10.1016/j.drugpo.2011.05.003
    [6] A. Zeb, G. Zaman, S. Momani, Square-root dynamics of a giving up smoking model, Appl. Math. Model., 37 (2013), 5326–5334. https://doi.org/10.1016/j.apm.2012.10.005 doi: 10.1016/j.apm.2012.10.005
    [7] L.Y. Pang, Z. Zhong, S. Liu, X. Zhang, A mathematical model approach for tobacco control in China, Appl. Math. Comput., 259 (2015), 497–509. https://doi.org/10.1016/j.amc.2015.02.078 doi: 10.1016/j.amc.2015.02.078
    [8] G. Sun, H. Zhang, Y. Song, L. Li, Z. Jin, Dynamic analysis of a plant-water model with spatial diffusion, J. Differ. Equ., 329 (2022), 395–430. https://doi.org/10.1016/j.jde.2022.05.009 doi: 10.1016/j.jde.2022.05.009
    [9] P. Wu, Z. Feng, Dispersal dynamics of an HIV and AIDS model with multiple infection routes and patches, Appl. Math. Model., 147 (2025), 116197. https://doi.org/10.1016/j.apm.2025.116197 doi: 10.1016/j.apm.2025.116197
    [10] P. Wu, C. Fang, Spatiotemporal dynamics of syphilis in Xinjiang via a demographic-geographic data-validated reaction diffusion model, J. Math. Phys., 66 (2025), 062704. https://doi.org/10.1063/5.0273893 doi: 10.1063/5.0273893
    [11] T. Chen, L. Chen, P. Wu, Spatiotemporal transmission dynamics and optimal regional control of a spatial heterogeneity reaction-diffusion schistosomiasis model, Commun. Nonlinear Sci., 151 (2025), 109097. https://doi.org/10.1016/j.cnsns.2025.109097 doi: 10.1016/j.cnsns.2025.109097
    [12] G. ur Rahman, R. P. Agarwal, Q. Din, Mathematical analysis of giving up smoking model via harmonic mean type incidence rate, Appl. Math. Comput., 354 (2019), 128–148. https://doi.org/10.1016/j.amc.2019.01.053 doi: 10.1016/j.amc.2019.01.053
    [13] J. Geng, M. Liu, Y. Zhang, Stability of a stochastic one-predator-two-prey population model with time delays, Commun. Nonlinear Sci., 53 (2017), 65–82. https://doi.org/10.1016/j.cnsns.2017.04.022 doi: 10.1016/j.cnsns.2017.04.022
    [14] L. Imhofa, S. Walcher, Exclusion and persistence in deterministic and stochastic chemostat models, J. Differ. Equ., 217 (2005), 26–53. https://doi.org/10.1016/j.jde.2005.06.017 doi: 10.1016/j.jde.2005.06.017
    [15] M. Liu, C. Bai, Y. Jin, Population dynamical behavior of a two-predator one-prey stochastic model with time delay, Discrete Contin. Dyn. Syst., 37 (2017), 2513–2538. https://doi.org/10.3934/dcds.2017108 doi: 10.3934/dcds.2017108
    [16] M. Jovanovi$\acute{c}$, M. Krsti$\acute{c}$, Extinction in stochastic predator-prey population model with Allee effect on prey, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), 2651–2667. https://doi.org/10.3934/dcdsb.2017129 doi: 10.3934/dcdsb.2017129
    [17] X. Yu, S. Yuan, T. Zhang, Persistence and ergodicity of a stochastic single species model with Allee effect under regime switching, Commun. Nonlinear Sci., 59 (2018), 359–374. https://doi.org/10.1016/j.cnsns.2017.11.028 doi: 10.1016/j.cnsns.2017.11.028
    [18] R. Liu, G. Liu, Complex dynamics of a stochastic uni-directional consumer-resource mutualism system, Ecol. Complex., 48 (2021), 100965. https://doi.org/10.1016/j.ecocom.2021.100965 doi: 10.1016/j.ecocom.2021.100965
    [19] X. Meng, S. Zhao, T. Feng, T. Zhang, Dynamics of a novel nonlinear stochastic SIS epidemic model with double epidemic hypothesis, J. Math. Anal. Appl., 433 (2016), 227–242. https://doi.org/10.1016/j.jmaa.2015.07.056 doi: 10.1016/j.jmaa.2015.07.056
    [20] Y. Cai, Y. Kang, W. Wang, A stochastic SIRS epidemic model with nonlinear incidence rate, Appl. Math. Comput., 305 (2017), 221–240. https://doi.org/10.1016/j.amc.2017.02.003 doi: 10.1016/j.amc.2017.02.003
    [21] N. H. Du, N. N. Nhu, Permanence and extinction of certain stochastic SIR models perturbed by a complex type of noises, Appl. Math. Lett., 64 (2017), 223–230. https://doi.org/10.1016/j.aml.2016.09.012 doi: 10.1016/j.aml.2016.09.012
    [22] T. Caraballo, M. El Fatini, R. Pettersson, R. Taki, A stochastic SIRI epidemic model with relapse and media coverage, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 3483–3501. https://doi.org/10.3934/dcdsb.2018250 doi: 10.3934/dcdsb.2018250
    [23] R. Liu, G. Liu, Analysis of a stochastic SIS epidemic model with transport-related infection, J. Appl. Anal. Comput., 11 (2021), 1296–1321. https://doi.org/10.11948/20200157 doi: 10.11948/20200157
    [24] X. Mao, Stochsatic differential equations and applications, Horwood, 2007.
    [25] Y. A. Kutoyants, Statistical inference for ergodic diffusion processes, London: Springer London, 2004.
    [26] F. C. Klebaner, Introduction to Stochastic Calculus with Applications, Imperial College Press, 2012.
    [27] D. J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev., 43 (2001), 525–546. https://doi.org/10.1137/S0036144500378302 doi: 10.1137/S0036144500378302
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(239) PDF downloads(20) Cited by(0)

Article outline

Figures and Tables

Figures(8)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog