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Abstract: This paper focused on a stochastic giving-up-smoking model with harmonic mean-type
incidence rate, in which the population was divided into four types. Firstly, we showed that the model
has a unique global positive solution. Then, stochastic permanence of the model was discussed, which
means that the population described by the model will not grow wildly or disappear. Next, sufficient
conditions for the elimination of smokers (including occasional smokers, chain smokers, and quit
smokers) were established. Additionally, sufficient conditions for the existence of an ergodic stationary
distribution were derived, meaning that all types of smokers can be persistent. Moreover, we discussed
how to control the size of the smoker population from the perspective of economics. Finally, some
numerical simulations were introduced.
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1. Introduction

Smoking is one of the main causes of health problems and continues to be one of the world’s most
significant health challenges (see [1]). Substantial medical research confirms that smoking is closely
associated with more than twenty diseases, including lung cancer and heart disease [2, 3]. Its harm is
manifested not only in individual health but also in a significant social burden. For instance, in [4],
authors showed that around 55, 000 deaths each year are attributable to smoking in Spain; authors in [5]
pointed out that the incidence of lung cancer in smokers is ten times higher than that in non-smokers,
and one out of ten smokers will die of lung cancer; furthermore, authors in [6] showed that the risk of
heart attack in smokers is 70% higher than that of non-smokers. In China, tobacco control is similarly
a major social issue that requires urgent resolution [7].
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In recent years, mathematical models have been playing an increasingly important role in ecological
fields [8], epidemiological research [9, 10], and public health policy formulation [11]. Mathematical
modeling provides a powerful tool for theoretically understanding the spreading dynamics of smoking
behavior and for formulating effective control strategies. Zeb, Zaman, and Momani [6] investigated a
giving-up-smoking model with square root-type incidence rate, while [12] divided the population into
potential smokers P, occasional smokers L, chain smokers S , and quit smokers Q, and investigated the
dynamics of a giving-up-smoking model with harmonic mean type incidence rate.

However, such deterministic models typically assume constant parameters, which do not fully
align with reality. In fact, the processes of disease transmission or behavioral spread in the real
world are always subject to various random environmental fluctuations. These fluctuations may
arise from the randomness of contact opportunities, individual behavioral differences, changes in
environmental conditions, etc. Consequently, parameters in the models (such as mortality and
contact rates) are not absolute constants but fluctuate randomly around some average value [13].
Neglecting this stochasticity may lead to inaccurate estimations of the system dynamics. Among
the various methods for introducing stochasticity, simulating parameter perturbations via white noise
is a common and effective approach [14]. Hence, many scholars have introduced randomness into
models to reveal the effects of environmental noise. References [13,15–18] discussed the dynamics of
stochastic population models, while [19–23] focused on the dynamics of stochastic epidemic models.
Therefore, incorporating environmental noise into deterministic models to more realistically reflect the
system’s dynamic behavior has become an important research direction in stochastic epidemiology and
population dynamics.

Based on the above considerations, this paper aims to conduct an in-depth investigation into
the transmission mechanisms and control strategies of smoking behavior by developing a stochastic
smoking cessation model with harmonic mean incidence rate. The innovative contributions of this
work are threefold:
(i) By introducing stochastic noise perturbations, we overcome the idealized assumption of constant
parameters in deterministic models;
(ii) Through theoretical analysis and numerical simulations, we demonstrate the positive regulatory
role of environmental disturbances in smoking transmission dynamics;
(iii) We discover the coupled effects of multiple factors including cigarette price, contact rate, and noise
intensity on smoking transmission, thereby proposing precise tobacco control strategies.

The organization of this paper is as follows: In the next section, we offer a systematic description
of the model (2.3). In Section 3, we first show that model (2.3) has a unique positive global solution.
Moreover, some asymptotic properties of the solution are given. In Section 4, we establish sufficient
conditions for the extinction of smokers (including occasional smokers, chain smokers, and quit
smokers). In Section 5, by constructing a suitable Lyapunov function, we show that there is an ergodic
stationary distribution for the solution of the model. This means that all types of smokers in model (2.3)
can be persistent. In Section 6, we discuss how to control the number of occasional smokers from the
perspective of economics. Numerical simulations under certain parameters are presented in Section 7.
The paper ends with a conclusion.
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2. Problem formulation

In this section, we provide a detailed description of the stochastic giving-up-smoking model under
study.

To establish the theoretical foundation, we first introduce the classical deterministic model as the
basis for our study. Reference [12] divided the population into potential smokers P, occasional smokers
L, chain smokers S , and quit smokers Q, and investigated the dynamics of the following giving-up-
smoking model with harmonic mean type incidence rate

dP
dt = λ − β

2PL
P+L − (d + µ)P,

dL
dt = β

2PL
P+L − (ζ + d + µ)L,

dS
dt = ζL − (δ + d + µ)S ,
dQ
dt = δS − (d + µ)Q.

(2.1)

Here, λ is the birth rate for potential smoker individuals; µ is the natural death rate; ζ is the rate
of change from occasional smokers to chain smokers; β is the transmission coefficient; δ is quit rate
of smoking; d represents the death rate for potential smokers, occasional smokers, chain smokers, and
quit smokers due to smoking disease. All parameters in model (2.1) are assumed to be positive.

To further refine the model structure, Zaman [3] assumed that the mortality rates of potential
smokers, occasional smokers, chain smokers, and quit smokers due to smoking diseases are d1, d2,
d3, and d4, respectively. Thus, based on (2.1), one can get the following giving-up-smoking model

dP
dt = λ − β

2PL
P+L − (d1 + µ)P,

dL
dt = β

2PL
P+L − (ζ + d2 + µ)L,

dS
dt = ζL − (δ + d3 + µ)S ,
dQ
dt = δS − (d4 + µ)Q.

(2.2)

In a similar discussion as that in [12], model (2.2) has one smoking-free equilibrium point
E0 = ( λ

d1+µ
, 0, 0, 0) for all parameter values. Based on dynamical systems theory, model (2.2) has

one smoking-present equilibrium point E∗ = (P∗, L∗, S ∗,Q∗) when R0 =
2β

ζ+d2+µ
> 1. Here,

P∗ =
λ

2β − ζ
, L∗ = (R0 − 1)P∗, S ∗ =

ζ(R0 − 1)P∗

δ + d3 + µ
, Q∗ =

δζ(R0 − 1)P∗

(d4 + µ)(δ + d3 + µ)
.

Considering the random fluctuations of parameters in real-world environments, we assume that the
death rate di in model (2.2) always fluctuates around some average value. In this sense,

−di → −di + σiḂi(t) (i = 1, 2, 3, 4),

where B1(t), B2(t), B3(t), B4(t) are mutually independent Brownian motions defined on the complete
filtered probability space (Ω,F , {Ft}t≥0,P) satisfying the usual conditions. σ2

i is the intensity of white
noise Ḃi(t) (i = 1, 2, 3, 4). Ultimately, we establish the stochastic giving-up-smoking model with
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harmonic mean incidence rate as follows:

dP(t) =
[
λ − β 2P(t)L(t)

P(t)+L(t) − (d1 + µ)P(t)
]
dt + σ1P(t)dB1(t),

dL(t) =
[
β 2P(t)L(t)

P(t)+L(t) − (ζ + d2 + µ)L(t)
]
dt + σ2L(t)dB2(t),

dS (t) =
[
ζL(t) − (δ + d3 + µ)S (t)

]
dt + σ3S (t)dB3(t),

dQ(t) =
[
δS (t) − (d4 + µ)Q(t)

]
dt + σ4Q(t)dB4(t),

(2.3)

with (P(0), L(0), S (0),Q(0)) = (P0, L0, S 0,Q0) ∈ R4
+ = {(x1, x2, x3, x4) ∈ R4 : xi > 0, i = 1, 2, 3, 4}. All

meanings of the parameters are exact to or similar as those for model (2.2).

3. Global positive solution and asymptotic behaviors

In this section, we first show that the model has a unique positive global solution. Then, we discuss
the asymptotic property of the solution. For ease, we denote

X(t) = (P(t), L(t), S (t),Q(t)), X0 = (P0, L0, S 0,Q0),

N(t) = P(t) + L(t) + S (t) + Q(t), ⟨u(t)⟩ =
1
t

∫ t

0
u(s)ds,

d̂ = min{d1, d2, d3, d4}, ď = max{d1, d2, d3, d4}, σ
2 = max{σ2

1, σ
2
2, σ

2
3, σ

2
4}.

3.1. Existence and uniqueness of the positive solution

In this subsection, we show that model (2.3) has a unique positive global solution with positive
initial value.

Theorem 3.1. For any given initial value X0 ∈ R
4
+, model (2.3) has a unique global positive solution

X(t) on [0,∞); that is, X(t) ∈ R4
+ with probability one for t ∈ [0,∞).

Proof. Clearly, the coefficients of (2.3) are locally Lipschitz continuous. Thus, for any X0 ∈ R
4
+,

model (2.3) has a unique maximal local solution X(t) on [0, τe), where τe is the explosion time. Let
n0 > 0 be sufficiently large such that P0, L0, S 0, and Q0 all lie within the interval (1/n0, n0). For each
integer n ≥ n0, define the stopping time

τn = inf
{
t ∈ [0, τe) : min{P(t), L(t), S (t),Q(t)} ≤

1
n

or max{P(t), L(t), S (t),Q(t)} ≥ n
}
,

where for empty set ∅, we set inf ∅ = ∞. It is clear that τn is increasing as n→ ∞. Let τ∞ = limn→∞ τn.
Thus, τ∞ is a stopping time and τ∞ ≤ τe a.s. If τ∞ = ∞ a.s., then τe = ∞ and X(t) ∈ R4

+ a.s. for all
t ≥ 0. Now, we show that τ∞ = ∞ a.s. If this assertion is not true, then there are constants T > 0 and
ε ∈ (0, 1) such that P{τ∞ ≤ T } > ε. For any n ≥ n0, let Ωn = {ω ∈ Ω : τn(ω) ≤ T }. Then, for any
n ≥ n0, we have P(Ωn) > ε. Define function V : R4

+ → R+ by

V(P, L, S ,Q) = (P − 1 − ln P) + (L − 1 − ln L) + (S − 1 − ln S ) + (Q − 1 − ln Q).

AIMS Mathematics Volume 10, Issue 11, 26484–26510.
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Using Itô formula, we have, for any t ∈ [0,T ] and n ≥ n0,

EV(P(t ∧ τn), L(t ∧ τn), S (t ∧ τn),Q(t ∧ τn)) =V(P0, L0, S 0,Q0)

+ E

∫ t∧τn

0
LV(P(s), L(s), S (s),Q(s)) ds, (3.1)

where LV : R4
+ → R is defined by

LV =
(
1 −

1
P

)[
λ − β

2PL
P + L

− (d1 + µ)P
]
+
(
1 −

1
L

)[
β

2PL
P + L

− (ζ + d2 + µ)L
]

+
(
1 −

1
S

)[
ζL − (δ + d3 + µ)S

]
+
(
1 −

1
Q

)[
δS − (d4 + µ)Q

]
+

4∑
i=1

σ2
i

2

≤λ + 2β + 4µ + ζ + δ +
4∑

i=1

di +

4∑
i=1

σ2
i

2
=̇K. (3.2)

Here, K > 0 is a constant. Thus, from (3.1), it follows that

EV(P(T ∧ τn), L(T ∧ τn), S (T ∧ τn),Q(T ∧ τn)) ≤ V(P0, L0, S 0,Q0) + KT. (3.3)

For every ω ∈ Ωn, there is at least one of P(τn, ω), L(τn, ω), S (τn, ω), and Q(τn, ω) equalling either
1/n or n. Hence,

V(P(τn, ω), L(τn, ω), S (τn, ω),Q(τn, ω)) ≥ (n − 1 − ln n) ∧
(1
n
− 1 − ln

1
n

)
. (3.4)

It then follows from (3.3) and (3.4) that

V(P0, L0, S 0,Q0) + KT ≥E
[
IΩn(ω)V(P(τn, ω), L(τn, ω), S (τn, ω),Q(τn, ω))

]
>ε
[
(n − 1 − ln n) ∧

(1
n
− 1 − ln

1
n

)]
,

where IΩn is the indicator function of Ωn. Letting n→ ∞ leads to the contradiction

∞ > V(P0, L0, S 0,Q0) + KT = ∞.

Hence, τ∞ = ∞ a.s. Thus, model (2.3) has a unique global positive solution. The proof is complete.
□

3.2. Asymptotic behaviors of the solution

In this subsection, we discuss the asymptotic properties of the solution. First, we show that the
sample Lyapunov exponents of the solution are non-positive.

Theorem 3.2. For any X0 ∈ R
4
+, let X(t) be a solution of model (2.3) with initial value X0. Then

lim sup
t→∞

N(t) = lim sup
t→∞

[P(t) + L(t) + S (t) + Q(t)] < ∞ a.s. (3.5)
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Proof. From model (2.3), it follows that

N(t) =
λ

µ
+
(
N(0) −

λ

µ

)
e−µt + M(t) −

∫ t

0
e−µ(t−s)[d1P(s) + d2L(s) + d3S (s) + d4Q(s)

]
ds

≤
λ

µ
+
(
N(0) −

λ

µ

)
e−µt + M(t)

=N(0) +
λ

µ

(
1 − e−µt

)
− N(0)

(
1 − e−µt

)
+ M(t) a.s.,

where

M(t) =e−µt
[
σ1

∫ t

0
eµsP(s)dB1(s) + σ2

∫ t

0
eµsL(s)dB2(s) + σ3

∫ t

0
eµsS (s)dB3(s) + σ4

∫ t

0
eµsQ(s)dB4(s)

]
.

It is clear that M(t) is a continuous local martingale with M(0) = 0. Let

Y(t) = Y(0) + A(t) − U(t) + M(t),

where Y(0) = N(0), A(t) = λ
µ

(
1 − e−µt

)
, and U(t) = N(0)

(
1 − e−µt

)
. It is clear that N(t) ≤ Y(t) a.s. for all

t ≥ 0. Note that A(t) and U(t) are two continuous adapted increasing processes with A(0) = U(0) = 0
a.s. From [24, Theorem 1.3.9], we obtain that limt→∞ Y(t) < ∞ a.s. Thus,

lim sup
t→∞

N(t) = lim sup
t→∞

[
P(t) + L(t) + S (t) + Q(t)

]
< ∞ a.s.

The proof is complete. □

Remark 3.1. From Theorem 3.2 and the positivity of the solution, it follows that for any X0 ∈ R
4
+, the

solution of model (2.3) has the properties that

lim sup
t→∞

ln P(t)
t
≤ 0, lim sup

t→∞

ln L(t)
t
≤ 0, lim sup

t→∞

ln S (t)
t
≤ 0, lim sup

t→∞

ln Q(t)
t
≤ 0 a.s.

This means that the sample Lyapunov exponents of the solution are non-positive.

Further, from Remark 3.1 and the positivity of the solution, we have the following result, which will
be used in next section.

Corollary 3.1. For any X0 ∈ R
4
+, let X(t) be the solution of model (2.3) with initial value X0. Then

lim
t→∞

P(t)
t
= 0, lim

t→∞

L(t)
t
= 0, lim

t→∞

S (t)
t
= 0, lim

t→∞

Q(t)
t
= 0 a.s.

Next, we discuss the stochastic permanence of model (2.3). The definition of stochastic permanence
of the model is introduced as follows.

Definition 3.1 (see [23]). Model (2.3) is said to be stochastically permanent if for any ε ∈ (0, 1), there
are positive constants ϱ = ϱ(ε), χ = χ(ε), χ < ϱ, such that for any X0 ∈ R

4
+, the solution X(t) satisfies

lim inf
t→∞

P{|X(t)| ≤ ϱ} ≥ 1 − ε, lim inf
t→∞

P{|X(t)| ≥ χ} ≥ 1 − ε.
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The stochastic permanence implies that the population described by model (2.3) will not grow
wildly or disappear.

Theorem 3.3. For any given X0 ∈ R
4
+, model (2.3) is stochastically permanent.

Proof. Define V1(X) = N + 1
N , where X = (P, L, S ,Q) and N = P + L + S + Q. From Itô formula, it

follows that

LV1(X) =λ − µN − d1P − d2L − d3S − d4Q −
λ − µN − d1P − d2L − d3S − d4Q

N2

+
σ2

1P2 + σ2
2L2 + σ2

3S 2 + σ2
4Q2

N3

≤ − µN −
µ

N
+ λ −

λ

N2 +
ď + 2µ + σ2

N
≤K1 − µV1(X), (3.6)

where K1 =
4λ2+(ď+2µ+σ2)2

4λ . Using Itô formula again, L(eµtV1(X)) = µeµtV1(X) + eµtLV1(X) ≤ K1eµt.
Thus,

E[eµtV1(X(t))] ≤ V1(X0) + E
∫ t

0
K1eµsds = V1(X0) +

K1

µ
(eµt − 1),

which implies

lim sup
t→∞

E[V1(X(t))] ≤ lim sup
t→∞

[
e−µtV1(X0) +

K1

µ
(1 − e−µt)

]
=

K1

µ
.

Hence,

lim sup
t→∞

E[N(t)] ≤
K1

µ
, lim sup

t→∞
E
[ 1
N(t)

]
≤

K1

µ
. (3.7)

Note that N2 = (P + L + S + Q)2 ≤ 4(P2 + L2 + S 2 + Q2) = 4|X|2 ≤ 4(P + L + S + Q)2 = 4N2. Then,
together with (3.7), one yields

lim sup
t→∞

E[|X(t)|] ≤
K1

µ
, lim sup

t→∞
E
[ 1
|X(t)|

]
≤

2K1

µ
. (3.8)

For any ε ∈ (0, 1), let ϱ = K1
µε

. By Chebyshev’s inequality and (3.8), we have

lim sup
t→∞

P{|X(t)| > ϱ} ≤
lim supt→∞ E[|X(t)|]

ϱ
= ε.

This implies

lim inf
t→∞

P{|X(t)| ≤ ϱ} ≥ 1 − ε.

Similarly, let χ = µε

2K1
. Then, from Chebyshev’s inequality and (3.8), it follows that

lim sup
t→∞

P{|X(t)| < χ} ≤ lim sup
t→∞

χE
[ 1
|X(t)|

]
= ε,
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which means

lim inf
t→∞

P{|X(t)| ≥ χ} ≥ 1 − ε.

Let ε ∈ (0, 1) be sufficiently small such that χ < ϱ. Then, from Definition 3.1, model (2.3) is
stochastically permanent. □

Remark 3.2. From the proof of Theorem 3.3, for any X0 ∈ R
4
+, the solution of model (2.3) satisfies

E[N(t)] ≤ e−µtN0 +
K1

µ
(1 − e−µt) =

[
N0 −

K1

µ

]
e−µt +

K1

µ
.

Thus, we have E[N(t)] ≤ max
{
N0,

K1
µ

}
� K̄1.

This, together with the positivity of the solution, yields

max
{
E[P(t)], E[L(t)], E[S (t)], E[Q(t)]

}
≤ K̄1.

This means that the mathematical expectation of the solution of model (2.3) is bounded.

To conclude this subsection, we show that the solution of model (2.3) is p-th (p > 1) moment
bounded.

Theorem 3.4. Assume that p > 1 and µ̄ = (µ + d̂) − p−1
2 σ

2 > 0. Let X(t) be the solution of model (2.3)
with initial value X0 ∈ R

4
+. Then, for any k ∈ (0, pµ̄),

lim sup
t→∞

E[N p(t)] ≤
λ

k

[
λ(p − 1)
pµ̄ − k

]p−1

.

Proof. For any k ∈ (0, pµ̄), define V2(t, X) = ektN p, where X = (P, L, S ,Q) and N = P + L + S + Q.
From Itô formula, we obtain

E[V2(t, X(t))] = V2(0, X0) + E
∫ t

0
L(V2(s, X(s)))ds, (3.9)

where

LV2(t, X) =kektN p + pektN p−2
[
λN − µN2 − (d1P + d2L + d3S + d4Q)N

+
p − 1

2
(σ2

1P2 + σ2
2L2 + σ2

3S 2 + σ2
4Q2)
]

≤kektN p + pektN p−2
[
λN −

(
µ + d̂ −

p − 1
2
σ2
)
N2
]

=pektN p−2
[
−

(
µ̄ −

k
p

)
N2 + λN

]
.

It is clear that function f (x) = xp−2[−(µ̄ − k
p )x2 + λx] reaches it’s maximum value at x = λ(p−1)

pµ̄−k > 0
and fmax =

λ
p [λ(p−1)

pµ̄−k ]p−1 � H. Then, together with (3.9), one yields

E[V2(t, X(t))] ≤ V2(0, X0) + E
∫ t

0
pHeksds − N0 +

pH
k

(ekt − 1).

Thus, we have E[N p(t)] ≤ N0e−kt +
pH
k (1 − e−kt), which implies that the conclusion holds. □
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Remark 3.3. From the proof of Theorem 3.4, for any p > 1 and k ∈ (0, pµ̄)

E[N p(t)] ≤ N0e−kt +
pH
k

(1 − e−kt).

Thus, E[N p(t)] ≤ max
{λ

k

[λ(p−1)
pµ̄−k

]p−1
, N p

0
}
. This, together with the positivity of the solution, yields

that there is a constant M = M(p) > 0 such that the solution of (2.3) with initial value X0 ∈ R
4
+ satisfies

max
{
E[Pp(t)], E[Lp(t)], E[S p(t)], E[Qp(t)]

}
≤ M.

This means that the solution of the model is p-th (p > 1) moment bounded.

4. Extinction of smokers

In this section, we provide the sufficient conditions for the extinction of occasional smokers
(including occasional smokers, chain smokers, and quit smokers) in model (2.3). To prove our results,
we first give the following result.

Lemma 4.1. Let X(t) be the solution of model (2.3) with initial value X0 ∈ R
4
+. If p > 2 and µ̄ > 0,

then

lim
t→∞

1
t

∫ t

0
P(s)dB1(s) = 0, lim

t→∞

1
t

∫ t

0
L(s)dB2(s) = 0, a.s.

lim
t→∞

1
t

∫ t

0
S (s)dB3(s) = 0, lim

t→∞

1
t

∫ t

0
Q(s)dB4(s) = 0, a.s.

Proof. Denote X1(t) =
∫ t

0
P(s)dB1(s). From Burkholder-Davis-Gundy inequality (see [24, Theorem

1.7.3]) and Hölder inequality, we can claim that for p > 0 and t ≥ 0,

E
[

sup
0≤s≤t
|X1(s)|p

]
≤ CpE

[ ∫ t

0
P2(s)ds

] p
2

≤ Cpt
p
2−1
[ ∫ t

0
E(Pp(s))ds

]
. (4.1)

Here, Cp > 0 (depending only on p) is a constant. From (4.1) and Remark 3.3, it follows that for t ≥ 0,

E
[

sup
0≤s≤t
|X1(s)|p

]
≤ Cpt

p
2−1
[ ∫ t

0
E(Pp(s))ds

]
≤ CpMt

p
2 .

Thus, for any positive integer n, we have

E
[

sup
n≤t≤n+1

|X1(t)|p
]
≤ E
[

sup
0≤t≤n+1

|X1(t)|p
]
≤ CpM(n + 1)

p
2 .

Let ε > 0 be arbitrary. By Chebyshev’s inequality, we have

P

{
sup

n≤t≤n+1
|X1(t)|p > n1+ε+ p

2

}
≤

1

n1+ε+ p
2
E
[

sup
n≤t≤n+1

|X1(t)|p
]
≤

CpM(n + 1)
p
2

n1+ε+ p
2
. (4.2)
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Since
∑∞

n=0
Cp M(n+1)

p
2

n1+ε+ p
2
< ∞ for ε > 0, the Borel-Cantelli lemma (see [24, Lemma 1.2.1]) shows that for

almost all ω ∈ Ω, there exists a positive integer n0 = n0(ω) such that for any n ≥ n0,

sup
n≤t≤n+1

|X1(t)|p ≤ n1+ε+ p
2 .

That is,

ln |X1(t)|p

ln t
≤

(
1 + ε + p

2

)
ln n

ln n
= 1 + ε +

p
2
.

Hence, lim supt→∞
ln |X1(t)|

ln t ≤
1+ε+ p

2
p a.s. Let ε ↓ 0, we have

lim sup
t→∞

ln |X1(t)|
ln t

≤
1
p
+

1
2

a.s.

This implies that for any 0 < ξ < 1
2 −

1
p (p > 2), there is T = T (ω) > 0 such that |X1(t)| ≤ t

1
p+

1
2+ξ for

t ≥ T . Thus, from 1
p +

1
2 + ξ < 1, we have

lim sup
t→∞

|X1(t)|
t
≤ lim sup

t→∞

t
1
p+

1
2+ξ

t
= 0.

This, together with lim inft→∞
|X1(t)|

t ≥ 0, yields limt→∞
|X1(t)|

t = 0 a.s. Thus,

lim
t→∞

X1(t)
t
= lim

t→∞

1
t

∫ t

0
P(s)dB1(s) = 0 a.s.

In a similar discussion as above, we can get the required assertion. The proof is complete. □

Theorem 4.1. Let Rs=̇
2β

ζ+d2+µ+
σ2

2
2

. For any X0 ∈ R
4
+, let X(t) be the solution of model (2.3) with initial

value X0. Then,

lim sup
t→∞

ln[L(t)]
t

≤
(
ζ + d2 + µ +

σ2
2

2

)(
Rs − 1

)
a.s.

Further, if Rs < 1, then

lim
t→∞

L(t) = 0, lim
t→∞

S (t) = 0, lim
t→∞

Q(t) = 0 a.s.

Proof. Applying Itô formula to ln[L(t)] leads to

ln[L(t)]
t

≤

[
2β −

(
ζ + d2 + µ +

σ2
2

2

)]
+
σ2B2(t)

t
+

ln(L0)
t
. (4.3)

From the strong law of large numbers (see [24, Theorem 1.4.2]), limt→∞
σ2B2(t)

t = 0 a.s. Hence,

lim sup
t→∞

ln[L(t)]
t

≤2β −
(
ζ + d2 + µ +

σ2
2

2

)
=
(
ζ + d2 + µ +

σ2
2

2

)
(Rs − 1) a.s.
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Further, if Rs < 1, then lim supt→∞
ln[L(t)]

t < 0 a.s. Thus,

lim
t→∞

L(t) = 0 a.s.

Consider the following stochastic differential equation dx(t) = −(δ+ d3 + µ)x(t)dt +σ3x(t)dB3(t), with
x(0) = S 0. It is clear that the solution of the above equation satisfies

lim
t→∞

x(t) = 0 a.s.

From limt→∞ L(t) = 0 a.s., for sufficiently small ε > 0, there is a constant T > 0 and a set Ωε ⊂ Ω such
that P(Ωε) > 1 − ε and ζL(t) < ε for t ≥ T and ω ∈ Ωε. Thus, from (2.3), it follows that

dS (t) ≤ [ε − (δ + d3 + µ)S (t)]dt + σ3S (t)dB3(t). (4.4)

dS (t) ≥ −(δ + d3 + µ)S (t)dt + σ3S (t)dB3(t). (4.5)

Note that ε is arbitrary. Letting ε→ 0, it then follows from (4.4) and (4.5) that dS (t) = dx(t) a.s. Thus,
S (t) has the same positivity with x(t), that is,

lim
t→∞

S (t) = 0 a.s.

Similarly, we also have

lim
t→∞

Q(t) = 0 a.s.

The proof is complete. □

Theorem 4.2. For any X0 ∈ R
4
+, let X(t) be the solution of model (2.3) with initial value X0. Assume

that for some p > 2, µ̄ = (µ + d̂) − p−1
2 σ

2 > 0. If Rs < 1, then

lim
t→∞
⟨P(t)⟩ =

λ

d1 + µ
a.s.

Meanwhile, the distribution of P(t) converges weakly to the measure that has the density

π(x) = Cσ−2
1 x
−2− 2(d1+µ)

σ2
1 exp

{
−

2λ
σ2

1x

}
, x > 0, (4.6)

where C is a constant satisfying
∫ ∞

0
π(x)dx = 1.

Proof. Note that Rs < 1. From Theorem 4.1, limt→∞ L(t) = 0, limt→∞ S (t) = 0, and limt→∞ Q(t) = 0
a.s. Using L’Hôpital’s rule, we have

lim
t→∞
⟨L(t)⟩ = 0, lim

t→∞
⟨S (t)⟩ = 0, lim

t→∞
⟨Q(t)⟩ = 0 a.s. (4.7)

Moreover, it follows from (2.3) that

N(t) − N(0)
t

=λ − (d1 + µ)⟨P(t)⟩ − (d2 + µ)⟨L(t)⟩ − (d3 + µ)⟨S (t)⟩
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− (d4 + µ)⟨Q(t)⟩ +
1
t

∫ t

0
σ1P(s)dB1(s) +

1
t

∫ t

0
σ2L(s)dB2(s)

+
1
t

∫ t

0
σ3S (s)dB3(s) +

1
t

∫ t

0
σ4Q(s)dB4(s).

Then, together with Corollary 3.1, Lemma 4.1, and (4.7), one yields

lim
t→∞
⟨P(t)⟩ =

λ

d1 + µ
a.s.

Now, we show the statement (4.6). Consider the stochastic equation described by

dx(t) = [λ − (d1 + µ)x(t)] dt + σ1x(t)dB1(t), (4.8)

with x(0) = P0 > 0. From Theorem 1.16 in Kutoyants (see [25]) (or the condition of existence for
invariant density (see [26]), system (4.8) has the ergodic property, and the invariant density is given by

π(x) = Cσ−2
1 x
−2− 2(d1+µ)

σ2
1 exp

{
−

2λ
σ2

1x

}
, x > 0,

where C is a constant satisfying
∫ ∞

0
π(x)dx = 1. From Theorem 4.1, if Rs < 1, then limt→∞ L(t) = 0

a.s. This, together with the positivity of the solution, yields

0 ≤ lim
t→∞
β

2P(t)L(t)
P(t) + L(t)

≤ lim
t→∞

2βL(t) = 0 a.s.

Thus, for sufficiently small ε > 0, there is a constant T > 0 and a set Ωε ⊂ Ω such that P(Ωε) > 1 − ε
and 0 ≤ β 2P(t)L(t)

P(t)+L(t) ≤ ε for t ≥ T and ω ∈ Ωε. Hence,

dP(t) ≤ [λ − (d1 + µ)P(t)] dt + σ1P(t)dB1(t), (4.9)

dP(t) ≥ [λ − ε − (d1 + µ)P(t)] dt + σ1P(t)dB1(t). (4.10)

Letting ε → 0, it then follows from (4.9) and (4.10) that dP(t) = dx(t) a.s. Thus, the Markov process
P(t) has the same invariant density with x(t), that is, the statement (4.6) holds. The proof is complete.
□

5. Stationary distribution and ergodicity

In this section, we show that the model has an ergodic stationary distribution, which means that all
types of smokers in the model can persist. Let X(t) be a homogeneous Markov process in Ed (denotes
d-dimensional Euclidean space), described by the following equation

dX(t) = b(X(t))dt + g(X(t))dW(t), X(0) = X0. (5.1)

The diffusion matrix of process X(t) is defined as J(X) = g(X)gT(X) = (ai j(X)).
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Lemma 5.1 (see [22]). Assume that there is a bounded domain D ⊂ Ed with regular boundary Γ and
(A1) there is a constant M > 0 such that

∑d
i, j=1 ai j(X)ξiξ j ≥ M|ξ|2, X ∈ D, ξ ∈ Rd;

(A2) there is a nonnegative C2-function V such that there is a constant C > 0, such that LV ≤ −C
for any X ∈ Ed\D.

Then, the Markov process X(t) has a unique ergodic stationary distribution µ(·). Moreover, if f (·)
is a function integrable with respect to the measure µ, then

P

{
lim
T→∞

1
T

∫ T

0
f (X(t))dt =

∫
Ed

f (x)µ(dx)
}
= 1.

Now, we show that the model has a stationary distribution.

Theorem 5.1. For any X0 ∈ R
4
+, let X(t) be the solution of model (2.3) with initial value X0. If

Rs =
2β(d̄+µ)

(d1+µ+
σ2

1
2 )(ζ+d2+µ+

σ2
2

2 )
> 1, then model (2.3) has a stationary distribution µ(·), and the solution X(t)

has the ergodic property. Here, d̄ = min{d1, d2}.

Proof. From Itô formula and model (2.3), it follows that

L(P + L + S + Q) = λ − (d1 + µ)P − (d2 + µ)L − (d3 + µ)S − (d4 + µ)Q
= λ − (d̄ + µ)(P + L) − (d1 − d̄)P − (d2 − d̄)L − (d3 + µ)S − (d4 + µ)Q,

L(− ln P) = −
λ

P
+

2βL
P + L

+
(
d1 + µ +

σ2
1

2

)
,

L(− ln L) = −
2βP

P + L
+
(
ζ + d2 + µ +

σ2
2

2

)
,

where d̄ = d1 ∧ d2. Define the function

V1(P, L, S ,Q) = (P + L + S + Q) − k1 ln P − k2 ln L,

where k1 and k2 are positive constants to be determined later. Using Itô formula,

LV1 = − (d̄ + µ)(P + L) −
k1λ

P
−

k22βP
P + L

+ k1

(
d1 + µ +

σ2
1

2

)
+ λ − (d1 − d̄)P

+ k2

(
ζ + d2 + µ +

σ2
2

2

)
+

k12βL
P + L

− (d2 − d̄)L − (d3 + µ)S − (d4 + µ)Q

≤ − 3
[
2k1k2λβ(d̄ + µ)

] 1
3
+ λ + k1

(
d1 + µ +

σ2
1

2

)
+ k2

(
ζ + d2 + µ +

σ2
2

2

)
+

k12βL
P + L

.

Let k1(d1 + µ +
σ2

1
2 ) = k2(ζ + d2 + µ +

σ2
2

2 ) = λ, then k1 =
λ

d1+µ+
σ2

1
2

and k2 =
λ

ζ+d2+µ+
σ2

2
2

. As a consequence

LV1 ≤ − 3

( 2λ3β(d̄ + µ)(
d1 + µ +

σ2
1

2

)(
ζ + d2 + µ +

σ2
2

2

)) 1
3

− λ

 + k12βL
P + L
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= − 3λ
[
(Rs)

1
3 − 1
]
+

k12βL
P + L

.

Further, define

V2(P, L, S ,Q) =MV1(P, L, S ,Q) − ln P − ln S − ln Q + (P + L + S + Q),

where a positive constant M satisfies

−Mλ̄ + λ + 2β + d1 + d3 + d4 + δ + 3µ +
σ2

1 + σ
2
3 + σ

2
4

2
≤ −2, (5.2)

and λ̄ = 3λ
[
(Rs)

1
3 − 1
]
> 0. It is easy to see that

lim inf
k→∞,(P,L,S ,Q)∈R4

+\Uk

V2(P, L, S ,Q) = +∞,

where Uk = ( 1
k , k) × ( 1

k , k) × (1
k , k) × (1

k , k). From the continuity of V2(P, L, S ,Q), we know that
V2(P, L, S ,Q) has a minimum point (P̄0, L̄0, S̄ 0, Q̄0) in the interior of R4

+. Then, we define a nonnegative
C2-function V3: R2

+ → R as follows:

V3(P, L, S ,Q) = V2(P, L, S ,Q) − V2(P̄0, L̄0, S̄ 0, Q̄0).

From Itô formula, we have

LV3 =MLV1 +L(− ln P) +L(− ln S ) +L(− ln Q) +L(P + L + S + Q)

≤ − Mλ̄ +
k1M2βL

P + L
−
λ

P
−
ζL
S
−
δS
Q
− (d1 + µ)P − (d2 + µ)L − (d3 + µ)S

− (d4 + µ)Q + λ + 2β + d1 + d3 + d4 + δ + 3µ +
σ2

1 + σ
2
3 + σ

2
4

2
.

Now, define the bounded closed set

D =
{

(P, L, S ,Q) ∈ R4
+ : ϵ ≤ P ≤

1
ϵ
, ϵ2 ≤ L ≤

1
ϵ2
, ϵ3 ≤ S ≤

1
ϵ3
, ϵ4 ≤ Q ≤

1
ϵ4

}
,

where 0 < ϵ < 1 sufficiently small. Let K2 = k1M2β + λ + 2β + d1 + d3 + d4 + δ + 3µ + σ
2
1+σ

2
3+σ

2
4

2 . In the
set R4

+ \ D, we can choose ϵ sufficiently small such that

−
λ

ϵ
+ K2 ≤ −1, (5.3)

2k1Mβϵ ≤ 1, (5.4)

−
ζ

ϵ
+ K2 ≤ −1, (5.5)

−
δ

ϵ
+ K2 ≤ −1, (5.6)

−
d1 + µ

ϵ
+ K2 ≤ −1, (5.7)
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−
d2 + µ

ϵ2
+ K2 ≤ −1, (5.8)

−
d3 + µ

ϵ3
+ K2 ≤ −1, (5.9)

−
d4 + µ

ϵ4
+ K2 ≤ −1, (5.10)

For convenience, we divide R4
+ \ D into the following eight domains

D1 =
{
(P, L, S ,Q) ∈ R4

+ : 0 < P < ϵ
}
,

D2 =
{
(P, L, S ,Q) ∈ R4

+ : 0 < L < ϵ2, P ≥ ϵ
}
,

D3 =
{
(P, L, S ,Q) ∈ R4

+ : 0 < S < ϵ3, P ≥ ϵ, L ≥ ϵ2
}
,

D4 =
{
(P, L, S ,Q) ∈ R4

+ : 0 < Q < ϵ4, P ≥ ϵ, L ≥ ϵ2, S ≥ ϵ3
}
,

D5 =

{
(P, L, S ,Q) ∈ R4

+ : P >
1
ϵ

}
, D6 =

{
(P, L, S ,Q) ∈ R4

+ : L >
1
ϵ2

}
,

D7 =

{
(P, L, S ,Q) ∈ R4

+ : S >
1
ϵ3

}
,D8 =

{
(P, L, S ,Q) ∈ R4

+ : Q >
1
ϵ4

}
.

Next, we show that LV3(P, L, S ,Q) ≤ −1 on R4
+ \ D, which is equivalent to verifying it on the above

eight domains.
Case 1. If (P, L, S ,Q) ∈ D1, then

LV3 ≤k1M2β + λ + 2β + d1 + d3 + d4 + δ + 3µ +
σ2

1 + σ
2
3 + σ

2
4

2
−
λ

P

=K2 −
λ

P
≤ K2 −

λ

ϵ
.

Then, together with (5.3), one yields LV3 ≤ −1 for any (P, L, S ,Q) ∈ D1.
Case 2. If (P, L, S ,Q) ∈ D2, then

LV3 ≤ − Mλ̄ + λ + 2β + d1 + d3 + d4 + δ + 3µ +
σ2

1 + σ
2
3 + σ

2
4

2
+

k1M2βL
P + L

≤ − Mλ̄ + λ + 2β + d1 + d3 + d4 + δ + 3µ +
σ2

1 + σ
2
3 + σ

2
4

2
+

k1M2βϵ2

ϵ
.

Thus, from (5.2) and (5.4), LV3 ≤ −2 + k1M2βϵ ≤ −1 for any (P, L, S ,Q) ∈ D2.
Case 3. If (P, L, S ,Q) ∈ D3, then

LV3 ≤k1M2β + λ + 2β + d1 + d3 + d4 + δ + 3µ +
σ2

1 + σ
2
3 + σ

2
4

2
−
ζL
S

=K2 −
ζL
S
≤ K2 −

ζϵ2

ϵ3
= K2 −

ζ

ϵ
.

Then, together with (5.5), one yields LV3 ≤ −1 for any (P, L, S ,Q) ∈ D3.
Case 4. If (P, L, S ,Q) ∈ D4, then

LV3 ≤k1M2β + λ + 2β + d1 + d3 + d4 + δ + 3µ +
σ2

1 + σ
2
3 + σ

2
4

2
−
δS
Q
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=K2 −
δS
Q
≤ K2 −

δϵ3

ϵ4
= K2 −

δ

ϵ
.

Thus, from (5.6), we have LV3 ≤ −1 for any (P, L, S ,Q) ∈ D4.
Case 5. If (P, L, S ,Q) ∈ D5, then

LV3 ≤k1M2β + λ + 2β + d1 + d3 + d4 + δ + 3µ +
σ2

1 + σ
2
3 + σ

2
4

2
− (d1 + µ)P

=K2 − (d1 + µ)P ≤ K2 −
d1 + µ

ϵ
.

Then, together with (5.7), one yields LV3 ≤ −1 for any (P, L, S ,Q) ∈ D5.
Case 6. If (P, L, S ,Q) ∈ D6, then

LV3 ≤k1M2β + λ + 2β + d1 + d3 + d4 + δ + 3µ +
σ2

1 + σ
2
3 + σ

2
4

2
− (d2 + µ)L

=K2 − (d2 + µ)L ≤ K2 −
d2 + µ

ϵ2
.

Thus, from (5.8), it follows that LV3 ≤ −1 for any (P, L, S ,Q) ∈ D6.
Case 7. If (P, L, S ,Q) ∈ D7, then

LV3 ≤k1M2β + λ + 2β + d1 + d3 + d4 + δ + 3µ +
σ2

1 + σ
2
3 + σ

2
4

2
− (d3 + µ)S

=K2 − (d3 + µ)S ≤ K2 −
d3 + µ

ϵ3
.

Then, together with (5.9), one yields LV3 ≤ −1 for any (P, L, S ,Q) ∈ D7.
Case 8. If (P, L, S ,Q) ∈ D8, then

LV3 ≤k1M2β + λ + 2β + d1 + d3 + d4 + δ + 3µ +
σ2

1 + σ
2
3 + σ

2
4

2
− (d4 + µ)Q

=K2 − (d4 + µ)Q ≤ K2 −
d4 + µ

ϵ4
.

Thus, from (5.10), we have LV3 ≤ −1 for any (P, L, S ,Q) ∈ D8. Hence, for a sufficiently small ϵ > 0,
one has LV3(P, L, S ,Q) ≤ −1 for all (P, L, S ,Q) ∈ R4

+ \ D. This means that (A2) in Lemma 5.1 is
satisfied.

The diffusion matrix of stochastic model (2.3) is A = (ai j)4×4 = diag(σ2
1P2, σ2

2L2, σ2
3S 2, σ2

4Q2).
Then, for any (P, L, S ,Q) ∈ D and ξ = (ξ1, ξ2, ξ3, ξ4) ∈ R4, we have

4∑
i, j=1

ai j(P, L, S ,Q)ξiξ j =σ
2
1P2ξ2

1 + σ
2
2L2ξ2

2 + σ
2
3S 2ξ2

3 + σ
2
4Q2ξ2

4 ≥ K3|ξ|
2,

where K3 = min{ϵ2σ2
1, ϵ

4σ2
2, ϵ

6σ2
3, ϵ

8σ2
4}. Thus, condition (A1) of Lemma 5.1 holds. According to

Lemma 5.1, the model (2.3) has a stationary distribution µ(·), and the solution has the ergodic property.
□
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6. Control of occasional smokers

Here, we discuss how to control the number of occasional smokers. As in [7], we assume that the
effective contact rate is β = θρ, where the positive constant θ is the contact rate, and ρ is the probability
of becoming a smoker due to contact with a smoker. Moreover, as in [7], we suppose

ρ(r) =
1

1 + kr
,

where k is a positive constant, and r is the price of cigarettes. Hence, the effective contact rate is
β = θρ = θ

1+kr .

6.1. Effects of r and θ on occasional smokers

(I) From the expressions of Rs, we have Rs =
2θ

(1+kr)(ζ+d2+µ+
σ2

2
2 )

. It is clear that ∂Rs
∂r < 0 and ∂Rs

∂θ
> 0.

Note that L(t) will be eliminated as long as Rs < 1. This, together with the decreasing property of Rs

with respect to r, yields that if

r >
2θ − (ζ + d2 + µ + 0.5σ2

2)
k(ζ + d2 + µ + 0.5σ2

2)
� r1,

then L(t) will be eliminated gradually. Similarly, if

θ <
(1 + kr)(ζ + d2 + µ + 0.5σ2

2)
2

� θ1,

then occasional smokers L(t) will be eliminated gradually.
(II) From the expressions of Rs, we have Rs =

2θ(d̄+µ)

(1+kr)(d1+µ+
σ2

1
2 )(ζ+d2+µ+

σ2
2

2 )
. Note that the model has a

stationary distribution as long as Rs > 1. This means that when Rs > 1, occasional smokers can persist.
It is clear that ∂R

s

∂r < 0 and ∂R
s

∂θ
> 0. Thus, from the decreasing property of Rs with respect to r, if

r <
2θ(d̄ + µ) − (d1 + µ + 0.5σ2

1)(ζ + d2 + µ + 0.5σ2
2)

k(d1 + µ + 0.5σ2
1)(ζ + d2 + µ + 0.5σ2

2)
� r2,

then occasional smokers will be persistent. Similarly, if

θ >
(1 + kr)(d1 + µ + 0.5σ2

1)(ζ + d2 + µ + 0.5σ2
2)

2(d̄ + µ)
� θ2,

then occasional smokers L(t) can persist.
It is clear that r2 < r1 and θ2 > θ1. From the above analysis, in order to reduce the number of

smokers, the government can adopt certain policies to increase the price of cigarettes r and reduce
the contact rate θ. To reduce the contact rate θ, the government can design smoking areas, which
diminishes the contact chances between smokers and potential smokers. If Rs > 1, then occasional
smokers L(t) can be persist. However, the above analysis does not point out how the price of cigarettes
r and the contact rate θ affect the number of occasional smokers in the presence of occasional smokers.
We will discuss this problem through numerical simulation in the next section.
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6.2. Effects of σ2
i on occasional smokers

Here, we discuss how the noise intensity σ2
i affects the dynamic behavior of the model. Note that

Rs only depends on the noise intensity σ2
2 and decreases monotonically with respect to σ2

2. Hence, if

σ2
2 > 2

[
2

1 + kr
− ζ − d2 − µ

]
,

the occasional smokers will be gradually eliminated. Moreover, the elimination of occasional smokers
will lead to the gradual elimination of both chain smokers and quit smokers. From Theorem 5.1, when
Rs > 1, the model has a stationary distribution. This means that occasional smokers L(t) in the model
will be persistent. Note that Rs depends not only on noise intensity σ2

1 but also on noise intensity
σ2

2. Further, according to the expression of Rs, when the noise intensities σ2
1 and σ2

2 are both small,
occasional smokers L(t) can persist. However, in the presence of L(t), we need to answer the following
two questions.

(i) How does noise intensity σ2
1 and noise intensity σ2

2 affect the number of occasional smokers?
(ii) Which noise has a greater impact on the number of occasional smokers?
In the next section, we will solve the above problems by numerical simulation.

7. Numerical simulations

In this section, we use the Milstein method (see [27]) to give some numerical simulations.

7.1. Verify the theoretical results

Here, we make numerical simulations to substantiate our results (Theorems 4.1, 4.2, and 5.1).
Numerical experiments of (2.3) are made by using (P0, L0, S 0,Q0) = (4, 6, 3, 5) and λ = 0.2,
µ = 0.0211, d1 = 0.0019, d2 = 0.0019, d3 = 0.0020, d4 = 0.0021, ζ = 0.0021, δ = 0.0041.

(i) Take d1 = d2 = d3 = d4 = d and σ2
1 = σ

2
2 = σ

2
3 = σ

2
4 = 0, then we can get the deterministic

model (2.1). Take β = 0.03, then R0 = 1.3636 > 1. Thus, model (2.2) admits a unique smoking-present
equilibrium E∗1 = (5.1282, 1.8648, 0.6109, 1.0797) (see Figure 1).
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Time
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L
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Q

Figure 1. Trajectories of deterministic model (2.2) with β = 0.03. (Color figure online).
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(ii) Let β = 0.03, σ2
1 = 0.02, σ2

2 = 0.04, σ2
3 = 0.01, and σ2

4 = 0.02. Then, Rs = 0.9375 < 1. Thus,
by Theorem 4.1, limt→∞ L(t) = 0, limt→∞ S (t) = 0, and limt→∞ Q(t) = 0 (see Figure 2(b)–2(d)). Take
p = 2.02, then (µ + d̂) − p−1

2 σ
2 = 0.0026 > 0. Thus, from Theorem 4.2, limt→∞⟨P(t)⟩ = 8.9657 (see

Figure 2(a)), and potential smokers have the probability density, which depends on the noise intensity
σ2

1 (see Figure 2(e) and 2(f)).

0 0.5 1 1.5 2

x 10
4

0

10

20

30

40

50

60

70

80

90

Time

 

 

P(t)
〈P(t)〉
8.9657

(a) Potential smokers P(t).

0 100 200 300 400 500
0

5

10

15

20

25

30

35

40

Time

 

 
L(t)

(b) Occasional smokers L(t).
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Figure 2. (a)–(d) Trajectories of stochastic model (2.3) with β = 0.03, σ2
1 = 0.02, σ2

2 = 0.04,
σ2

3 = 0.01, and σ2
4 = 0.02. (e) PDFs of P(t) for different initial values. (f) PDFs of P(t) for

different values of σ2
1.

(iii) Take β = 0.05, σ2
1 = σ

2
2 = σ

2
4 = 0.002, σ2

3 = 0.001. Then, Rs = 2.1296 > 1. From
Theorem 5.1, model (2.3) has a stationary distribution (see Figure 3). Note that the ergodic stationary
distribution reflects the weak stability and persistence of the model to some certain extent. Moreover,
from Figure 4, all kinds of smokers in model (2.3) can persist.
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(c) PDF of chain smokers S (t).
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Figure 3. The density functions of P(t), L(t), S (t), and Q(t) in model (2.3) at time t = 800000
with different initial value based on 5 stochastic simulations.
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(a) Potential smokers P(t).
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(b) Occasional smokers L(t).
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(c) Chain smokers S (t).
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(d) Quit smokers Q(t).

Figure 4. Trajectories of model (2.3) with β = 0.05, σ2
1 = 0.002, σ2

2 = 0.002, σ2
3 = 0.001,

and σ2
4 = 0.002.

7.2. The effects of r, θ, and σ2
i on occasional smokers

In this subsection, we use numerical simulation to explain the effects of cigarette price r, contact
rate θ, and noise intensities σ2

i (i = 1, 2), on the number of occasional smokers in model (2.3). Here,
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we choose λ = 0.21, d1 = 0.0019, d2 = 0.0019, d3 = 0.0020, d4 = 0.0021, µ = 0.0211, ζ = 0.0021,
δ = 0.0041, σ2

3 = σ
2
4 = 0.02, and (P0, L0, S 0,Q0) = (4, 3, 3, 1).

(i) To find out the effect of r, we take k = 18, σ2
1 = σ

2
2 = 0.002 and θ = 8.2192. When r ∈ [10, 40],

Rs and Rs are displayed in Figure 5(a) and 5(c), respectively. By a simple calculation, if r > 20.2388,
then Rs < 1. That is, occasional smokers will be eliminated gradually (see Figure 5(b)). If r < 19.3932,
then Rs > 1. Figure 5(d) shows the mean change of occasional smokers when r < 19.3932. It can
be seen from Figure 5(b) that when r > 20.2388, increased r results in the elimination of L(t). From
Figure 5(d), we can see that when r < 19.3932, ⟨L(t)⟩ will decrease with the increase of r. This
seems to be reasonable due to the fact that the number of smokers will decrease as the price of tobacco
increases. However, numerical simulations show that it takes a long time (200 − 300) for the smokers
to disappear by raising the price of cigarettes.
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Figure 5. (a) Variation of basic reproduction number Rs with r; (b) number of occasional
smokers when r > 20.2388; (c) variation of basic reproduction number Rs with r; (d) mean
number of occasional smokers when r < 19.3932.

(ii) To find out the effect of θ, we choose k = 18, σ2
1 = σ

2
2 = 0.02, and r = 15. When θ ∈ [0, 12],

the variations of Rs are displayed in Figure 6(a). Obviously, if θ < 6.0975, then Rs < 1. Figure
6(b) shows the change of L(t) with time when θ < 6.0975. As can be seen from Figure 6(b), when
θ < 6.0975, L(t) will be eliminated gradually. When θ ∈ [0, 12], the variations of Rs are displayed
in Figure 6(c). Clearly, if θ > 6.3626, then Rs > 1. Figure 6(d) depicts the change of ⟨L(t)⟩ when
θ > 6.3626. Moreover, it can be seen from Figure 6(d) that when θ > 6.3626, ⟨L(t)⟩ will increase
with the increase of θ. Further, from Figure 6(b), when θ < 6.0975, with a decrease of θ, the faster
the elimination of occasional smokers is. This seems reasonable because θ represents the contact rate
between potential smokers and occasional smokers. However, numerical simulations show that it takes
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a long time (200 − 300) for the smokers to disappear by lowering the contact rate.
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(a) Rs changes with θ.
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0 2000 4000 6000 8000 10000
0.5

1

1.5

2

2.5

3

3.5

Time

Th
e 

nu
m

be
r o

f  
〈L

(t)
〉

 

 

θ=6.5
θ=7.5
θ=8.5
θ=9.5

(d) Occasional smokers ⟨L(t)⟩.

Figure 6. (a) Variation of Rs with θ; (b) number of occasional smokers when θ < 6.0975; (c)
variation of Rs with θ; (d) the mean number of occasional smokers when θ > 6.3626.

(iii) Now, we discuss the effect of noise intensities σ2
1 and σ2

2. Note that Rs depends only upon
the noise intensity σ2

2. Here, we choose k = 12, r = 16, and θ = 8.2192. When σ2
2 ∈ [0, 0.2], the

corresponding variations of Rs are displayed in Figure 7(a). Obviously, if σ2
2 > 0.1065, then Rs < 1.

Thus, limt→∞⟨P(t)⟩ = 8.9657 and limt→∞ L(t) = 0 a.s. Figure 7(b) and 7(c) show, respectively, the mean
change of potential smokers and the number of occasional smokers under different noise intensities σ2

1.
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(c) Occasional smokers L(t).

Figure 7. (a) Variation of basic reproduction number RS with θ; (b) mean number of
occasional smokers when θ > 6.0975; (c) number of occasional smokers when θ < 6.0975.

Note that Rs depends not only on σ2
1 but also on σ2

2. Obviously, Rs(σ2
1, σ

2
2) is monotonically

decreasing with respect to σ2
1 and σ2

2. Here, we choose k = 18, r = 10, and θ = 20. When σ2
2 = 0.04,

AIMS Mathematics Volume 10, Issue 11, 26484–26510.



26506

Figure 8(a) shows the variations of Rs with σ2
1 ∈ [0, 0.16]. When σ2

1 = 0.04, Figure 8(b) shows the
variations of Rs with σ2

2 ∈ [0, 0.16]. By a simple computation, we have Rs(0.10, 0.04) = 1.0879 > 1
and Rs(0.04, 0.10) = 1.2575 > 1. When σ2

2 = 0.04, Figure 8(c) shows the expectation of L(t)
with different noise intensities σ2

1 (0.01, 0.04, 0.08, 0.10) based on 80,000 stochastic simulations.
When σ2

1 = 0.04, Figure 8(d) shows the expectation of L(t) with different noise intensities σ2
2

(0.01, 0.04, 0.08, 0.10) based on 80,000 stochastic simulations. It can be seen from the numerical
simulations that when occasional smokers are present and one of the noise intensities σ2

1 and σ2
2 is

fixed, the mathematical expectation of the occasional smokers decreases as the other noise intensity
increases. This is concretely reflected in the following observations: As shown in Figure 8(c), with
σ2

2 held constant, the expected number of occasional smokers, E[L(t)], decreases with increasing σ2
1.

Conversely, Figure 8(d) shows that for a fixed σ2
1, increasing σ2

2 results in a more substantial reduction
in E[L(t)].
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Figure 8. (a) Variation of basic reproduction number Rs with θ; (b) mean number of
occasional smokers when θ > 6.0975; (c) the number of occasional smokers when θ <
6.0975.

8. Discussions and conclusions

This paper conducts a rigorous dynamic analysis of a stochastic giving-up-smoking model with
harmonic mean type incidence rate, whose theoretical results form a mathematical system with tightly-
knit internal logic. The system begins with Theorem 3.1 (the existence and uniqueness of a global
positive solution for the model), which ensures the meaningfulness of subsequent theoretical analysis.
Building upon this, Theorem 3.2, Remark 3.1, and Corollary 3.1 reveal the asymptotic boundedness
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of the solution: a fundamental property that provides crucial support for proving the stochastic
permanence of the system (Theorem 3.3). The stochastic permanence (Theorem 3.3) itself naturally
leads to the boundedness of the first-order moment of the solution (Remark 3.2), which, together
with the boundedness of the p-th moment established under stronger conditions (Theorem 3.4 and
Remark 3.3), collectively forms the core tool for analyzing the long-term behavior of the system.
Utilizing this tool, we prove Lemma 4.1, which serves as a bridge connecting the stochastic model
to deterministic limits. Based on this, the core of the theoretical system is established: Theorem 4.1
provides the threshold condition for the extinction of smokers, while Theorem 4.2 fully characterizes
the system state post-extinction on this basis. In contrast, Theorem 5.1 proves that under another
threshold condition, smokers will persist, and a stationary distribution exists. Therefore, Theorems 4.1
and 5.1 collectively reveal the phase transition behavior of the system governed by a pair of stochastic
threshold parameters (Rs andRs). This series of rigorous derivations, from basic properties to threshold
theorems, lays a solid mathematical foundation for the control analysis from an economic perspective
(Section 6).

More importantly, we discuss how to control the number of smokers from the perspective of
economics. Finally, we introduce some numerical simulations to support the theoretical results
obtained and analyze the effects of the price of cigarettes, the contact rate, and noise intensity on
the size of occasional smokers.

From the expressions of Rs and Rs, under the assumptions of Figure 1, we have Rs = R
s = R0.

For model (2.1), by Theorems 4.1 and 4.2, if R0 < 1, then smokers (including occasional smokers,
chain smokers, and quit smokers) in model (2.1) will be eliminated gradually; from Theorem 5.1, if
R0 > 1, then all types of smokers in model (2.1) can persist. This means that R0 is the threshold of
model (2.1), which is consistent with the result of [12]. Moreover, from the expressions of Rs and R0,
it is easy to see that Rs < R0. This means that if smokers in model (2.1) disappear, smokers in model
(2.3) must disappear. Thus, we can assert that noise is beneficial to the control the number of smoking
individuals.

To sum up, if r > r1 (or θ < θ1), smokers (including occasional smokers, chain smokers, and
quit smokers) will gradually disappear; if r < r2 (or θ > θ2), all types of smokers will persist. It
can be seen from Figure 5(d) that in the presence of occasional smokers, the mean size of occasional
smokers decreases as the cigarettes price increases. From Figure 6(d), in the presence of occasional
smokers, the mean size of occasional smokers decreases as the contact rate increases. Moreover,
regardless of the intensity of the other three noises, as long as the intensity of noise Ḃ2(t) satisfies
σ2

2 > 2( 2
1+kr − ζ − d2 − µ), smokers will gradually disappear (see Figure 2). This means that greater

intensity of noise Ḃ2(t) can result in smokers extinction. When the intensities of noises Ḃ1(t) and Ḃ2(t)
are both weak, all types of smokers in model (2.3) will always exist. However, from the numerical
simulations, when occasional smokers are present and one of the noise intensities σ2

1 and σ2
2 is fixed,

the mathematical expectation of occasional smokers decreases as the other noise intensity increases
(see Figure 8(c) and 8(d)). Moreover, by comparing Figure 8(c) and 8(d), it can be seen that noise
intensity σ2

2 has a greater influence on the mathematical expectation of occasional smokers than noise
intensity σ2

1 in the presence of occasional smokers.
To effectively control the number of smokers, this study proposes the following comprehensive

intervention strategies: First, implement price regulation mechanisms, such as introducing floating tax
rates to increase cigarette prices. Second, optimize spatial management by randomly adjusting the
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functional layout of public spaces and the locations of smoking areas to systematically reduce both
the contact rate and contact certainty between potential smokers and occasional smokers. Finally,
enhance noise intervention by adopting non-periodic, dynamic publicity strategies alongside ongoing
public health campaigns on the harms of smoking, with a focus on introducing stochastic disturbances
targeting the critical transition stage from occasional to established smoking. Numerical simulations
indicate that relying solely on price increases or contact reduction requires a considerable amount
of time (200-300 time units) to achieve noticeable effects. Therefore, the adoption of an integrated
approach combining the above strategies is recommended.
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