Research article Special Issues

Nonparametric multifunctional GARCH time series data analysis: Application to dynamic forecasting in financial data

  • Published: 17 November 2025
  • MSC : 62G05, 62G08, 62R20

  • Financial risk management using the generalized autoregressive conditional heteroskedasticity model is a primordial topic in financial data analysis. It helps to improve risk assessment accuracy by taking into account the time-varying volatility. In this paper, we improved this feature by analyzing the functional nature of the high-frequency financial data. Specifically, we investigated the nonparametric estimation method of the multifunctional expectile function based on a kernel technique, developed the estimator, and established its stochastic consistency. The obtained asymptotic result provided a good mathematical foundation allowing us to enhance the expectile applicability in financial risk analysis. We assessed the algorithm's efficiency through empirical testing, and illustrated the practical value of expectile estimation in multi-asset risk management by applying it to real-world financial data with diverse scenarios.

    Citation: Ali Laksaci, Fatimah Alshahrani, Ibrahim M. Almanjahie, Zoulikha Kaid. Nonparametric multifunctional GARCH time series data analysis: Application to dynamic forecasting in financial data[J]. AIMS Mathematics, 2025, 10(11): 26459-26483. doi: 10.3934/math.20251163

    Related Papers:

  • Financial risk management using the generalized autoregressive conditional heteroskedasticity model is a primordial topic in financial data analysis. It helps to improve risk assessment accuracy by taking into account the time-varying volatility. In this paper, we improved this feature by analyzing the functional nature of the high-frequency financial data. Specifically, we investigated the nonparametric estimation method of the multifunctional expectile function based on a kernel technique, developed the estimator, and established its stochastic consistency. The obtained asymptotic result provided a good mathematical foundation allowing us to enhance the expectile applicability in financial risk analysis. We assessed the algorithm's efficiency through empirical testing, and illustrated the practical value of expectile estimation in multi-asset risk management by applying it to real-world financial data with diverse scenarios.



    加载中


    [1] R. F. Engle, Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation, Econometrica, 50 (1982), 987–1007. https://doi.org/10.2307/1912773 doi: 10.2307/1912773
    [2] T. Bollerslev, A conditionally heteroskedastic time series model for speculative prices and rates of return, Rev. Econ. Stat., 69 (1987), 542–547. https://doi.org/10.2307/1925546 doi: 10.2307/1925546
    [3] J. E. Yoon, J. M. Kim, S. Y. Hwang, Functional ARCH (fARCH) for high-frequency time series: Illustration, Korean J. Appl. Stat., 30 (2017), 983–991.
    [4] C. Cerovecki, C. Francq, S. Hörmann, J. M. Zakoïan, Functional GARCH models: The quasi-likelihood approach and its applications, J. Econometrics, 209 (2019), 353–375. https://doi.org/10.1016/j.jeconom.2019.01.006 doi: 10.1016/j.jeconom.2019.01.006
    [5] H. Sun, B. Yu, Volatility asymmetry in functional threshold GARCH model, J. Time Ser. Anal., 41 (2020), 95–109. https://doi.org/10.1111/jtsa.12495 doi: 10.1111/jtsa.12495
    [6] Z. Li, H. Sun, J. Liu, A functional GARCH model with multiple constant parameters, Comput. Econ., 66 (2025), 3957–3981. https://doi.org/10.1007/s10614-025-10843-1 doi: 10.1007/s10614-025-10843-1
    [7] S. Küchnert, Functional ARCH and GARCH models: A Yule–Walker approach, Electron. J. Statist., 14 (2020), 4321–4360. https://doi.org/10.1214/20-EJS1778 doi: 10.1214/20-EJS1778
    [8] N. Laib, D. Louani, Rates of strong consistencies of the regression function estimator for functional stationary ergodic data, J. Stat. Plan. Infer., 141 (2011), 359–372. https://doi.org/10.1016/j.jspi.2010.06.009 doi: 10.1016/j.jspi.2010.06.009
    [9] C. M. Kuan, J. H. Yeh, Y. C. Hsu, Assessing value at risk with CARE, the conditional autoregressive expectile models, J. Econometrics, 150 (2009), 261–270. https://doi.org/10.1016/j.jeconom.2008.12.002 doi: 10.1016/j.jeconom.2008.12.002
    [10] W. Ehm, T. Gneiting, A. Jordan, F. Krüger, Of quantiles and expectiles: Consistent scoring functions, Choquet representations and forecast rankings, J. R. Stat. Soc. B, 78 (2016), 505–562. https://doi.org/10.1111/rssb.12154 doi: 10.1111/rssb.12154
    [11] F. Bellini, V. Bignozzi, G. Puccetti, Conditional expectiles, time consistency and mixture convexity properties, Insur. Math. Econ., 82 (2018), 117–123. http://doi.org/10.2139/ssrn.3009354 doi: 10.2139/ssrn.3009354
    [12] R. Koenker, G. Bassett Jr., Regression quantiles, Econometrica, 46 (1978), 33–50.
    [13] R. Koenker, G. Bassett Jr., Robust tests for heteroscedasticity based on regression quantiles, Econometrica, 50 (1982), 43–61.
    [14] A. Daouia, S. Girard, G. Stupfler, Estimation of tail risk based on extreme expectiles, J. R. Stat. Soc. B, 80 (2018), 263–292. https://doi.org/10.1111/rssb.12254 doi: 10.1111/rssb.12254
    [15] B. Efron, Regression percentiles using asymmetric squared error loss, Stat. Sin., 1 (1991), 93–125.
    [16] H. Holzmann, B. Klar, Expectile asymptotics, Electron. J. Statist., 10 (2016), 2355–2371. https://doi.org/10.1214/16-EJS1173
    [17] V. Maume-Deschamps, D. Rullière, K. Said, Multivariate extensions of expectiles risk measures, Depend. Model., 5 (2017), 20–44. https://doi.org/10.1515/demo-2017-0002 doi: 10.1515/demo-2017-0002
    [18] V. Krätschmer, H. Zähle, Statistical inference for expectile-based risk measures, Scand. J. Stat., 44 (2017), 425–454. https://doi.org/10.1111/sjos.12259 doi: 10.1111/sjos.12259
    [19] M. Mohammedi, S. Bouzebda, A. Laksaci, The consistency and asymptotic normality of the kernel type expectile regression estimator for functional data, J. Multivariate Anal., 181 (2021), 104673. https://doi.org/10.1016/j.jmva.2020.104673 doi: 10.1016/j.jmva.2020.104673
    [20] I. M. Almanjahie, S. Bouzebda, Z. Kaid, A. Laksaci, Nonparametric estimation of expectile regression in functional dependent data, J. Nonparametr. Stat., 34 (2022), 250–281. https://doi.org/10.1080/10485252.2022.2027412 doi: 10.1080/10485252.2022.2027412
    [21] F. Alshahrani, I. M. Almanjahie, Z. C. Elmezouar, Z. Kaid, A. Laksaci, M. Rachdi, Functional ergodic time series analysis using expectile regression, Mathematics, 10 (2022), 3919. https://doi.org/10.3390/math10203919 doi: 10.3390/math10203919
    [22] M. Lux, W. K. Härdle, S. Lessmann, Data driven value-at-risk forecasting using a SVR-GARCH-KDE hybrid, Comput. Stat., 35 (2020), 947–981. https://doi.org/10.1007/s00180-019-00934-7 doi: 10.1007/s00180-019-00934-7
    [23] T. H. Kim, H. White, On more robust estimation of skewness and kurtosis, Financ. Res. Lett., 1 (2004), 56–73. https://doi.org/10.1016/S1544-6123(03)00003-5 doi: 10.1016/S1544-6123(03)00003-5
    [24] H. Cardot, C. Crambes, P. Sarda, Quantile regression when the covariates are functions, J. Nonparametr. Stat., 17 (2005), 841–856. https://doi.org/10.1080/10485250500303015 doi: 10.1080/10485250500303015
    [25] R. Engle, Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional heteroskedasticity models, J. Bus. Econ. Stat., 20 (2002), 339–350. https://doi.org/10.1198/073500102288618487 doi: 10.1198/073500102288618487
    [26] C. Francq, J. M. Zakoian, GARCH models: structure, statistical inference and financial applications, Wiley, 2019.
    [27] F. Ferraty, P. Vieu, Nonparametric functional data analysis: Theory and practice, New York: Springer, 2006. https://doi.org/10.1007/0-387-36620-2
    [28] V. I. Bogachev, Gaussian measures, American Mathematical Society, 1998.
    [29] K. Benhenni, F. Ferraty, M. Rachdi, P. Vieu, Local smoothing regression with functional data, Comput. Stat., 22 (2007), 353–369. https://doi.org/10.1007/s00180-007-0045-0 doi: 10.1007/s00180-007-0045-0
    [30] P. Gaenssler, E. Haeusler, On martingale central limit theory, In: Dependence in probability and statistics, Boston: Birkhäuser, 1986,303–334. https://doi.org/10.1007/978-1-4615-8162-8_13
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1165) PDF downloads(33) Cited by(0)

Article outline

Figures and Tables

Figures(7)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog