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Abstract: Financial risk management using the generalized autoregressive conditional
heteroskedasticity model is a primordial topic in financial data analysis. It helps to improve risk
assessment accuracy by taking into account the time-varying volatility. In this paper, we improved
this feature by analyzing the functional nature of the high-frequency financial data. Specifically, we
investigated the nonparametric estimation method of the multifunctional expectile function based on a
kernel technique, developed the estimator, and established its stochastic consistency. The obtained
asymptotic result provided a good mathematical foundation allowing us to enhance the expectile
applicability in financial risk analysis. We assessed the algorithm’s efficiency through empirical testing,
and illustrated the practical value of expectile estimation in multi-asset risk management by applying
it to real-world financial data with diverse scenarios.
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1. Introduction

The swift and the current technological progression have accelerated the digital transformation of
the financial system. In this context, real-time monitoring and management of market volatility
become imperative. Therefore, conventional multivariate parametric statistical tools are inadequate
for addressing this challenge. Alternatively, in this study, we introduce a novel data-driven framework
designed to manage multiple financial risks dynamically. Our approach is based on a real-time risk
assessment with a specific focus on quantifying market risk through expectiles estimation using
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multi-functional covariate regression.

Often the financial volatility plays a pivotal role in investment decision-making. Thus, providing a
dynamic and robust model to fit the rough volatility is fundamental for financial risk assessment. The
former topic has been widely explored in the feild of statistical and financial literature through some
specific time series models. In particular, the pioneer result on this topic was established by [1]. The
author explored the implications of the autoregressive conditional heteroscedasticity (ARCH) model.
The issues were generalized in [2] within the Generalized Autoregressive Conditional
Heteroskedasticity (GARCH) framework. They introduced a functional variant of the GARCH model,
demonstrating estimator consistency and providing prerequisites for the existence of a strictly
stationary solution. We cite [3] for an illustrative application of the functional GARCH in modeling
high-frequency data. Meanwhile, [4] proposed a quasi-likelihood-based alternative estimation
method, establishing the asymptotic normality of their estimator. Readers interested in recent deeper
analysis in functional GARCH time series may consult [5, 6] and the references therein. In parallel, it
is well recommended that the expectile model constitutes a good alternative financial risk model than
the Value-at-Risk (VaR) and the expected shortfall. It permits us to correct some drawbacks in these
conventional models, namely the non-coherence and the non-elicitability.

In fact, the nonfunctional expectile model has been extensively studied in mathematical statistics.
For an early parametric approach, we mention the work in [7] that explored the behavior of the
asymptotic multivariate expectiles for the Fréchet model. This cited reference established an
estimator for the extreme values using the expectile function. [8] demonstrated that expectiles offer a
good alternative to the VaR and expected shortfall; particularly, due to their high sensitivity to outlier
observations. In applied fields like econometrics, finance, and actuarial science, the dynamic expectile
regression has gained traction—pioneered by [9] and further developed in [10]. The theoretical
properties of the dynamic expectiles have been wieldy developed in vectorial statistics. For
instance, [11] generalized conditional expectations to conditional expectiles via asymmetric quadratic
loss minimization, while [12] and [13] laid the groundwork for regression quantile estimation using
asymmetric loss functions. Recently, [14] employed expectiles to estimate the VaR and expected
shortfall. Additional contributions on dynamic expectile modeling can be found in [15-18], with [17],
specifically, extending the framework to multivariate risk measures and analyzing their coherence
properties. Despite these advances, existing literature primarily addresses finite-dimensional settings.
Our work diverges by examining the influence of a functional-covariate on a scalar-response—a
problem first tackled by [19], who established almost complete convergence and asymptotic normality
for the Nadaraya-Watson estimator under independence. Subsequent work in [20] generalized these
results to dependent data, while [21] introduced a functional local linear estimator with Borel-Cantelli
convergence guarantees.

Furthermore, recent years have seen significant progress in risk management methodologies,
particularly in the development of GARCH frameworks. We refer to [22] for the use of the VaR
function, [23] for the asymmetric GARCH framework case, or [24] for the multifunctional GARCH
model. While existing literature primarily relies on the VaR for financial risk forecasting, this study
introduces a dynamic expectile-based approach. The primary innovation lies in analyzing multi-asset
financial movements through their continuous historical price trajectories, enabling real-time
monitoring of their volatility. Mathematically, we develop a nonparametric estimator for this model
by employing the functional extension of the Nadaraya-Watson estimator. Beyond estimation, we
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derive its asymptotic properties, specifically, quantifying the convergence rate to establish almost
complete consistency. The obtained results are stated under multi-functional GARCH structure.
Undoubtedly, the multivariate functional GARCH time series model is a common structure in applied
fields, particularly in finance, in which it controls the possible interactions between several portfolio
trajectories. This approach is especially valuable for analyzing dynamic dependencies in financial
markets, where interconnections among diverse assets are inevitable and have great impact on the
financial market behavior. Finally, note that the integration of the GARCH framework with
multifunctional modeling plays a critical role in financial risk analysis. This approach enhances
prediction accuracy by systematically controlling the complex interdependencies among financial
variables, thereby improving the assessment of market fluctuations. To evaluate this gain, we
conducted an empirical analysis using both artificially generated data and real-world datasets,
ensuring comprehensive validation of the proposed algorithm. To our knowledge, the literature
currently available does not address this particular problem, which has prompted our current
investigation to advance understanding in this domain.

We organize the paper as follows. Section 2 introduces the framework of our functional statistics
and outlines the motivations behind this study. In Section 3, we present the main theoretical results,
establishing the foundation for our analysis. Section 4 provides an empirical investigation, including
illustrative examples that highlight various aspects of multivariate functional generalized ARCH
(MFGARCH) models. Section 5 details an example of an application using real data. It permits us to
asses the practical relevance of our approach. Finally, the conclusion is presented in Section 6. The
Appendix contains the technical derivations and proofs of intermediate results.

2. Multivariate functional GARCH framework

Let {Vi(9)}_, denote n-days portfolio price trajectories, each consisting of m financial assets, where
t represents continuous time. We model these trajectories as a multi-functional process, where each
Vi(¢) is an m-dimensional vector,

40!
V()

Vi() = , i=1,...n.

V;n(.)

It is well documented that the financial risk assessment aims to forecast the fluctuations in future
characteristics of the process V(-). Commonly, these characteristics are represented by fixed real valued
metrics such as closing prices, maximum values, values at a specific time %y, or variations over a
given interval frame. To formalize this problem, we model the future characteristics of interest as the
response variable (U,);-;.. ,, represented as

U; = Fu(Vy), i=1,...,n ()

At this stage, financial risk assessment is conducted through the analysis of functional
observations, O; = (V;,U;);=1..,. Precisely, we utilize a dynamic expectile function to provide a
dynamic and data-driven evaluation of potential vulnerabilities in portfolio price. Formally, we

AIMS Mathematics Volume 10, Issue 11, 26459-26483.



26462

assume that O; = (V;, U;);=;., are defined in probability space, (€2, F, P) and valued in the field
F x IR, where the former represents the product of m semi-metric space ¥/, i.e.,
F = F'xF?...xF". Note that F/ is equipped with a semi-metric d ;. In addition, the vector

m—time
Vl
V2
V= . € ¥, and we use Ny to represent the given neighborhood of V, which is represented by
Vﬂ’l

the metric d on ¥ with d(-,-) = 27:1 dj(-,-). Now, for 0 < 7 < 1, we define the dynamic expectile
DE. (V) of order T as the unique solution with respect to (w.r.t.) s of the following optimization
problem:

min {E [7(U = s Lw-gs0 | V = V| +E[(1 = YU = 9’ Lw-ye0 | V = V]}, 2)
where 1, denotes the indicator function of the set A. Analytically, we prove that DE (V) is the unique

solution w.r.t. s of -
DEAV):a@nﬁn{seR:l&xVD;zTj;} 3)

where
~E[(U - 9)ly-90 |V =V] )
E[(U - 9)Lwy-g9s0 | V=V]"

In the financial area, the dynamic expectile serves as a meaningful threshold, quantifying the trade-
off between profit and loss functions. This interpretation allows investors to assess risk with more
prudence. Thereafter, we estimate the risk detector DE (V) as the solution of

L(s; V) :=

DE.(V) = arg min {s eR:L(s;V) > %_T} , o)

where
m

- | [2@2 (v, vinwi = sy, <o
i=1 j=1

L(s;V) =

for s e R, (6)

T m )
D 12w d v, v w: = )1w,-0
i=1 j=1

where ¥ is a kernel function and b, is a sequence of positive real numbers that converges to zero as n
approaches infinity.

In order to emphasize the role of the time-varying of the volatility, we assume that the vectors V;(¢)
are sampled from multivariate functional GARCH process. Precisely, we consider a functional version
of GARCH based on the dynamic conditional correlation, presented in [25], for which the functional
regressors are
Vi=H?0&, i=1,...,n, (7)

where © represents the pointwise product, =; denotes a vector of independent functional random
variables, and H; represents the conditional covariance matrix that can be, with volatility, decomposed
by

H,=DRD;,, i=1,...,n,
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with R; denoting the correlation matrix based on a continuous time-varying and D; a diagonal matrix
with functional structure, defined by

A0

0 4 ... 0

0 oAt

The diagonal is
Pl wl Vlzk I
i i~ i-j
22 w2 p %25 q 12_,
i — . + a i-k + Z,B] J
: k=1 , =1

A w Vi i-j

Note that (ay); and (B;); represent the linear operators. In a multivariate context, these formulations
extend the univariate functional GARCH process, which was initially presented in [7]. We may use
it to emphasize the time-varying character of covariances and correlations between several assets in a
continuous-time environment. Based on the MFGARCH model and similar to [7], the ergodicity and
strict stationarity are related to the Lyapunov exponent of a sequence of matrix operators, defined by

%) R, P ®bg-1 Py
1 0 0 0 0
0 1 0 0 0
(I)(p’q) _ (03] a, ﬂ] ﬁqfl ﬁq
k 0 e 0 1 . 0 0
0 0 1 0 0
0 ... 0 o ... 1 0

Here, ®; denotes the operator mapping, where ®;(X) := X © E,% In this paper, we assume that:

DE1. The top Lyapunov exponent of the sequence (DZP D ig
Y79 = lim Elog |02 ... | <0,

with || -|| denoting the norm over a functional matrix with order p + ¢g. Readers can check [26] for more
discussion on this assumption and its variations. Let us point out that the functional GARCH process
is a new model in time series data analysis, first introduced in [4]. More generally, in this work, we
focus on the multifunctional case, which is recent development by [7]. This new model constitutes an
alternative approach to standard continuous-time (CT) processes, such as the COGARCH and Lévy
processes. Indeed, unlike traditional models that treat (in practice) the continuous-time (CT) model
by considering only discrete grid points of the trajectories, the functional GARCH model fits the CT
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model by considering the entire trajectory as a continuous curve in a functional space. Furthermore, the
functional GARCH model combines the advantages of both the GARCH process and functional data
analysis. In particular, the GARCH model is well known for its ability to model the high variability
of volatility, which is essential for financial applications, namely, for financial risk management. In
parallel, functional statistics are a the modern branch of statistics that offer powerful tools for analyzing
data that vary continuously over time or space. Therefore, combining these two approaches is highly
beneficial in practice, as it allows us to explore the dynamic and time-varying nature of volatility in
a fast manner. We refer the reader to [4] and [7] for more motivation and deeper discussion on the
functional GARCH model.

Recall that our aim in this paper is to establish the almost complete convergence (a.co.). This is
stronger than the almost surely or the probability consistencies. In fact, we say that the sequence (Z,),
converges a.co. to zero, if and only if

Ve > 0, Z P(Z,| > ¢) < .

n>1

Furthermore, we say that Z, = O,,.(s,) if there exists ¢y > 0 such that

Z P(Z,| > cos,) < 00

n>1

of DE.(V) to DE.(V).
3. Notations, postulates and results

Before proceeding to state the claimed consistency, we start by introducing some strictly positive
constants C , C’. For b > 0, we consider a ball defined by

B(V.b) := {V’ €F/dV,V)= > d(V", V)< b}.

J=1

Moreover, we set
Li(s; V) = E[(U - )Ly | V =V],
and
Ly(s; V) := E[(U = $)Ly-s>0 | V=V].
Furthermore, fori = 1, ..., n, §; is taken as the o-algebra generated by ((Vi, Uy), ... (V;, U;))) and ®;
as the o-algebra generated by ((Vy, Uy), ... (V;, U;), Viy1). Hence, the below hypotheses are assumed:

DE2. The processes (V;, U;)ren satisfy:

(i) The function B(m, V,b) := P(P € B(V,b)) >0, ¥V b > 0.

(i) Forall i =1,...,n, there exists a deterministic function B,;(m,V, -) such that
0<P(V;e B(V,b)|Fi—1) <B;(m,V,b), Yr>0.

(iii) For all b > 0, m 2 P(Vie BIV,b)IFi-) — 1 a.co.
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DE3. The function L=, »(+; V) is differentiable in R and satisfies the following (Lipschitz) condition:
da>0,Yse[DE.(V)—a,DE.(V)+al,VV,V,eF,

‘Li(s; V) - Li(s: Vz)‘ < Cd“(V,, V) for k; > 0 for i = 1,2.

Furthermore, we assume that YV € ¥, L/(DE(V); V) are not identical to zero, with L!(-; V)
denoting the derivative of the function L;(-; V) with respect to t.

DE4. Foreachg > 2, E HUI_—“I |V =V|<C3 <oo,with U; = (U; - 5) Ly,-s)<0-
DES. There exists 6 > 3 such that

. A(m,V,b,)logn n*/4ogn
1 =0 d ———— ,
w28 (m, V, b,) T A, Vb

where A(m, V, b,) = Z B;(m,V,b,)and 6 > g+ 1.
i=1
DE6. £(-) is a function with support (0, 1) such that

0< C][(O,l) <80 < C/][(O,l) < 00,
DB1. The function
L(s; V) :=B|(U -5V =V|
is differentiable with respect to s and satisfies the following Lipschitz condition: da > 0, Vs €
[DE(V) —a,DE.(V) +al,¥V,,V, € ¥,
L(s; V) — L(s; Vz)‘ < Cd'(V,V2), forr > 0.

DB2. The function £(-) satisfies (DE6) and is differentiable on (0, 1) with derivative £’(-) such that

Clon() < &'() < Cl().
DB3. The concentration property given in (DE2) holds and there exists a function By(-) such that

B(m,V, sh
Vs € [0, 1], such that ;}E% % = Bv(s),

1 1
B, = 2(1) - f (L) (s)Bv(s)ds # 0 and B, = £%(1) — f (22)’ (5)Bv(s)ds > 0.
0 0

Comments on the hypotheses

These conditions are relatively mild and align with standard frameworks in nonparametric
functional statistics. Such conventional assumptions, mirroring the structural foundations, are
outlined in [27]. These assumptions permit us to cover numerous classes of financial time series data.
In particular, the multivariate functional GARCH model together with Dynamic Conditional
Correlation (DCC) plays a pivotal role in financial econometrics. It fits time-varying correlations
across multiple assets, which are necessary feature for management and portfolio optimization.
Examining the functional properties of this process is particularly insightful, as it reveals structural
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dependencies without imposing overly restrictive assumptions. Specifically, condition DE2 ensures
the ergodicity of the functional data, offering a more flexible framework than that mentioned in [8].
Unlike [8], DE2 does not require decomposing concentration functions, thereby eliminating the need
for the Onsager-Machlup function [28]. Hypothesis DE3 serves as a regularity condition that defines
our functional space model, ensuring that we can properly compute the bias in our asymptotic
findings. Meanwhile, conditions in DE4, DES, and DEG6 are technical assumptions and comparable to
those used in prior work [27], and help establishing the necessary theoretical framework for our
analysis. The additional conditions DB1-DB3 are needed for the asymptotic normality result. They
are standard and represent a modified version of the initial conditions.
The theorem below presents our main finding.

Theorem 3.1. Consider that DE1-DEG6 are satisfied. Then, we have

—_— - Ql(m, V, bn) IOgl’l
min(k,ky)
DE.(V)— DE.(V) = O(bn | 2)+0[\/ ARV b) } a.co.

Result concerns the asymptotic normality of ﬁT(V). For this asymptotic result, we state that

D e ) ) D
Z = N(u, ) means that Z follows a normal distribution with mean u and variance 0. The symbol —
denotes convergence in distribution. Thus, our second main result is stated in the following theorem.

Theorem 3.2. Under the hypotheses, consider that DE1 and DB1-DB3 are satisfied, and if

n*B*(m, V, b,)
A(m, V, by)

bi’—>0 as n— oo,

then we have, for all V € V,

(QI’Z;%ZV(”;)V; (”é))Z (DE(V) = DE(V)) =N, 1), ®)

where

(V) g ;A\z g i 22; and V={V; oXV)#0} 9)
with

Yo DEVEV) = (2= ) R (DEVV) + R_(DEV): V).
where

Re(:V) = E|(U = )’ L-go0 | V= V[ .R(s:V) = E|(U = 7Ly | V = V]

and

A+ (DE.(V)) = L (DE(V): V) — (i) Ly(DE.(V): V).
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4. Experimental data analysis

The DCC model is commonly employed as important variant of multivariate GARCH (MGARCH)
models. It is more relevant in financial risk assessment, particularly for its ability to fit time-varying
correlations; a feature that aligns well with real-world market behavior. This adaptability makes the
generalization of DCC within MGARCH modeling both theoretically and practically pertinent. It
enhances risk detection accuracy by accounting the dynamic nature of financial volatility.
Furthermore, in the context of multifunctional data analysis, Dynamic Value at Risk (DVaR) and
Dynamic Expected Shortfall (DES) (see [20]) are the most widely used models in financial risk
analysis. However, both risk measures have some limitations. For instance, DVaR lacks coherence,
while DES fails to satisfy elicitability. Both issues are indispensable for risk assessment. In this
context, dynamic-expectile regression emerges as a compelling alternative, effectively addressing the
drawbacks of these traditional measures. Specifically, it is the only risk model that satisfies both
coherence and elicitability. To illustrate this feature, we conduct a simulation experiment to compare
its performance to

DVaR (V) = arg mglIE [(U-s)(T-Ty)|V=V] for 7e€]0,1[,
s€
and
DES (V)=E[U|U > DVaR.(V), V=V] for 71€]0,1].

DVaR. (V) is estimated by

n

| | 2@, a v, vy,

=1 j=
n

DVaR,(V) = argminqs € R :

: — >To.
[ [ew:'a,v7,viy

j=1

i=

While DES (V) is estimated by

b, d;(V, VWU Ly pvar. vy

N

m

| | 2w, avi, v

J=1

—

i=
For this aim, we generate artificial data based on the below nonparametric regression framework,
U, =Fu(V)) + €, i=1,...,n, (10)

where Fu(-) is a known regression operator and () is a sequence of independent random variables
generated from a given distribution. The artificial multivariate functional GARCH process (V;) is
constructed using the DCC-MGARCH algorithm (7). Specifically, we set the parameters as p = g =
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1 and m = 2, ensuring a well-defined stochastic structure, and use the mfdata function in the R-
package fda.usc to generate the independent functional random variables. The operators @, and 3, are
established by

1 1
BV, V?) = f B, )V(s)ds + f B(t, )V(s)ds,
0 0
where B(t, s) = 0.12((1 — 5)*#2, B*(t, s) = 0.12((1 — t)*s* and
1 1
a(V',V?) = f a'(t, s)V'(s)ds + f a’(t, s)V(s)ds
0 0
with a'(z, s) = 0.12((s — 0.5)*> + (t — 0.5)%), a%(t, s) = 0.12((1 — 1)*s%). Such operators are introduced
to include the theoretical assumptions, specifically the condition in ED1. Suppose the daily dynamics

of a portfolio made up of two financial assets (Asset 1, Asset 2) are represented by the produced
MFGARCH model. In Figures 1 and 2, we show the price trajectories of these two assets.

Sample price trajectories of Asset 1

value

Figure 1. The first component of the MFGARCH covariate.

Sample price trajectories of Asset 2

value

Figure 2. The second component of the MFGARCH covariate.
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Concerning the output variable U;, we assume that the function Fu is defined as the average of the
daily changes of the two assets. In this simulation study, the conditional distribution of U given
V = V is derived by shifting the distribution of the white noise term ¢; by the value Fu(V). Therefore,
the theoretical expectile is impacted by the distribution of €. In order to cover many different tailed
distributions, we conduct simulations using two types of noise distributions. The first one is the
standard normal distribution (N(0, 1)), which represents a light-tailed case, and the second is the
log-normal distribution (Log-N(0, 1)), known for its heavy-tailed characteristics. Recall that the
principal objective of this section is to investigate the computability of the estimator DE.(V) using
artificially generated data. It is evident that the computational feasibility of EET(V) is linked to the
selection of various parameters within the estimator. Therefore, for the nonparametric smoothing
functional framework, the determination of the smoothing parameters and the metric’s choice has a
direct effect on the estimator’s accuracy and reliability. Therefore, it is important to develop some
selector algorithms with reasonable computational costs to choose the necessary parameters. For this
aim, we use the leave-one-out cross-validation method defined by

n

1 —
opt _ f L N2+ L
b —arg;ggg:n;((Ul DE (VI = Ty, s (11

where D/\ET_Z(V,-) is the leave-one-out estimator of DE.. The selection rules are optimized over the
set H,,, which consists of positive real numbers b(k) such that the ball centered at V; with radius b(k)
contains exactly k nearest neighbors of V;, where k € {5, 15,25, ...,0.5xn}. In our experimental analysis,
we utilize the quadratic kernel function £(-), defined on the interval (0, 1), together with the metric
induced by the spline basis functions. The paramerters of DVaR, and DES, are obtained using the
same rule as the routine code funopare.quantile.lcv in the R-package npfda, developed by [27]. Finally,
the performance of the ED estimator is evaluated using a standard backtesting metric, allowing us to
assess its empirical efficiency, formulated by

n

1 T 2
ED(7) = - Z (U,- —EST, (Vi)) 17 = Ty,<esT 000D
k=1

where EST, - refers to one of the functions DVaR, , DES ., or DE,. The results are summarized in
Table 1, which presents the ED values for the two situations and three threshold, 7 = 0.1, 0.05, 0.01,
with samples of n = 50, 150, 250.

We observe that the estimator EET performs well under all three thresholds. However, its
performance is particularly strong under the log-normal distribution, which represents a heavy-tailed
case. This result is important because the effectiveness of a risk detector is mainly evaluated by its
ability to handle extreme or outlier observations. Moreover, the estimator DES - shows a similar
behavior, performing better than DVaR; in both lights and heavy-tailed distributions. It is also worth
emphasizing that, despite the complexity of the underlying model, the computation of DE, remains
relatively straightforward. Moreover, the accuracy of the estimator improves as the sample size n
increases.
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Table 1. The ED(7) for different scenarios.

Models Distribution n 7=0.1 7=0.05 =001
DE. N(,1) 50 0.62 0.54 0.43
150 0.33 0.41 0.28
250 0.25 0.18 0.13
Log — Normal(0,1) 50 0.31 0.21 0.38
150 0.16 0.12 0.11

250 0.06 0.07 0.03
DVaR, N(0O,1) 50 092 0.91 0.85
150 0.63 0.67 0.54

250 042 0.47 0.41
Log — Normal(0,1) 50 1.04 1.113 .1.08

150 0.83 0.81 0.72
250 0.51 0.55 0.63
DES. N(0,1) 50 0.75 0.67 0.66

150 0.51 0.58 0.46
250 0.29 0.31 0.26
Log — Normal(0,1) 50 0.94 1.02 .0.99
150 0.65 0.67 0.61
250 0.39 0.042 0.44

5. Financial time series data analysis

The central challenge in financial risk management is to find appropriate optimal decision rules
that effectively balance the trade-off between potential returns and losses of financial assets. Expectile
regression, defined by its asymmetric weighting of gains and losses, offers a promising strategy for
addressing this issue. Unlike traditional methods, our approach employs a non-parametric analysis of
financial time series, a technique that has gained significant traction in modern big data applications.
The main contribution of this study is its application of multifunctional expectile regression, a method
uniquely suited for modeling the dynamic based on the time-varying relationships among multiple
financial instruments. We recall that the present study differs from [19] by considering multiple
functional covariates instead of a single functional covariate as in the cited work. This extension
provides a more realistic and flexible framework for modeling complex relationships between several
sources of risk. Typically, it allows for the simultaneous assessment of risks across different assets or
market factors. Also, it permits us to explore the potential interaction that a uni-functional model fails
to handle. Such a multivariate functional approach enhances both the interpretability and the
predictive accuracy of the risk estimation process within a unified framework. To demonstrate its
real-world applicability, we focus on three dimensional cases (m = 3), where V(¢) represents the close
values for the three prominent U.S. corporations (Apple (aapl), Amazon (amzn), Microsoft (msft))
over a period from 15 January to 13 June, 2025, with a frame of 5 minutes. These time-series
observations constitute a good example to analyze volatility, trends, and the interplay between
macroeconomic factors and individual stock performance. The data used in this paper is available
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through the link https://stooq.com/db/h/. The three datasets are visually presented in Figures
3-5, illustrating the high volatility as well as the different trends of the financial time series data.

220
1

Close Value
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I

T T T
0 2000 4000 6000 8000

Time

Figure 3. The close values of Apple.
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Figure 4. The close values of Amazon.
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Figure 5. The close values of Microsoft.
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For the practical issues, investors are often interested in log-returns, which are defined as

Vi)
Ve =| V() [V = 100 (log (P(r) - log (P(t - 1)), (12)
V3()

where the index value at time ¢ is represented by P(¢). Of course, the challenge in financial analysis is
the prediction of one day before the average of the close values of the three companies. The
transformed time series V(¢) (see Figures 3—5) exhibits the principal characteristics of financial time
series data. To evaluate the performance of our approach, we compare it with traditional risk
measures, particularly the dynamic value-at-risk DVaR, obtained by the routine code
funopare.quantile.lcv. For a fair comparison, both methods are implemented under identical
conditions, including the selection of the smoothing parameter b,. Specifically, for the functional
expectile regression, we employ a quadratic kernel defined on the interval [0, 1] and adopt a
PCA-based metric (we refer to [29] for more details on the definitions of these metrics). The optimal
smoothing parameter b, is determined via a local k-nearest neighbor approach. The latter is obtained
by minimizing the leave-one out least square cross-validation error defined by

1 & " 2
OPIMSE — N — L — .
b arglrjrelhr:n E (Ul DE 5 (Vl)) .

(13)

Considering some sets of H,, as in previous section, we examine the impact of this parameter by
comparing this rule to the selector algorithm in (11). Finally, to assess the accuracy of three estimators,

we compare, in Figures 6 and 7, the estimated values (red line) against the true process for t = 0.05
and t = 0.1.

Expectile with (9) Quantile Expectile with (11)

T T T T T ! T T T T T T T T T T
0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000

Time Time Time

Figure 6. Comparison between the three models, 7 = 0.05.
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Expectile with (9) Quantile Expectile with (11)
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Time Time Time

Figure 7. Comparison between the three models, 7 = 0.15.

The figures indicate that the dynamic expectile DE, performs comparably to the DVaR, function
in fitting process volatility. Both models effectively identify fluctuations in volatility; however, the
expectile shows superior accuracy with respect to the percentage of exceedance points. The benchmark
results are presented in Table 2.

Table 2. Comparison of the exceedance percentage.

T 0.1 0.05 0.01
DE, using (11) 0.121 0.056 0.012
DE, using (13) 0.162 0.075 0.0207
DVaR, 0.171 0.081 0.0215

It is important to note that the estimation of the expectile function is highly sensitive to the choice
of smoothing parameters. The obtained result proves that the rule proposed in (11) performs more
effectively, as its exceedance percentage remains notably closer to the target threshold 7. For instance,
when 7 = 0.1, the observed exceedance percentage is 0.12 using (11), compared to 0.16 using (13).
Similarly, for 7 = 0.05, the exceedance rate under (11) is 0.056, whereas (13) yields 0.07. These results
consistently indicate the superior precision of (11) in maintaining proximity to the desired threshold.

6. Conclusions

Real-time risk management has become a must for both investors and financial organizations due
to the quick digitalization of financial transactions. This work is mainly motivated by the necessity to
forecast the instantaneous risk in rapid financial dynamics. To address this challenge, we introduce a
novel statistical algorithm that combines the expectile function with a multi-GARCH framework
using high-frequency data. Recognizing the limitations of traditional parametric methods that often
depend on restrictive linearity assumptions, we propose a more flexible nonparametric method. The
theoretical part of this contribution focuses on the Borel convergence rate of the constructed
estimator. The result is derived under standard conditions, allowing us to define the appropriate
situation to obtain a fast estimator. However, the empirical analysis demonstrates the computational
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feasibility of this approach and shows its superiority over conventional kernel-based dynamic VaR
methods. Moreover, the practical implementation of our estimation requires careful consideration of
several fundamental parameters, particularly the bandwidth b, and the metric d;. The current lack of
automatic selection methods for these parameters presents a significant limitation, reducing the
approach’s flexibility. Consequently, developing an efficient and automated parameter selection
method emerges as a crucial direction for future research. This work also opens several promising
avenues for further investigation. These include extending the methodology to more complex data
structures (such as spatial data or incomplete datasets) and developing alternative risk measures (like
expected shortfall, or local linear estimation expectile) within the multi-GARCH framework. Such
extensions would further enhance the practical applicability of real-time risk assessment in modern
financial markets.
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Appendix

Proof of Theorem 3.1

We start with

: A(m, V,b,)1
v, = € [bnmm(kl,kz) + \/ n(zn; 2om, \)],Zf)n for some constant ¢, > 0. (14)
So, our aim is to establish the probability bound, i.e.,
> P(IDE(V) = DE(V)| > v,) < Y P(sup IL(s; V) = L(s; V)| > Cu,,) < oo, (15)
n=1 n=1 s€la

where 1, = [DE(V) — a, DE(V) + a]. This inequality immediately yields our main result through the
following uniform approximation,

Sup[Z(s; V) = L(s; V)| = Oueo (). (16)

sel,
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The claimed results are based on the following decomposition,

_ — To,(5:V)  T5,(s;V
L(s:V) — L(s:V) = Try(s: V) 4+ 2220V Bl V)
" Lp(s;V)  Lp(s;V)

Stochastic terms

7)

Bias term

The constituent components are defined as

T3,(5 V) = (Ln(s; V) = L(s3 V) = L(s; V) (Lo V) = Li(s3 V)

To(s; V) o= YY)y

p(s;

T2,(5; V) := =T, (Lp(s; V) = Lp(s; V),

with

. . ~ 1 n m B | - ; B
(V) = w2 | [ iV VWi - .-

i=1 j=1

_ ' ~ 1 n [ m B .
InsV) = B ZE [ ]ew;'d, v/, viwi - 0|6,

L Jj=1

. 1 n m - '
Lp(s;V)= ———— b d AV, VU, -
p(s:V) n%(m,v,b);ﬁ (b5 d,(V/, VU, - s),

2

_ . ~ 1 n m » ‘ ;
Lo(siV) = T Zl E H b, di(V, VIYU: = 5).]6:-

where (U). = Ul y=o denotes the positive/negative part.
Finally, we establish Theorem 3.1 through a series of technical lemmas, presented below.

Lemma A.1. Considering postulates DE2, DE4, and DES, we obtain

— — A(m, V,b,)logn
su L S, V)-L S, V)| = Oa.co.
se[DET(V)—a,pDET(V)+a] p(s: V) = Lo )' ( \/ n*B2(m, V, b,)
and
— — A(m, V,b,)logn
su Ly(s; V) = Ly(s; V)| = Oy co. .
se[DET(V)—a,pDET(V)+a] w(s: V) = L )‘ \/ n*B2(m, V, b,)

Proof of Lemma A. 1

The proofs of both assertions are analogous. For brevity, we establish the second assertion and
subsequently deduce the first. The compactness of [DE.(V) —a, DE.(V) + a] permits us to write

dy
[DE.(V) — a, DE.(V) +a] C U (v = by + 1)

J=1
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withl, =n""? and d, = O(n”z). The monotony of Ly(-; V) and Ly(-; V) gives, Y1 < j < d,,

Lv((v;=1,); V)< sup  Ly(s; V) < Ly((v; + 1,); V)

SE(Vj=lp,vj+ly)

and
Ly((v; =1L V)< sup  Ly(s; V) < Ly((v; + 1,); V).

SEWVj=lp,vj+ly)

Clearly,

sup Ln(s; V) = Ly(s; V)

s€[DEL(V)—a, DE-(V)+al]

< max max
1<j<d, z€{vj—ly,vj+l,

Ly(z; V) — Ly(z; V)‘ +2Cl, almost completely.

Observe that, under DE4, we have

A(m, V,b,)logn
n?B2(m,V,b,)

The remaining step in proving this lemma requires showing that

A(m, V, b,) log n
n?B2(m,V, b,)

max max
1<j<dy z€{vj=lp,vj+1}

Lv(@ V) = Ln(@ V)| = Oueo { \/

To accomplish this, it is sufficient to consider the fact that

Ye >0 ]P(mgx

€6,

Lu@ V) = Ly(@ V)| > s) < Y P(Iv@ V) - Tu@ V| > o).
2€Gn

where G, = {vj —l,vi+1l,,1<j< dn}. Since the response variable U may be unbounded, we
employ a truncation method to facilitate the analysis. Specifically, we define modified versions of the
estimators:

— 1 u
L* : = Q ._*
N(Z’ V) n%(m, V, b) ;:1 lUl s

Lyz V) = m Z E[LU;76],
where
U™ = Ui Liyjey,)»
with y, = n%4 and &; = ;":1 B(bgld j(Vj , Vl.j )). This assertion can be verified through the following

three propositions:

A(m,V,b,)logn

1
n?B2(m,V,b,) | (18)

dn m%X z;\l(za V) - ZN(Z; V)‘ = Oa.co. [ \/
€Ly
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- . T . _ Q[(m’ Va bn) log n
and
~ — 3 A(m,V,b,)logn

Let us consider statement (18). We have, for all 7 € G,, that
— — 1 - _
‘LN(Z, V) - Ly(z; V)‘ $CEmv ; E [|U7| g oy @ 116 ].
Apply Holder inequality, for a; = £ with 3, to obtain

@ + ,8_1 = 1.
Use DE2 and DES to show that, for all z € .£,,,
]E[|Ui_| Lo iy, 2 | |®i—1] <E"" [|Uf”| L=y, | |(5i_1]]E1/ﬁ1 [Qlﬁl | |(5l__1]
<y B [0 116 [ BV [ 116
<y, BV UGB [ 116,
< Cy,'8"(m,V,b,).

We obtain

. _ 1 -
d, Loz V)—Ly(zV)| <cn'*9i——— N BP0V, b,).
maz Ly V) = L V)| < Cn n%(m,V,b); o

Using the fact that 6 > ¢g/2, we get statement (18). Next, Markov’s inequality is used to prove (19),
where, Yz € £,,, Ve > 0,

IA

P([Tv@ V) - i V| > ¢

Zn:IP(|U;| > n''7)
i=1

nlP (|U;| > n’l4)
n'E[U1].

IA

IA

Thus, for 6 > 3, there exist & > 0 such that

d, max IP

vz Vi - Tz V)| > &
zeLy,

A(m, V,b,)logn
n?B2(m,V, b,)

] <n*0 < Cn',

We now prove (20). To this end, we define, forall z € G,,

Fi(z;V) = (Q,Ul_* -E [QZU:*|®,_1]) .
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The remainder of the proof utilizes exponential tail bounds for martingale difference sequences,

Cyn
nB(m,V,b)

So, all that remains is to evaluate, asymptotically, the conditional variance of I';(z; V), i.e.,

ITi(z; V)| <

E||e.0] 16|

2 2
E[E|[e] |v:] V|15

2
E[E[jv;] V] < 116,
CE €] 16:4].

Obviously,
E||eU ] 16| < CBim, V. ).

Hence, we obtain
D E[@ V)] = 0@m. V. b,). 1)
i=1

Therefore, we get, for all n > 0 and for all z € G, that

— — A(m,V,b,)logn
‘LN(Z; V) - LN(Z;V)‘ > 77\/ n(z%z(m ‘), bg)

P

< 2expl-n’ A(m, V, b,)logn
< 2((U0m, V. b,)) + C (A, V. b,) logn))

1 logn

2((1 +Cn(\/%)))

<2expl -

Then, as d, < C l,;l, we have

>Pp

Z€EGn

— — WA(m,V,b,)logn
vz V) - Tz v)| > n\/ n(z%z(m . b

— — A(m, V,b,)logn

< C,n—cn2+1/2

< 2d, max IP
2€Gn

Similarly,

— — A(m,V,b,)logn
[0 V) = To(@ V)| > n\/ prad s

>p

Zegn
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W(m, V,b,)logn

< 2dn max IP n2%2(m, V, bn)

2€Gn

'ZD(Z; V) - Lp(z; V)‘ > 77\/

< C/n—Cn2+1/2

Thus, selecting an appropriate value of 7 completes the proof and deduces that

WA(m, V, b,) log n
n?B2(m,V, b,)

sup
se€[DE-(V)—a, DE(V)+d]

Lo(s; V) = Ln(5; V)| = Oucs (\/

and

sup
SE[DE.(V)—a, DE(V)+a]

A(m, V,b,)logn
n?B2(m,V,b,)

Lu(s; V) = In(5; V)| = Ou

Lemma A.2. Using postulates of Lemma A.1, we get

A1C>0 Z]P( sup
n=1

S€[DE(V)—a, DE-(V)+al]

ZD(s;V)‘ < c) < oo,

Proof of Lemma A.2
By the previous lemma, it follows that for every s in [DE.(V) — a, DE.(V) + a] there exists a
constant Cy > 0 such that

sup [Lo(s; V) = Cy| = 04.0.(1). (22)
S€[DE(V)—a, DE(V)+d]
This reveals that c
inf Lp(s; V) < =2
SE[DE-(V)—a, DE(V)+d] 2

_ C,
= sy € [DE(V) —a, DE.(V)+a], suchthat C,, — Lp(so;V)> —

2

_ C,,

= sup |ICs — Lp(s; V)| > —.

SELDE.(V)—a, DE;(V)+al 2

We deduce that
- C, - C,

inf Lp(s; V)< —=|<P su C,—-Lp(s; V)| > —=].
(SE[DETWH’DET(V)”J pV) =5 ) (se[DET(V>—a,pDET<V>+aJ| PVl 5 )

Consequently,

(o9

) - Cy,
Z inf Lp(s;V) < — | < 0.
se[DE(V)—a, DE(V)+a] 2

i=1

Lemma A.3. Considering postulates DE2-DEG6, we obtain

. _ in(ky ,k:
sup 183 V)| = O, (B"452)
S€E[DE-(V)—a, DE-(V)+al]
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Proof of Lemma A.3
Using

_ 1 1
Ti(s;V) <= Z IE [&IL(£; V) — Lo(t; V)L(s; VI G-11,
Lp(s; V)nB(m,V,b,) ‘=

it is clear that
IL1(s3 Vi) = La(s; Vi) L(s; VI < |Li (53 Vi) = Li(s; V) + [L(s; V)IL2 (23 Vi) = Lo(s; V).
By DE3, we obtain, for all s € [DE(V) —a, DE.(V) + a], that
L0eb, ) (XOIL1 (55 V3) = Li(s; V)| < CHY

and
W3 (XDILa(t; Vi) — Ly(s; V)| < CH2.

By integrating these bounds with the result from Lemma A.2, we obtain

sup (53 V)| = Oueo (b ).

s€[DE-(V)—a, DE.(V)+a] "

Proof of Theorem 3.2

For the sake of shortness, the proof of this result is given briefly because it is based on standard
arguments. Let us now introduce

_ ( n*B%(m,V, b,)

Arm, V. b,,)o-g(v)) (DEL(V) - DE.(V)).

For z € R, we set
5:(2) = DE(V) + z(ng(h)) 2 0.
We have the following decomposition.
P(Z,<2) = P(DE(V)<6:)=P({DE«V) < 6:2)f N {Lo(:(2): V) = 0})
+ P ({DE(V) < 6:(2)) 0 {Lo(5,(2): V) # 0}) (23)

Therefore, our main result is a consequence of

2972 > — 7
( B (m, V. bn) ) (e (DEV) ™ (T80 V) = L6 V)

A(m, V, b,)o(V)
_ 1; (Lp(6:(2): V) = Lp(6:(2); V))) 2 N, 1) o
- T
and |
n*B%(m,V,b,) \? _ . o |
(%(m,v,bmzm) (A (Ene3 V) = = Lp(@,(@5 V)
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~E[Lv0:@: V)] - ——E[Lo6:2: V)] = (A DE(V)z+ oD (25)

The proof of (25) is similar to the evaluation of T’Tn(s; V) in Lemma A.3. For (24) we put, for i =

1,...n,
1

= mﬂi U; - 51(1))(

with 7; = {U; > 6-(z)} and I} = {U; < 6,(2)}. Define £, := 1,; —E[n,; | Fi-1]. Under this consideration
we have

T

Mni 17+ ]115’) (26)

1-71

( n*B*(m,V, b,)

% e
ﬂ(m,v,bn>az<w) (Ac (DEV)™ ((Ly(6:(2); V) = Lu(6:(2); V)

T = — 1 <
——(Lp(0:(2); V) — Lp(6.(2); V ):— i
= (L0062 V) = Lo(6:(2: V) \/ﬁ;g
As (,; forms a triangular array of martingale differences with respect to the o-fields (&;_;);, we are
now able to apply the central limit theorem under the unconditional Lindeberg condition (see [30]).

More precisely, we need to verify the following condition:

1 n
= > EIZ | Fil - 1 in probability
n

i=1
and

1 n
forevery €>0 - Z ]E[{,filllzxn] - 0. 27
n i:1 Jnt

The first one is obtained by standard analytical arguments in functional statistics. While for (27), we
use the fact that e
2 |{ni| ¢

]I 2 >en <
i = ey

forevery ¢>0

to prove that

1 n
- E[1 0.
n Z [gnz §3l.>en] -

i=1
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