This research focuses on solving Kirchhoff-type fractional $ p $-Laplacian BVPs with hybrid impulsive effects (instantaneous and non-instantaneous types). Through the use of variational methods, the existence of solutions and multiple solutions for the aforementioned problem are established under assumptions weaker than the super-$ p $-linear Ambrosetti-Rabinowitz type growth condition. Finally, an example demonstrates the validity of the paper's main results.
Citation: Tingting Xue. Variational analysis of Kirchhoff-type fractional $ p $-Laplacian BVPs under simultaneous instantaneous and non-instantaneous impulses[J]. AIMS Mathematics, 2025, 10(11): 26293-26312. doi: 10.3934/math.20251156
This research focuses on solving Kirchhoff-type fractional $ p $-Laplacian BVPs with hybrid impulsive effects (instantaneous and non-instantaneous types). Through the use of variational methods, the existence of solutions and multiple solutions for the aforementioned problem are established under assumptions weaker than the super-$ p $-linear Ambrosetti-Rabinowitz type growth condition. Finally, an example demonstrates the validity of the paper's main results.
| [1] |
E. Hernández, D. O'Regan, On a new class of abstract impulsive differential equations, Proc. Amer. Math. Soc., 141 (2013), 1641–1649. https://doi.org/10.1090/S0002-9939-2012-11613-2 doi: 10.1090/S0002-9939-2012-11613-2
|
| [2] |
L. Bai, J. J. Nieto, Variational approach to differential equations with not instantaneous impulses, Appl. Math. Lett., 73 (2017), 44–48. https://doi.org/10.1016/j.aml.2017.02.019 doi: 10.1016/j.aml.2017.02.019
|
| [3] |
L. Bai, J. J. Nieto, X. Y. Wang, Variational approach to non-instantaneous impulsive nonlinear differential equations, J. Nonlinear Sci. Appl., 10 (2017), 2440–2448. https://doi.org/10.22436/jnsa.010.05.14 doi: 10.22436/jnsa.010.05.14
|
| [4] |
Y. L. Zhao, C. L. Luo, H. B. Chen, Existence results for non-instantaneous impulsive nonlinear fractional differential equation via variational methods, Bull. Malays. Math. Sci. Soc., 43 (2020), 2151–2169. https://doi.org/10.1007/s40840-019-00797-7 doi: 10.1007/s40840-019-00797-7
|
| [5] |
Y. Tian, M. Zhang, Variational method to differential equations with instantaneous and non-instantaneous impulses, Appl. Math. Lett., 94 (2019), 160–165. https://doi.org/10.1016/j.aml.2019.02.034 doi: 10.1016/j.aml.2019.02.034
|
| [6] |
L. M. Guo, Y. Wang, C. Li, J. W. Cai, B. Zhang, Solvability for a higher-order Hadamard fractional differential model with a sign-changing nonlinearity dependent on the parameter $\varrho$, J. Appl. Anal. Comput., 14 (2024), 2762–2776. https://doi.org/10.11948/20230389 doi: 10.11948/20230389
|
| [7] |
L. M. Guo, Y. Wang, H. M. Liu, C. Li, J. B. Zhao, H. L. Chu, On iterative positive solutions for a class of singular infinite-point $p$-Laplacian fractional differential equation with singular source terms, J. Appl. Anal. Comput., 13 (2023), 2827–2842. https://doi.org/10.11948/20230008 doi: 10.11948/20230008
|
| [8] |
J. R. Wang, M. Feckan, Y. Tian, Stability analysis for a general class of non-instantaneous impulsive differential equations, Mediterr. J. Math., 14 (2017), 46. https://doi.org/10.1007/s00009-017-0867-0 doi: 10.1007/s00009-017-0867-0
|
| [9] |
A. Khaliq, M. ur Rehman, On variational methods to non-instantaneous impulsive fractional differential equation, Appl. Math. Lett., 83 (2018), 95–102. https://doi.org/10.1016/j.aml.2018.03.014 doi: 10.1016/j.aml.2018.03.014
|
| [10] |
W. Zhang, W. B. Liu, Variational approach to fractional Dirichlet problem with instantaneous and non-instantaneous impulses, Appl. Math. Lett., 99 (2020), 105993. https://doi.org/10.1016/j.aml.2019.07.024 doi: 10.1016/j.aml.2019.07.024
|
| [11] |
J. Zhou, Y. Deng, Y. Wang, Variational approach to p-Laplacian fractional differential equations with instantaneous and non-instantaneous impulses, Appl. Math. Lett., 104 (2020), 106251. https://doi.org/10.1016/j.aml.2020.106251 doi: 10.1016/j.aml.2020.106251
|
| [12] |
Y. Qiao, F. Q. Chen, Y. K. An, Variational methods for a fractional advection-dispersion equation with instantaneous and non-instantaneous impulses and nonlinear Sturm-Liouville conditions, J. Appl. Anal. Comput., 14 (2024), 1698–1716. https://doi.org/10.11948/20230340 doi: 10.11948/20230340
|
| [13] |
W. Zhang, J. B. Ni, Study on a new $p$-Laplacian fractional differential model generated by instantaneous and non-instantaneous impulsive effects, Chaos Soliton. Fract., 168 (2023), 113143. https://doi.org/10.1016/j.chaos.2023.113143 doi: 10.1016/j.chaos.2023.113143
|
| [14] |
Z. L. Li, G. P. Chen, W. W. Long, X. Y. Pan, Variational approach to $p$-Laplacian fractional differential equations with instantaneous and non-instantaneous impulses, AIMS Mathematics, 7 (2022), 16986–17000. https://doi.org/10.3934/math.2022933 doi: 10.3934/math.2022933
|
| [15] | G. Kirchhoff, Mechanik, Leipzig: Teubner, 1883. |
| [16] |
K. Perera, Z. T. Zhang, Nontrivial solutions of Kirchhoff-type problems via the Yang index, J. Differential Equations, 221 (2006), 246–255. https://doi.org/10.1016/j.jde.2005.03.006 doi: 10.1016/j.jde.2005.03.006
|
| [17] |
A. M. Mao, Z. T. Zhang, Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition, Nonlinear Anal., 70 (2009), 1275–1287. https://doi.org/10.1016/j.na.2008.02.011 doi: 10.1016/j.na.2008.02.011
|
| [18] |
S. Wei, Sign-changing solutions for a class of Kirchhoff-type problem in bounded domains, J. Differential Equations, 259 (2015), 1256–1274. https://doi.org/10.1016/j.jde.2015.02.040 doi: 10.1016/j.jde.2015.02.040
|
| [19] |
F. Li, J. Shi, Zh. Liang, Positive solutions to Kirchhoff type equations with nonlinearity having prescribed asymptotic behavior, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 155–167. https://doi.org/10.1016/j.anihpc.2013.01.006 doi: 10.1016/j.anihpc.2013.01.006
|
| [20] |
A. Fiscella, E. Valdinoci, A critical Kirchhoff type problem involving a nonlocal operator, Nonlinear Anal., 94 (2014), 156–170. https://doi.org/10.1016/j.na.2013.08.011 doi: 10.1016/j.na.2013.08.011
|
| [21] |
Y. Wang, L. X. Tian, Existence and multiplicity of solutions for $(p, q)$-Laplacian Kirchhoff-type fractional differential equations with impulses, Math. Meth. Appl. Sci., 46 (2023), 14177–14199. https://doi.org/10.1002/mma.9312 doi: 10.1002/mma.9312
|
| [22] |
W. J. Yao, H. P. Zhang, Multiple solutions for $p$-Laplacian Kirchhoff-type fractional differential equations with instantaneous and non-instantaneous impulses, J. Appl. Anal. Comput., 15 (2025), 422–441. https://doi.org/10.11948/20240118 doi: 10.11948/20240118
|
| [23] |
F. Jiao, Y. Zhou, Existence results for fractional boundary value problem via critical point theory, Int. J. Bifurcation Chaos, 22 (2012), 1250086. https://doi.org/10.1142/S0218127412500861 doi: 10.1142/S0218127412500861
|
| [24] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, New York: Elsevier, 2006. |
| [25] | E. Zeidler, Nonlinear functional analysis and its applications, Springer, 1986. |
| [26] | P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, American Mathematical Society, 1986. |
| [27] | J. Simon, Régularité de la solution d'une équation non linéaire dans $\mathbb{R}^{N}$, In: Journées d'Analyse Non Linéaire, Springer, 665 (1978), 205–227. https://doi.org/10.1007/BFb0061807 |