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1. Introduction

Impulse DEs (differential equations), as a crucial mathematical tool for describing abrupt changes
in dynamical systems, demonstrate unique modeling advantages in fields such as biomedical
applications (e.g., intermittent drug administration therapies), engineering control (e.g., sudden
signal regulation), and ecological management (e.g., disaster interventions). Departing from
conventional instantaneous impulse frameworks, Hernádez and O’Regan [1] introduced a non-
instantaneous impulse theory in 2013, eliminating the idealized momentary action hypothesis.
This advancement enables precise characterization of prolonged impulse dynamics, exemplified by
sustained pharmacological concentration profiles and extended ecological management interventions.
Recent breakthroughs [2–4] in variational methods and critical point theory have established a novel
framework for studying the dynamics of non-instantaneous impulsive systems. As a representative
study, Tian and Zhang [5] established existence criteria for second-order Dirichlet BVPs (boundary
value problems) with mixed impulses through an innovative application of the Ekeland variational
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principle: 

−x′′ (t) = fi (t, x (t)) , t ∈ (si, ti+1] , i = 0,m,
∆x′ (ti) = Ii (x (ti)) , i = 1,m,
x′ (t) = x′

(
t+
i

)
, t ∈ (ti, si] , i = 1,m,

x′
(
s+

i

)
= x′

(
s−i

)
, i = 1,m,

x (0) = x (T ) = 0.

The mixed impulsive problem studied here has a structure that alternates between continuous and
impulsive intervals, as shown in Figure 1. The system evolves in two types of intervals: Continuous
intervals ([si−1, ti] and [si, ti+1]), where it follows a differential equation, and mixed impulse intervals
((ti, si]). At each instantaneous impulse point ti, the derivative jumps according to ∆x′(ti) = Ii(x(ti)),
while the state x(t) stays continuous. During the following mixed impulse interval (ti, si], the derivative
remains constant at x′(t) = x′(t+

i ). Finally, at the non-instantaneous impulse point si, the derivative
becomes continuous again with x′(s+

i ) = x′(s−i ), and the system continues its continuous evolution.
This repeating pattern is key to the analysis.

Time t
si−1 ti si ti+1

Continuous
Mixed Impulse

Continuous

Figure 1. Schematic of mixed impulse intervals.

The demonstrated efficacy of fractional calculus in capturing non-local properties, memory effects,
and complex dynamics has established FIDEs (fractional-order impulsive differential equations) as
a fundamental framework for addressing interdisciplinary challenges characterized by discontinuous
transitions and cumulative history dependence. Significant applications [6–9] have been developed
in neural dynamics, intelligent control systems, and epidemiological modeling. As a pioneering
contribution, Zhang and Liu’s 2020 work [10] initially formulated the FBVPs (fractional-order
boundary value problems) with mixed impulses:

tD
γ
T (C

0 Dγ
t x(t)) = fi (t, x (t)) , t ∈ (si, ti+1] , i = 0,m, γ ∈ (1/2, 1],

∆
(

tD
γ−1
T

(
C
0 Dγ

t x
))

(ti) = Ii (x (ti)) , i = 1,m,

tD
γ−1
T

(
C
0 Dγ

t x (t)
)
= tD

γ−1
T

(
C
0 Dγ

t x
(
t+
i

))
, t ∈ (ti, si] , i = 1,m,

tD
γ−1
T

(
C
0 Dγ

t x
(
s−i

))
= tD

γ−1
T

(
C
0 Dγ

t x
(
s+

i

))
, i = 1,m,

x(0) = x(T ) = 0.

In subsequent work, Zhou et al. [11] established an extension incorporating the p-Laplacian operator:

tD
γ
T

(
φp(C

0 Dγ
t x(t))

)
+q (t) φp (x(t)) = fi (t, x (t)) , t ∈ (si, ti+1] , i = 0,m,

∆
(

tD
γ−1
T φp

(
C
0 Dγ

t x (ti)
))

= Ii (x (ti)) , i = 1,m,

tD
γ−1
T φp

(
C
0 Dγ

t x (t)
)
= tD

γ−1
T φp

(
C
0 Dγ

t x
(
t+
i

))
, t ∈ (ti, si] , i = 1,m,

tD
γ−1
T φp

(
C
0 Dγ

t x
(
s−i

))
= tD

γ−1
T φp

(
C
0 Dγ

t x
(
s+

i

))
, i = 1,m,

x(0) = x(T ) = 0,
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here γ lies in the interval ( 1
p , 1], φp (x) = |x|p−2x, p > 1. As demonstrated through the least

action principle, the system admitted the solution’s existence. Extending the methodology, Li
and collaborators [12] employed Ricceri’s three-critical-point theorem to derive multiple solution
existences for the problem. Subsequent studies [13,14] have significantly expanded this research
direction.

Conversely, the Kirchhoff-type equation serves as a generalization of the classical D’Alembert wave
equation. It was originally derived by Kirchhoff [15] in 1883 during his investigation into the free
vibrations of elastic strings. An essential characteristic of Kirchhoff-type models is the incorporation
of a nonlocal term

∫ L

0

∣∣∣∂x
∂t

∣∣∣2dt, which fundamentally alters the nature of the problem from pointwise-
defined to be nonlocal in scope. In later literature, mathematical problems incorporating nonlocal terms
of this form has become conventionally termed Kirchhoff problems. With broad applications spanning
diverse disciplines, the Kirchhoff equation is utilized in non-Newtonian mechanics, astrophysics,
elastic electrodynamics, and population dynamics. The past few years have seen remarkable
developments in Kirchhoff equation research [16–18]. For illustration, we cite Liang’s 2014 work [19]
that employed variational principles to determine positive solution existence for Kirchhoff-type
equations of the form: −

(
a+b

∫
Ω
|∇x|2

)
∆x = f (t, x) , in Ω,

x = 0, on ∂Ω.

Later work by Fiscella and Valdinoci [20] incorporated the nonlocal characteristics of tension,
originating from the nonlocal metric of the string’s fractional-dimensional length. Fiscella and
Valdinoci generalized the conventional Kirchhoff equation to its fractional counterpart, establishing
existence results for non-negative solutions to certain Kirchhoff-type problems containing nonlocal
operators. Nevertheless, studies concerning Kirchhoff-type FIDEs have shown notable deficiencies in
the last ten years. The theoretical framework remains incomplete when nonlocal effects are coupled
with fractional-order operators and impulsive disturbances. The constructive theory demands thorough
investigation, especially regarding Kirchhoff-type FBVPs incorporating p-Laplacian operators coupled
with mixed impulses. Against this background, the application of variational approaches emerges as a
pivotal turning point. As a representative example, Wang and Tian’s 2023 work [21] solved Kirchhoff-
type FBVPs with (p, q)-Laplacian and instantaneous impulses using critical point theory:

Mγ

(
‖x‖p

γ

)
tD

γ
T

(
µ (t) φp

(
C
0 Dγ

t x (t)
))

+ ν (t) φp (x (t))
= Fx (t, x (t) , y (t)) + λGx (t, x (t) , y (t)) , t , t j, a.e. t ∈ [0,T ] ,
Mβ

(
‖y‖qβ

)
tD

β
T

(
ξ (t) φq

(
C
0 Dβ

t y (t)
))

+ η (t) φq (y (t))
= Fy (t, x (t) , y (t)) + λGy (t, x (t) , y (t)) , t , t′i, a.e. t ∈ [0,T ] ,

∆

(
Mγ

(∥∥∥∥x
(
t j

)∥∥∥∥p

γ

))
tD

γ−1
T

(
µ
(
t j

)
φp

(
C
0 Dγ

t x
(
t j

)))
= H j

(
x
(
t j

))
, j = 1,m,

∆
(
Mβ

(
‖y (ti)‖

q
β

))
tD

β−1
T

(
ξ (t′i) φq

(
C
0 Dβ

t y (t′i)
))

= Ji (y (t′i)) , i = 1, n,
x(0) = x(T ) = y(0) = y(T ) = 0,

here the exponents γ and β range in
(

1
p , 1

]
and

(
1
q , 1

]
. Nevertheless, existing research has been limited

to cases with purely instantaneous impulses. For theoretical completeness, Yao and Zhang’s 2025
work [22] shifted focus to more complex mixed impulsive systems. Through variational techniques,
they examined multiple solutions for fractional p-Kirchhoff BVPs with mixed-type impulses, requiring
the nonlinear term to fulfill an Ambrosetti-Rabinowitz condition beyond p-th order growth.
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In summary, although the existing literature provides an important theoretical foundation for
Kirchhoff-type fractional p-Laplacian problems with mixed impulses, their key conclusions heavily
rely on the classical Ambrosetti-Rabinowitz-type super-p-linear growth condition. This restrictive
condition considerably limits the choice of nonlinear terms, thereby constraining the model’s
applicability in describing more complex nonlinear phenomena. In contrast, the core innovation
and significant advantage of our study lie in systematically breaking through the limitations of
this traditional framework. Specifically, first, we propose a class of growth assumptions that are
considerably weaker than the classical Ambrosetti-Rabinowitz condition. This enables our theoretical
framework to accommodate a broader range of more complex nonlinear functions, significantly
expanding the potential physical applications of the model. Second, compared to the results obtained
in [22] under specific strong growth conditions, our work not only proves the existence and multiplicity
of weak solutions under weaker assumptions but also establishes a more universal existence theory
by incorporating nonlinear terms that combine concave-convex features and weakened superlinear
conditions. Finally, the variational framework and technical approaches developed in this study
open new avenues for analyzing impulsive problems that do not satisfy the traditional Ambrosetti-
Rabinowitz condition, thereby enriching the research toolkit in this field. Therefore, this work is not
merely a simple extension of existing research but represents a substantial breakthrough in fundamental
theoretical limitations, establishing a more general and comprehensive theoretical framework for the
study of such problems.

To achieve a breakthrough in fundamental theoretical limitations, this paper aims to establish
a more general theoretical framework, with the core objective of systematically weakening the
traditional growth restrictions on nonlinear terms. Specifically, we will investigate a class of Kirchhoff-
type fractional p-Laplacian boundary value problems that incorporate both instantaneous and non-
instantaneous impulses:

M (‖u‖p) tDα
T

(
h (t) φp

(
C
0 Dα

t u (t)
))

+ a (t) φp (u (t)) = λ fi (t, u (t)) , t ∈ (si, ti+1], i = 0, n,

∆ (M (‖u (ti)‖p)) tDα−1
T

(
h (ti) φp

(
C
0 Dα

t u (ti)
))

= µIi (u (ti)) , i = 1, n,

M (‖u‖p) tDα−1
T

(
h (t) φp

(
C
0 Dα

t u (t)
))

= M
(∥∥∥u

(
t+
i
)∥∥∥p)

tDα−1
T

(
h
(
t+
i
)
φp

(
C
0 Dα

t u
(
t+
i
)))
, t ∈ (ti, si], i = 1, n,

M
(∥∥∥u

(
s−i

)∥∥∥p)
tDα−1

T

(
h
(
s−i

)
φp

(
C
0 Dα

t u
(
s−i

)))
= M

(∥∥∥u
(
s+

i
)∥∥∥p)

tDα−1
T

(
h
(
s+

i
)
φp

(
C
0 Dα

t u
(
s+

i
)))
, i = 1, n,

u (0) = u (T ) = 0,

(1.1)

where the exponent p ranges in (1,+∞) while α takes values in ( 1
p , 1]. φp (u) = |u|p−2u (u , 0), φp (0) =

0, λ, µ > 0. The operators C
0 Dα

t (left Caputo type) and tDα
T (right Riemann-Liouville type) constitute

the α-th order fractional differential operators in their respective formulations. The function h belongs
to L∞([0,T ],R+), and its essential infimum h0 = ess inft∈[0,T ] h(t) is strictly positive. The function
a belongs to C ([0,T ] ,R+) with the existence of positive constants a0 and a0 satisfying the uniform
bounds 0 < a0 ≤ a(t) ≤ a0 throughout the interval. Each Ii belongs to C1 (R,R), with at least one index
i ∈ {1, 2, · · · , n} satisfying Ii (u (ti)) , 0. fi ∈ C1 ((si, ti+1] × R,R), 0 = s0 < t1 < s1 < t2 < · · · < sn <

tn+1 = T. M ∈ C([0,+∞),R) admits strictly positive lower and upper bounds M0 = inf s≥0 M(s) and
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M0 = sups≥0 M(s) fulfilling M0 ≤ M(s) ≤ M0 globally. Specifically, M (x) = (a + bxp)p−1, where the
coefficients a, b are positive real numbers. The precise definition of the norm ‖u‖ appears in subsequent
Eq (2.1). Instantaneous impulses produce discontinuous state jumps at discrete points ti, whereas non-
instantaneous impulses induce persistent state variations over finite intervals (ti, si]. Beyond this,

∆ (M (‖u (ti)‖p)) tDα−1
T

(
h (ti) φp

(
C
0 Dα

t u (ti)
))

=M
(∥∥∥u

(
t+
i
)∥∥∥p)

tDα−1
T

(
h
(
t+
i
)
φp

(
C
0 Dα

t u
(
t+
i
)))
− M

(∥∥∥u
(
t−i
)∥∥∥p)

tDα−1
T

(
h
(
t−i
)
φp

(
C
0 Dα

t u
(
t−i
)))
,

M
(∥∥∥u

(
t±i
)∥∥∥p)

tDα−1
T

(
h
(
t±i
)
φp

(
C
0 Dα

t u
(
t±i
)))

= lim
t→t±i

M (‖u‖p) tDα−1
T

(
h (t) φp

(
C
0 Dα

t u (t)
))
,

M
(∥∥∥u

(
s±i

)∥∥∥p)
tDα−1

T

(
h
(
s±i

)
φp

(
C
0 Dα

t u
(
s±i

)))
= lim

t→s±i
M (‖u‖p) tDα−1

T

(
h (t) φp

(
C
0 Dα

t u (t)
))
.

Based on variational methods and critical point theory, this paper investigates the existence and
multiplicity of weak solutions to the boundary value problem (1.1). By constructing a variational
framework, we first prove the existence of solutions to problem (1.1) under weakened super-p-linear
growth conditions using the mountain pass theorem. Subsequently, by decomposing the nonlinear
term into components satisfying super-p-linear and sub-p-linear growth conditions, we establish the
multiplicity of solutions to problem (1.1) via genus theory.

The innovations and advantages of this study are mainly reflected in the following aspects: First,
we propose a class of growth assumptions that are significantly weaker than the classical super-p-
linear Ambrosetti-Rabinowitz condition; second, by introducing nonlinear terms that incorporate both
concave-convex components and weakened super-p growth conditions, we establish a more universal
theory of solution multiplicity. Compared with the classical Ambrosetti-Rabinowitz case treated in
reference [22], this work not only substantially relaxes the growth restrictions on nonlinear terms and
develops a more general theory for solution existence and multiplicity but also opens new avenues for
analyzing impulsive problems that do not satisfy the traditional Ambrosetti-Rabinowitz condition.

The organizational framework of this manuscript is presented below: The second section assembles
the requisite definitions and technical lemmas that underpin our later theoretical arguments. The
variational approach developed in Section 3 yields existence and multiplicity results for solutions to
FBVPs (1.1). The paper concludes with Section 4, which offers a comprehensive summary and a
perspective on future research trajectories.

2. Preliminaries

Definition 2.1. ([23]) The left Caputo derivative C
0 Dα

t u(t) and the right Riemann-Liouville derivative
tDα

T u(t) of order α > 0 (n = dαe) for the function u(t) are defined respectively as

C
0 Dα

t u(t) =
1

Γ(n − α)

∫ t

0
(t − s)n−α−1u(n)(s)ds,

tDα
T u(t) =

(−1)n

Γ(n − α)
dn

dtn

∫ T

t
(s − t)n−α−1u(s)ds.

Definition 2.2. ([23]) Let α ∈ (0, 1], p ∈ (1,+∞). We define the fractional-order function space

Eα,p
0 =

{
u : [0,T ]→ R| u, C

0 Dα
t u (t) ∈ Lp ((0,T ) ,R) , u (0) = u (T ) = 0

}
,

AIMS Mathematics Volume 10, Issue 11, 26293–26312.
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where the associated norm is given by

‖u‖Eα,p =
(
‖u‖p

Lp +
∥∥∥C

0 Dα
t u

∥∥∥p

Lp

) 1
p
,

where ‖u‖Lp =

(∫ T

0
|u (t)|pdt

) 1
p

is the norm of Lp
(
(0,T ) ,RN

)
. Additionally, we define Eα,p

0 to be the

completion of C∞0
(
(0,T ) ,RN

)
with respect to ‖·‖Eα,p . Since h(t) ∈ L∞([0,T ],R+), h0 = essinft∈[0,T ]h(t) >

0, a (t) ∈ C ([0,T ] ,R+), and 0 < a1 ≤ a(t) ≤ a2, so ‖u‖Eα,p is equivalent to

‖u‖α,p =

(∫ T

0
h(t)

∣∣∣C0 Dα
t u (t)

∣∣∣pdt +

∫ T

0
a (t) |u (t)|pdt

) 1
p

.

Lemma 2.1. ([23]) Let α ∈ (0, 1], p ∈ (1,+∞). Then Eα,p
0 enjoys both reflexivity and separability as a

Banach space.

Lemma 2.2. ([24]) Let q1, q2 ≥ 1, β > 0, and either 1
q1

+ 1
q2
≤ 1 + β or 1

q1
+ 1

q2
= 1 + β, q1 , 1, q2 , 1.

Then for any x ∈ Lq1
(
[0,T ] ,RN

)
, y ∈ Lq2

(
[0,T ] ,RN

)
, the following equality holds:∫ T

0

[
0D−βt x (t)

]
y (t) dt =

∫ T

0

[
tD
−β
T y (t)

]
x (t) dt.

Lemma 2.3. ([23]) Let α ∈ (0, 1], 1 < p < ∞. Then

‖u‖Lp ≤
Tα

Γ (α + 1)

∥∥∥C
0 Dα

t u
∥∥∥

Lp , ∀u ∈ Eα,p
0 .

If α > 1
p ,

1
p + 1

q = 1, then

‖u‖∞ ≤
Tα− 1

p

Γ (α) (αq − q + 1)
1
q

∥∥∥C
0 Dα

t u
∥∥∥

Lp ,

where ‖u‖∞ = max
t∈[0,T ]

|u (t)| is the norm of C([0,T ],R).

Lemma 2.4. ([23]) Let 1
p < α ≤ 1, 1 < p < ∞. If uk ⇀ u in Eα,p

0 , then uk → u in C([0,T ],RN) with
‖uk − u‖∞ → 0 as k → ∞.

In the space Eα,p
0 , define a new norm

‖u‖ =

∫ T

0
h (t)

∣∣∣C0 Dα
t u (t)

∣∣∣pdt +

n∑
i=0

∫ ti+1

si

a (t) |u (t)|pdt


1
p

. (2.1)

Lemma 2.5. ([22]) The two norms ‖u‖α,p and ‖u‖ are equivalent for ∀u ∈ Eα,p
0 , in the sense that there

are %1 and %2 > 0 for which
%1‖u‖α,p ≤ ‖u‖ ≤ %2‖u‖α,p.

Lemma 2.6. ([22]) Assuming α ∈ ( 1
p ,+∞), 1

p + 1
q = 1, and 1 < p < ∞, the infinity norm of u satisfies

the estimate ‖u‖∞ ≤ K ‖u‖ , in which the constant K is defined as

K :=
Tα− 1

p h
− 1

p

0

Γ (α) ((α − 1) q + 1)
1
q

.
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Lemma 2.7. ([25]) Suppose E is a reflexive Banach space over the real field. Additionally, let Θ be
bounded and weakly order-closed, with ϕ being order-weakly lower semicontinuous over Θ. Then, for
the function ϕ : Θ ⊆ E → [−∞,+∞], and under the condition that Θ , φ, the minimization problem
min u∈Θϕ (u) = ε admits a solution.

Definition 2.3. ([26]) (Palais-Smale condition). Let E be a real Banach space and ϕ ∈ C1(E,R). The
functional ϕ is said to satisfy the Palais-Smale condition (PS-condition), if any sequence {un} ⊂ E
such that {ϕ(un)} is bounded and ϕ′(un) → 0 in the dual space E∗ as n → ∞, admits a convergent
subsequence in E.

Lemma 2.8. ([26]) Assume ϕ ∈ C1 (E,R) fulfills the PS-condition with ϕ(0) = 0. Suppose additionally
that ϕ verifies the following two conditions:

(i) We can find ρ, σ > 0 with the following property: if any element u0 ∈ E has its norm equal to ρ,
then the functional value ϕ(u0) is bounded below by σ;

(ii) The functional ϕ attains values below σ at some point u1 ∈ E beyond the norm threshold ρ.
Consequently, ϕ admits a critical value ε satisfying ε ≥ σ. Additionally, ε can be expressed as ε =

infk∈Ymaxs∈[0,1]ϕ (k (s)), where

Y =
{
k ∈ C1 ([0, 1] , E) : k (0) = u0, k (1) = u1

}
.

Definition 2.4. ([26]) (Krasnoselskii Genus). Let E be a real Banach space and U be a closed
symmetric subset of E \ {0}. The Krasnoselskii genus (or genus) of U is defined as the smallest integer
n for which there exists an odd continuous mapping Ψ : U → Rn \ {0}. If no such integer exists, we
define γ(U) = +∞. By convention, γ(∅) = 0.

Lemma 2.9. ([26]) Given a C1 even functional ϕ on the Banach space E, which satisfies the Palais-
Smale compactness property. For ∀n ∈ N, z ∈ R, set Σ = {U ⊂ E − {0} : U⊂ E be closed
and 0-symmetric }, Σn = {U ∈ Σ : γ (U) ≥ n}, Kz = {u ∈ E : ϕ (u) = z, ϕ′ (u) = 0} , zn = inf

U∈Σn
sup
u∈U

ϕ (u).

Consequently,
(i) Given a nonempty class Σn and a real number zn, the value zn constitutes a critical value for the

functional ϕ.
(ii) Suppose for some natural number l, the sequence zn = zn+1 = zn+2 = · · · = zn+l = z ∈ R stabilizes

at a real value z , ϕ (0). Then the Krasnoselskii genus of Kz satisfies γ (Kz) ≥ l + 1.

Remark 2.1. ([26, Remark 7.3]) implies that when the critical set Kz belongs to Σ and has genus
greater than 1, Kz must contain an infinite number of distinct elements.

Definition 2.5. The function u ∈ Eα,p
0 is a weak solution of (1.1) if u satisfies the following equation:

M (‖u‖p)

∫ T

0
h (t) φp

(
C
0 Dα

t u (t)
) (

C
0 Dα

t v (t)
)

dt +

n∑
i=0

∫ ti+1

si

a (t) φp (u (t)) v (t) dt


= λ

n∑
i=0

∫ ti+1

si

fi (t, u (t)) v (t) dt − µ
n∑

i=1

Ii (u (ti)) v (ti) ,∀v ∈ Eα,p
0 .

(2.2)

Consider the energy functional ϕλ : Eα,p
0 → R given by

ϕλ (u) =
1
p
M (‖u‖p) − λ

n∑
i=0

∫ ti+1

si

Fi (t, u (t)) dt + µ

n∑
i=1

Ji (u (ti)), (2.3)
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withM (u) =
∫ u

0
M (s) ds, Fi (t, u (t)) =

∫ u

0
fi (t, s) ds, and Ji (u) =

∫ u

0
Ii (s) ds. Due to the continuity of

M, fi, and Ii, it follows that ϕλ ∈ C1
(
Eα,p

0 ,R
)
, and

〈
ϕ′λ (u) , v

〉
= M (‖u‖p)

∫ T

0
h (t) φp

(
C
0 Dα

t u (t)
) (

C
0 Dα

t v (t)
)

dt +

n∑
i=0

∫ ti+1

si

a (t) φp (u (t)) v (t) dt


− λ

n∑
i=0

∫ ti+1

si

fi (t, u (t)) v (t) dt + µ

n∑
i=1

Ii (u (ti)) v (ti) , ∀v ∈ Eα,p
0 .

(2.4)

In this framework, weak solutions to (1.1) bijectively correspond to critical points of ϕλ.

3. Main results

This paper first presents the assumptions necessary for its main theorems and lemmas.
(H1) For p > 1, we can find growth exponents 0 ≤ li < p − 1 and Ai > 0, Bi > 0 (i = 1, 2, · · · , n)

satisfying the subcritical growth condition:

|Ii (u)| ≤ Ai|u|li + Bi, u ∈ R.

(H2) limsup
|u|→0

Fi(t,u)
|u|p = 0, (i = 0, 1, · · · , n), holds almost everywhere uniformly for t ∈ (si, ti+1].

(H3) There exists a superlinear exponent σ > p such that the asymptotic inequality

limsup
|u|→∞

σFi (t, u) − fi (t, u) u
|u|p

≤ 0, (i = 0, 1, · · · , n),

holds almost everywhere uniformly for t ∈ (si, ti+1].
(H4) There are positivity subsets Ωi ⊂ (si, ti+1], meas (Ωi) > 0 where the nonlinear potential satisfies

liminf
|u|→∞

Fi (t, u)
|u|p

> 0, (i = 0, 1, · · · , n),

uniformly for almost every t ∈ Ωi.

Remark 3.1. (On conditions (H3) and (H4)). The requirement of “uniform convergence for almost
every t” is sufficient for the following reasons:

1) Measurability: For a fixed t, the limit in u, when uniform for almost every t, results in a limit
function f (t) that is measurable in t. This is because the limit is ultimately taken over a sequence of
measurable functions (in t), and uniformity outside a set of measure zero preserves measurability.

2) Integrability control: Combined with the growth assumptions, this uniform convergence
condition provides a uniformly integrable bound for sequences like Fi(t,un)

|un |p
. This is crucial for applying

convergence theorems (e.g., the Lebesgue dominated convergence theorem), allowing the interchange
of limits and integrals, which is essential for establishing the continuity of the energy functional in our
variational framework.

Thus, “uniform convergence for almost every t” is a condition that is weaker than uniform
convergence everywhere, yet sufficiently strong to ensure mathematical rigor in our analysis.
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Lemma 3.1. Given the validity of conditions (H1) and (H3), the energy functional ϕλ fulfills the PS-
condition.

Proof. Consider a sequence {um}m∈N in Eα,p
0 with {ϕλ (um)}m∈N bounded and lim

m→∞
ϕ′λ (um) = 0.

Consequently, we can find N > 0 satisfying the uniform bounds:

|ϕλ (um)| ≤ N,
∥∥∥ϕ′λ (um)

∥∥∥
∗
≤ N, m ∈ N, (3.1)

with ‖·‖∗ being the dual space norm of Eα,p
0 .

We proceed by contradiction to prove the boundedness of {um}. Suppose {um} is unbounded, then
‖um‖ → ∞. Let vm = um

‖um‖
, then ‖vm‖ = 1. According to Lemma 2.4, assuming vm ⇀ v0 in Eα,p

0 , then
vm → v0 in C1 ([0,T ] ,R), as m → ∞. Combining Lemma 2.4, Remark 2.1, and condition (H1), it
follows from (3.1) that there is a fixed constant N1 > 0 satisfying(

σ

p
− 1

)
M0‖um‖

p
≤
σ

p
M (‖um‖

p) − M (‖um‖
p) ‖um‖

p

= σϕλ (um) − ϕ′λ (um) um − σµ

n∑
i=1

Ji (um (ti)) + µ

n∑
i=1

Ii (um (ti)) um (ti)

+ λ

n∑
i=0

∫ ti+1

si

(σFi (t, um (t)) − fi (t, um (t)) um (t)) dt

≤ N1 (1 + ‖um‖) + σµ

n∑
i=1

(
AiKli+1 ‖um‖

li+1

li + 1
+ BiK‖um‖

)
+ µ

n∑
i=1

(
AiKli+1 ‖um‖

li+1 + BiK‖um‖
)

+ λ

n∑
i=0

∫ ti+1

si

(σFi (t, um (t)) − fi (t, um (t)) um (t)) dt.

From ‖um‖ → ∞, it follows that(
σ

p
− 1

)
M0‖vm‖

p
≤

N1 (1 + ‖um‖)
‖um‖

p + σµ

n∑
i=1

(
AiKli+1‖um‖

li+1

(li + 1) ‖um‖
p +

BiK ‖um‖

‖um‖
p

)
+ µ

n∑
i=1

(
AiKli+1‖um‖

li+1

‖um‖
p +

BiK ‖um‖

‖um‖
p

)

+ λ

n∑
i=0

∫ ti+1

si
(σFi (t, um (t)) − fi (t, um (t)) um (t)) dt

‖um‖
p .

(3.2)

From (H3), it follows that there exists Ωi0 ⊂ (si, ti+1] , meas (Ωi0) = 0, such that the asymptotic
inequality

limsup
|u|→∞

σFi (t, u) − fi (t, u) u
|u|p

≤ 0
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holds uniformly for t ∈ (si, ti+1] \Ωi0. We assert that

limsup
m→∞

σFi (t, um (t)) − fi (t, um (t)) um (t)
‖um‖

p ≤ 0, t ∈ (si, ti+1] \Ωi0. (3.3)

If it does not exist, then there exists t0 ∈ (si, ti+1] \Ωi0 and a subsequence (relabeled as {um}) satisfying

limsup
m→∞

σFi (t0, um (t0)) − fi (t0, um (t0)) um (t0)
‖um‖

p > 0. (3.4)

Assuming the boundedness of {um (t0)}, we can find N2 > 0 satisfying |um (t0)| ≤ N2, ∀m ∈ N. Since fi

is continuous on Ωi0, it follows that

σFi (t0, um (t0)) − fi (t0, um (t0)) um (t0)
‖um‖

p ≤
(σ + 1) N2

‖um‖
p → 0, m→ ∞,

which contradicts (3.4). Therefore, {um (t0)} admits a subsequence exhibiting divergence: |um (t0)| →
∞, m→ ∞. Hence,

limsup
m→∞

σFi (t0, um (t0)) − fi (t0, um (t0)) um (t0)
‖um‖

p

= limsup
m→∞

σFi (t0, um (t0)) − fi (t0, um (t0)) um (t0)
|um (t0)|p

· |vm (t0)|p

= limsup
m→∞

σFi (t0, um (t0)) − fi (t0, um (t0)) um (t0)
|um (t0)|p

· lim
m→∞
|vm (t0)|p

≤ 0.

This contradicts (3.4). Hence, (3.3) holds.

Through Eqs (3.2) and (3.3), it follows that lim sup
m→∞

(
σ
p − 1

)
M0‖vm‖

p
≤ 0. The condition σ > p

implies the convergence ‖vm‖
p
→ 0 as m → ∞, which contradicts ‖vm‖ = 1. As a result, {um} is

energy-bounded in Eα,p
0 .

The following proves that um → u in Eα,p
0 . Indeed, by reflexivity of Eα,p

0 , we may extract a
subsequence (still denoted um) converging weakly: um ⇀ u in Eα,p

0 . Consequently, um → u in
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C1 ([0,T ] ,R). Equation (2.4) shows that〈
ϕ′λ (um) − ϕ′λ (u) , um − u

〉
= M (‖um‖

p)
∫ T

0
h (t)

(
φp

(
C
0 Dα

t um (t)
)
− φp

(
C
0 Dα

t u (t)
)) (

C
0 Dα

t (um (t) − u (t))
)

dt

+ (M (‖um‖
p) − M (‖u‖p))

∫ T

0
h (t) φp

(
C
0 Dα

t u (t)
) (

C
0 Dα

t (um (t) − u (t))
)

dt

+ M (‖um‖
p)

n∑
i=0

∫ ti+1

si

a (t)
(
φp (um (t)) − φp (u (t))

)
(um (t) − u (t)) dt

+ (M (‖um‖
p) − M (‖u‖p))

n∑
i=0

∫ ti+1

si

a (t) φp (u (t)) (um (t) − u (t)) dt

− λ

n∑
i=0

∫ ti+1

si

( fi (t, um (t)) − fi (t, u (t))) (um (t) − u (t)) dt

+ µ

n∑
i=1

(Ii (um (ti)) − Ii (u (ti))) (um (ti) − u (ti)) .

From Lemma 2.4 and the boundedness of M (‖um‖
p) − M (‖u‖p), it follows that

(M (‖um‖
p) − M (‖u‖p))

∫ T

0
h (t) φp

(
C
0 Dα

t u (t)
) (

C
0 Dα

t (um (t) − u (t))
)

dt → 0,m→ ∞,

(M (‖um‖
p) − M (‖u‖p))

n∑
i=0

∫ ti+1

si

a (t) φp (u (t)) (um (t) − u (t)) dt → 0,m→ ∞,

〈
ϕ′λ (um) − ϕ′λ (u) , um − u

〉
→ 0, m→ ∞,

(Ii (um (t)) − Ii (u (t))) (um (t) − u (t))→ 0, m→ ∞,∫ ti+1

si

( fi (t, um (t)) − fi (t, u (t))) (um (t) − u (t)) dt → 0, m→ ∞.

According to [27, Eq (2.2)], we can find c1, c2 > 0 satisfying

M (‖um‖
p)

∫ T

0
h (t)

(
φp

(
C
0 Dα

t um (t)
)
− φp

(
C
0 Dα

t u (t)
)) (

C
0 Dα

t (um (t) − u (t))
)

dt

+ M (‖um‖
p)

n∑
i=0

∫ ti+1

si

a (t)
(
φp (um (t)) − φp (u (t))

)
(um (t) − u (t)) dt

≥


lc1M (‖um‖

p)
(∫ T

0
h (t)

∣∣∣C0 Dα
t um (t) −C

0 Dα
t u (t)

∣∣∣pdt +
n∑

i=0

∫ ti+1

si
a (t) |um (t) − u (t)|pdt

)
, p ≥ 2,

c2M (‖um‖
p)

(∫ T

0
h(t)|C0 Dα

t um(t)−C
0 Dα

t u(t)|
2

(|C0 Dα
t um(t)|+|C0 Dα

t u(t)|)2−p dt +
n∑

i=0

∫ ti+1

si

a(t)|um(t)−u(t)|2

(|um(t)|+|u(t)|)2−p dt
)
, 1 < p < 2.

In summary, when p ≥ 2, ‖um − u‖ → 0,m→ +∞.
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In the case 1 < p < 2, the Hölder’s inequality implies∫ T

0
h (t)

∣∣∣C0 Dα
t um (t) − C

0 Dα
t u (t)

∣∣∣pdt

≤ 2
(p−1)(2−p)

2


∫ T

0

h (t)
∣∣∣C0 Dα

t um (t) − C
0 Dα

t u (t)
∣∣∣2(∣∣∣C0 Dα

t um (t)
∣∣∣ +

∣∣∣C0 Dα
t u (t)

∣∣∣)2−p dt


p
2

(‖um‖ + ‖u‖)
p(2−p)

2 ,

and
n∑

i=0

∫ ti+1

si

a (t) |um (t) − u (t)|pdt

≤ 2
(p−1)(2−p)

2

 n∑
i=0

∫ ti+1

si

a (t) |um (t) − u (t)|2

(|um (t)| + |u (t)|)2−p dt


p
2

(‖um‖ + ‖u‖)
p(2−p)

2 .

Consequently,

M (‖um‖
p)

[∫ T

0
h (t)

(
φp

(
C
0 Dα

t um (t)
)
− φp

(
C
0 Dα

t u (t)
)) (

C
0 Dα

t (um (t) − u (t))
)

dt

+

n∑
i=0

∫ ti+1

si

a (t)
(
φp (um (t)) − φp (u (t))

)
(um (t) − u (t)) dt


≥

c2M (‖um‖
p)

2
(p−1)(2−p)

2 × (‖um‖ + ‖u‖)2−p
×

(∫ T

0
h (t)

∣∣∣C0 Dα
t um (t) − C

0 Dα
t u (t)

∣∣∣pdt
) 2

p

+

 n∑
i=0

∫ ti+1

si

a (t) |um (t) − u (t)|pdt


2
p


≥
c2M (‖um‖

p)

2
(p−1)(2−p)

2 ×max
{
2

2
p−1, 1

} × ‖um − u‖2

(‖um‖ + ‖u‖)2−p .

To summarize, ‖um − u‖ → 0,m→ +∞. That is, um → u in Eα,p
0 . �

Theorem 3.1. If conditions (H1)–(H4) hold and the constant ∆ = M0δ
p

pK p − µ
n∑

i=1

(
Ai

li+1δ
li+1 + Biδ

)
> 0, then

for each λ ∈
(
0, ∆

kTδp

)
, problem (1.1) possesses at least two distinct weak solutions.

Proof. Denote by Br the open ball of radius r centered at the origin in the space Eα,p
0 . Here, ∂Br stands

for the boundary of Br, and Br for its closure. Standard arguments demonstrate the weak closedness
and boundedness of B δ

K
. Through meticulous verification, we demonstrate that ϕλ (u) is w.l.s.c. in Eα,p

0 .
According to Lemma 2.7, ϕλ (u) attains a local minimizer u0 within B δ

K
, that is, ϕλ (u0) ≤ ϕλ (0) = 0.

By hypothesis (H2), when k > 0, i = 0, 1, · · · , n, one can find δ ∈ (0, k) ensuring that for a.e.
t ∈ (si, ti+1], u ∈ R satisfying |u| ≤ δ, the following holds:

|Fi (t, u)| ≤ k|u|p. (3.5)
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Assume ‖u‖ ≤ δ
K . By Lemma 2.6, we have ‖u‖∞ ≤ δ. Then for u ∈ ∂Br, (r ≤ δ

K ), combining
Lemma 2.6, (H1), and (3.5), we obtain

ϕλ (u) ≥
1
p
M (‖u‖p) − λkT K p‖u‖p

− µ

n∑
i=1

(
AiKli+1

li + 1
‖u‖li+1 + BiK ‖u‖

)
≥

(
M0

p
− λkT K p

)
rp − µ

n∑
i=1

(
AiKli+1

li + 1
rli+1 + BiKr

)
.

Then, for all u ∈ ∂B δ
K

, we have

ϕλ (u) ≥
(

M0

p
− λkT K p

)
δp

K p − µ

n∑
i=1

(
Ai

li + 1
δli+1 + Biδ

)
= Nλ.

Given that λ ∈
(
0, ∆

kTδp

)
, it follows that ϕλ (u) = Nλ > 0 ≥ ϕλ (u0) holds for all u ∈ ∂B δ

K
. Therefore,

infu∈∂B δ
K
ϕλ (u) > ϕλ (u0).

For implementation purposes, each segment i = 0, 1, · · · , n under constraints (H3)–(H4) with
continuous fi generates design parameters ρ > (σ−p)M0K p

p2λ
, N3 > 0 and operational domain Ωi (positive

measure) satisfying
|Fi (t, u)| ≥

pρ
σ − p

|u|p − N3, t ∈ Ωi, u ∈ R. (3.6)

Select u0 (t) ∈ Eα,p
0 with ‖u0‖ ≤ K and

∫
Ωi
|u0 (t)|pdt = 1. For ξ > 0, it follows from (3.6) and (H1) that,

ϕλ (ξu0) ≤
1
p
M (‖ξu0‖

p) − λ
n∑

i=0

∫
Ωi

Fi (t, ξu0 (t)) dt + µ

n∑
i=1

∫ ξu0(ti)

0
Ii (s) ds

≤
M0ξp

p
‖u0‖

p
− λ (n + 1)

pρξp

σ − p
+ λ

n∑
i=0

N3meas (Ωi)

+ µ

n∑
i=1

(
AiKli+1ξli+1

li + 1
‖u0‖

li+1 + BiξK ‖u0‖

)
≤

(
M0K p

p
− λ (n + 1)

pρ
σ − p

)
ξp + λ

n∑
i=0

N3meas (Ωi)

+ µ

n∑
i=1

(
AiK2(li+1)ξli+1

li + 1
+ BiξK2

)
.

Noting that ρ > (σ−p)M0K p

p2λ(n+1) , it follows that ϕλ (ξu0) → −∞, ξ → ∞. A rigorous analysis demonstrates
the existence of u1 > 0 with ‖u1‖ >

δ
K that satisfies infu∈∂B δ

K
ϕλ (u) > ϕλ (u1). According to Lemmas 2.8

and 3.1, it is straightforward to see that there exists u2 ∈ Eα,p
0 satisfying ϕ′λ (u2) = 0 and ϕλ (u2) >

max {ϕλ (u0) , ϕλ (u1)}. In conclusion, u0 and u2 are two distinct weak solutions to problem (1.1). �

In what follows, we examine the scenario in problem (1.1) with the decomposition fi(t, u) =

fi1(t, u) + fi2(t, u). In which fi1(t, u) exhibits superlinear growth as |u| → ∞, whereas fi2(t, u) shows
sublinear behavior at infinity. We formally define the integral functions Fi1 (t, u) =

∫ u

0
fi1 (t, s) ds
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and Fi2 (t, u) =
∫ u

0
fi2 (t, s) ds for subsequent analysis. The rigorous mathematical assumptions are

enumerated below:
(H2

′) Given i = 0, 1, · · · , n, one can find σ > p for which lim
|u|→∞

Fi1(t,u)
|u|σ = ∞, uniformly in t ∈ (si, ti+1];

(H3
′) For each i = 0, 1, · · · , n, one can find positive numbers k0 > 0, D > 0 for which fi1 (t, u) u −

σFi1 (t, u) ≥ −k0up is satisfied whenever t ∈ (si, ti+1] , |u| ≥ D;
(H4

′) Given i = 0, 1, · · · , n, one can find 1 < τ < p and K1 ∈ L1 ((si, ti+1] ,R+) for which | fi2 (t, u)| ≤
K1 (t) |u|τ−1 is satisfied whenever t ∈ (si, ti+1] , u ∈ R;

(H5) Given i = 0, 1, · · · , n, one can find K2 ∈ C1 ((si, ti+1] ,R+) for which Fi2 (t, u) ≥ K2 (t) |u|τ is
satisfied whenever t ∈ (si, ti+1] , u ∈ R.

Lemma 3.2. The validity of conditions (H1), (H2
′)–(H4

′) implies that ϕλ fulfills the PS-condition.

Proof. Our first step establishes the boundedness of {um}m∈N ⊂ Eα,p
0 . We verify this by contradiction.

Assume that ‖um‖ → ∞,m → ∞. Let vm = um
‖um‖

, then ‖vm‖ = 1. According to Lemma 2.4, if vm ⇀ v0

in Eα,p
0 , then vm → v0 in C1 ([0,T ] ,R) as m→ ∞. By virtue of hypothesis (H4

′), we obtain the growth
conditions:

| fi2 (t, u) u| ≤ K1 (t) |u|τ, |Fi2 (t, u)| ≤
1
τ
K1 (t) |u|τ. (3.7)

The subsequent analysis divides into two mutually exclusive cases: the trivial case v0 ≡ 0 and the
nontrivial case v0 , 0.

Case 1: v0 ≡ 0. In view of assumption (H3
′) and the continuity of fi, we can find a constant k1 > 0

for which the following inequality holds:

fi1 (t, u) u − σFi1 (t, u) ≥ −k0up − k1, t ∈ (si, ti+1] , u ∈ R. (3.8)

Therefore, from (3.1), (3.7), and (3.8), we obtain

o (1) =
σN + N‖um‖

‖um‖
p ≥

σϕλ (um) − ϕ′λ (um) um

‖um‖
p

≥

(
σ

p
− 1

)
M0 +

µ

‖um‖
p

n∑
i=1

(
σ

∫ um(ti)

0
Ii (s) ds − Ii (um (ti)) um (ti)

)
+

λ

‖um‖
p

m∑
i=0

∫ ti+1

si

( fi (t, um (t)) um (t) − σFi (t, um (t))) dt

≥

(
σ

p
− 1

)
M0 −

µ

‖um‖
p

n∑
i=1

((
Aiσ

li + 1
+ Ai

)
‖um‖

li+1
∞ + (σ + 1) Bi‖um‖∞

)
−

λ

‖um‖
p

m∑
i=0

∫ ti+1

si

(
k0|um|

p + k1 +

(
1 +

σ

τ

)
K1 (t) |um|

τ
)

dt

≥

(
σ

p
− 1

)
M0 −

µ

‖um‖
p

n∑
i=1

((
Aiσ

li + 1
+ Ai

)
Kli+1‖um‖

li+1 + (σ + 1) BiK ‖um‖

)
−

λT
‖um‖

p (k0K p‖um‖
p + k1) −

λ

‖um‖
p

(
1 +

σ

τ

)
‖K1‖L1 Kτ‖um‖

τ

≥

(
σ

p
− 1

)
M0 − λTk0K p, m→ ∞.
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This indicates that {um} is bounded in Eα,p
0 .

Case 2: v0 , 0. Let Ω′i = {t ∈ (si, ti+1] : |v0 (t)| > 0}, i = 0, 1, · · · , n, then meas (Ω′i) > 0. Observe
that ‖um‖ → ∞, (m→ ∞) together with the identity |um (t)| = |vm (t)|·‖um‖ necessarily leads to |um (t)| →
∞, (m→ ∞) when t ∈ Ω′i. We therefore deduce from the combination of (3.1) and (3.7) that

n∑
i=0

∫ ti+1

si

Fi1 (t, um (t)) dt

= −
1
λ
ϕλ (um) +

1
pλ
M (‖um‖

p) +
µ

λ

n∑
i=1

∫ um(ti)

0
Ii (s) ds −

n∑
i=0

∫ ti+1

si

Fi2 (t, u (t)) dt

≤
N
λ

+
M0

pλ
‖um‖

p +
µ

λ

n∑
i=1

(
Ai

li + 1
‖um‖

li+1
∞ + Bi‖um‖∞

)
+

1
τ

∫ T

0
K1 (t) |um (t)|τdt

≤
N
λ

+
M0

pλ
‖um‖

p +
µ

λ

n∑
i=1

(
AiKli+1

li + 1
‖um‖

li+1 + BiK ‖um‖

)
+

Kτ

τ
‖K1‖L1‖um‖

τ.

Observing the parameter constraints σ > p, where 1 ≤ li + 1 < p and simultaneously 1 < τ < p, we
consequently derive

n∑
i=0

∫ ti+1

si

Fi1 (t, um (t))
‖um‖

σ dt ≤ o (1) , m→ ∞. (3.9)

Nevertheless, through an application of Fatou’s lemma combined with hypothesis (H2
′), one obtains

lim
m→∞

n∑
i=0

∫ ti+1

si

Fi1 (t, um (t))
‖um‖

σ dt ≥ lim
m→∞

n∑
i=0

∫
Ω′ i

Fi1 (t, um (t))
‖um‖

σ dt

= lim
m→∞

n∑
i=0

∫
Ω′ i

Fi1 (t, um (t))
|um (t)|σ

|vm (t)|σdt

= ∞.

This contradicts (3.9). In summary, the sequence {um}m∈N is bounded in Eα,p
0 . Subsequently, employing

an analogous approach to that used in proving Lemma 3.1, we establish the convergence ‖um − u‖ → 0
in the space Eα,p

0 when m→ ∞. �

Theorem 3.2. Under hypotheses (H1), (H2
′)–(H4

′), and (H5), if the functions Ii(u)(i = 1, 2, · · · , n)
and fi(t, u)(i = 0, 1, · · · , n) are odd with respect to u, then (1.1) possesses an infinite number of weak
solutions.

Proof. Clearly, ϕλ is an even function and ϕλ(0) = 0. Let {em}
∞
m=1 be an orthonormal basis of Eα,p

0 , i.e.,∥∥∥eq

∥∥∥ = 1,
〈
eq, eq′

〉
= 0, 1 ≤ q , q′. For each natural number m, let Em be the linear span of the vectors

e1, e2, · · · , em, and let S m denote the set of all unit vectors in Em. So, for every vector u ∈ Em, we can
find real numbers θ1, θ2, · · · , θm satisfying

u (t) =

m∑
j=1

θ je j (t), t ∈ [0,T ] . (3.10)
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In other words,

‖u‖p =

∫ T

0
h (t)

∣∣∣C0 Dα
t u (t)

∣∣∣pdt +

n∑
i=0

∫ ti+1

si

a (t) |u (t)|pdt

=

m∑
j=0

θ
p
j

∫ T

0
h (t)

∣∣∣C0 Dα
t e j (t)

∣∣∣pdt + +

n∑
i=0

∫ ti+1

si

a (t)
∣∣∣e j (t)

∣∣∣pdt


=

m∑
j=0

θ
p
j

∥∥∥e j

∥∥∥p
=

m∑
j=0

θ
p
j .

(3.11)

Conversely, hypothesis (H5) guarantees that for each open bounded interval Πi contained in (si, ti+1]
(where i ranges from 0 to n), we may select a uniform lower bound K3 > 0 ensuring

Fi2 (t, u (t)) ≥ K2 (t) |u (t)|τ ≥ K3|u (t)|τ (3.12)

holds throughout Πi ×R. Regarding the open sets Πi previously introduced, the growth condition (H2
′)

requires positive coefficients K4,K5 with the property that

Fi1 (t, u (t)) ≥ K4|u|σ − K5 (3.13)

holds uniformly for all t ∈ Πi and u ∈ R. Therefore, for ∀u ∈ S m, it follows from (3.11)–(3.13) that

ϕλ (ηu) =
1
p
M‖ηu‖p

− λ

n∑
i=0

∫ ti+1

si

Fi (t, ηu (t)) dt + µ

n∑
i=1

∫ ηu(ti)

0
Ii (s) ds

≤
M0

p
‖ηu‖p

− λ

n∑
i=0

∫
Πi

Fi (t, ηu (t)) dt + µ

n∑
i=1

∫ ηu(ti)

0
Ii (s) ds

≤
M0ηp

p
‖u‖p

− λησK4

n∑
i=0

∫
Πi

∣∣∣∣∣∣∣
m∑

j=1

θ je j (t)

∣∣∣∣∣∣∣
σ

dt + λK5T

− λητK3

n∑
i=0

∫
Πi

∣∣∣∣∣∣∣
m∑

j=1

θ je j (t)

∣∣∣∣∣∣∣
τ

dt + µ

n∑
i=1

(
AiKli+1ηli+1

li + 1
‖u‖li+1 + BiKη ‖u‖

)

=
M0ηp

p
− λησK4

n∑
i=0

∫
Πi

∣∣∣∣∣∣∣
m∑

j=1

θ je j (t)

∣∣∣∣∣∣∣
τ

dt + λK5T

− λητK3

n∑
i=0

∫
Πi

∣∣∣∣∣∣∣
m∑

j=1

θ je j (t)

∣∣∣∣∣∣∣
τ

dt + µ

n∑
i=1

(
AiKli+1ηli+1

li + 1
+ BiKη

)
.

Furthermore, one may readily establish the positivity:
n∑

i=0

∫
Πi

∣∣∣∣∣∣ m∑
j=1
θ je j (t)

∣∣∣∣∣∣τdt > 0. Noting the parameter

constraints 1 < τ < p, σ > p, and 1 ≤ li + 1 < p (for all i = 1, · · · , n), we can find positive numbers
ξ, ω guaranteeing

ϕλ (ωu) < −ξ, u ∈ S m. (3.14)
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Let S ω
m = {ωu : u ∈ S m} , Θ =

{
(ω1, ω2, · · · , ωm) ∈ Rm :

m∑
j=1
θ

p
j < ω

p

}
. From (3.14), it follows that

ϕλ (u) < −ξ, u ∈ S ω
m. Combined with the even function ϕλ ∈ C1

(
Eα,p

0 ,R
)
, we obtain S ω

m ⊂ ϕ
−ξ
λ ∈ Σ.

As a direct consequence of (3.10) and (3.11), we deduce an odd C1-smooth boundary mapping
Ψ : ∂Θ→ S ω

m with homomorphic properties. From the genus theory, the energy level set satisfies:

γ
(
ϕ
−ξ
λ

)
≥ γ

(
S ω

m
)

= m. (3.15)

Therefore, ϕ−ξλ ∈ Σm, which implies Σm , φ. Let zm = infU∈Σmsupu∈Uϕλ (u). The minimax sequence
satisfies −∞ ≤ zm < −ξ < 0, as guaranteed by (3.15) and the lower semicontinuity of ϕλ in Eα,p

0 . In
other words, ∀m ∈ N, zm ∈ R

−. Consequently, an application of Lemma 2.9 combined with Remark 2.2
shows that ϕλ admits an infinite sequence of nontrivial critical points. In other words, (1.1) possesses
an infinite number of nontrivial solutions in the weak sense. �

Example 3.1. Let α = 0.6, h(t) = T = 1, n = 1, p = 3, λ = 1
4 , µ = 2. We now study an FBVPs:

M
(
‖u‖3

) (
tD0.6

1

(
φ3

(
C
0 D0.6

t u (t)
)))

+ a (t) φ3 (u (t))

=
u5 (1 + sin t)

4
+

u
1
3 (2 + cos t)

4
, t ∈ (si, ti+1] , i = 0, 1,

∆
(
M

(
‖u (t1)‖3

))
tD−0.4

1

(
φ3(C

0 D0.6
t u)

)
(t1) = 2I1 (u (t1)) ,

M
(
‖u‖3

)
tD−0.4

1

(
φ3(C

0 D0.6
t u)

)
(t) = M

(∥∥∥u
(
t+
1
)∥∥∥3

)
tD−0.4

1

(
φ3(C

0 D0.6
t u)

)
(t+

1 ), t ∈ (t1, s1] ,

M
(∥∥∥u(s−1 )

∥∥∥3
)

tD−0.4
1

(
φ3(C

0 D0.6
t u)

)
(s−1 ) = M

(∥∥∥u(s+
1 )

∥∥∥3
)

tD−0.4
1

(
φ3(C

0 D0.6
t u)

)
(s+

1 ),

u(0) = u(1) = 0,

(3.16)

where 0 = s0 < t1 = 1
3 < s1 = 2

3 < t2 = 1. Let us select M (u) = 5 + u
1+u , u ∈ R

+, a (t) = ln
(
1 + t2

)
,

where t ∈ [0, 1]. Then, we have a0 = 0 ≤ a (t) ≤ ln 2 = a0. Choose I1(u) = sin u, and there exist
A1 = B1 = 2, l1 = 1

2 , such that condition (H1) holds. Integration gives the potential terms: Fi1 =

u6(1+sin t)
6 , Fi2 =

3u
4
3 (2+cos t)

4 . Through calculation, when we set k0 = 2,D = 3, σ = 4, it can be verified
that both conditions (H2

′) and (H3
′) are fulfilled. With the choices τ = 4

3 ,K1 (t) = t
3 + 5,K2 (t) = 1+t

4 ,

hypotheses (H4
′) and (H5) hold. Trivially, both fi(t, u) and I1(u) possess odd parity in the u-variable.

Whence, the full satisfaction of Theorem 3.2’s assumptions yields the existence of an unbounded
sequence of nontrivial weak solutions to (3.16).

4. Conclusions

This study has established the existence and multiplicity of weak solutions for a class of Kirchhoff-
type fractional p-Laplacian boundary value problems incorporating mixed instantaneous and non-
instantaneous impulses. The main contributions are twofold. First, by employing the mountain
pass theorem, we have proven the existence of at least two nontrivial weak solutions under growth
assumptions that are strictly weaker than the classical Ambrosetti-Rabinowitz super-p-linear condition
(Theorem 3.1). Second, utilizing the genus theory in critical point theory, we have demonstrated the
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existence of multiple weak solutions when the nonlinear term exhibits a combined superlinear and
sublinear growth structure (Theorem 3.2).

The novelty of this study is primarily reflected in the following aspects: First, a systematic
weakened variational framework suitable for mixed impulse problems has been constructed, proposing
growth assumptions that are more lenient than the classical Ambrosetti-Rabinowitz condition. Second,
an analytical approach has been developed to simultaneously handle concave-convex nonlinearities
and weakened super-p-growth conditions, establishing a more universal theory for the existence and
multiplicity of solutions. Third, it breaks through the dependence of traditional variational methods on
strong growth conditions, opening up new avenues for studying impulse problems under non-standard
growth conditions. Compared with the existing literature [22], this paper not only significantly relaxes
the constraints on the growth conditions of nonlinear terms but also achieves substantial breakthroughs
in the theoretical framework and research methodology.

From an application perspective, the theoretical model established in this work shows
promising potential for describing complex dynamical systems characterized by instantaneous
mutations and memory-dependent after-effects. Typical application scenarios include simulating the
mechanical response and recovery process of composite materials under impact loads, modeling the
pharmacokinetic behavior of rapid drug injection coupled with sustained release, and analyzing self-
recovering circuit systems subject to transient disturbances. These potential connections provide viable
pathways for translating the theoretical findings into engineering practice.

Looking ahead, several promising research directions emerge from this work. On the theoretical
front, the present framework could be extended to problems involving variable exponents or more
general fractional operators. Investigating critical growth conditions also represents a meaningful
direction, though this would likely require developing new analytical tools. From an applied
perspective, we recommend focusing on two key tasks: First, developing effective numerical
computation methods (such as finite element methods) to visually demonstrate the dynamic
characteristics of weak solutions and validate theoretical findings; second, incorporating stochastic
disturbances by establishing random impulse models to more accurately describe uncertainties in
practical systems. These extended investigations would effectively compensate for the limitations of
purely theoretical analysis and facilitate the translation of research outcomes into practical applications.
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