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1. Introduction

Impulse DEs (differential equations), as a crucial mathematical tool for describing abrupt changes
in dynamical systems, demonstrate unique modeling advantages in fields such as biomedical
applications (e.g., intermittent drug administration therapies), engineering control (e.g., sudden
signal regulation), and ecological management (e.g., disaster interventions). Departing from
conventional instantaneous impulse frameworks, Hernddez and O’Regan [1] introduced a non-
instantaneous impulse theory in 2013, eliminating the idealized momentary action hypothesis.
This advancement enables precise characterization of prolonged impulse dynamics, exemplified by
sustained pharmacological concentration profiles and extended ecological management interventions.
Recent breakthroughs [2—4] in variational methods and critical point theory have established a novel
framework for studying the dynamics of non-instantaneous impulsive systems. As a representative
study, Tian and Zhang [5] established existence criteria for second-order Dirichlet BVPs (boundary
value problems) with mixed impulses through an innovative application of the Ekeland variational
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principle:

—x" ()= fi(t, x (@), 1€ (s, 1111],i=0,m,
AY (1) =1 (x (), i=1,m,

X (0)=x(tf).tes],i=1,m,

X (sl*) =x (sl.‘) ,i=1,m,
x(0)=x(T)=0.

The mixed impulsive problem studied here has a structure that alternates between continuous and
impulsive intervals, as shown in Figure 1. The system evolves in two types of intervals: Continuous
intervals ([s;_1,#;] and [s;, #;+1]), where it follows a differential equation, and mixed impulse intervals
((#;, s;]). At each instantaneous impulse point #;, the derivative jumps according to Ax’(#;) = I;(x(1,)),
while the state x(f) stays continuous. During the following mixed impulse interval (7;, s;], the derivative
remains constant at x’(f) = x'(¢7). Finally, at the non-instantaneous impulse point s;, the derivative
becomes continuous again with x’(s7) = x’(s;), and the system continues its continuous evolution.
This repeating pattern is key to the analysis.

Mixed Impulse
Continuous Continuous
. . . . Time ¢
Si-1 1; S tiv1

Figure 1. Schematic of mixed impulse intervals.

The demonstrated efficacy of fractional calculus in capturing non-local properties, memory effects,
and complex dynamics has established FIDEs (fractional-order impulsive differential equations) as
a fundamental framework for addressing interdisciplinary challenges characterized by discontinuous
transitions and cumulative history dependence. Significant applications [6-9] have been developed
in neural dynamics, intelligent control systems, and epidemiological modeling. As a pioneering
contribution, Zhang and Liu’s 2020 work [10] initially formulated the FBVPs (fractional-order
boundary value problems) with mixed impulses:

D5 D] x(t)) = fi (£, x (1) , 1 € (53, ti1],i=0,m, y € (1/2, 1],
A(DY (SD)x)) () =L (x (1)) i=T.m,

Dy (SDIx ()= Dy (§D)x (1))t (tinsi]i=T,m,
tDyl (OCDlyx (sl.‘)) = ,D?l (gD;yx (sl*)) ,i=1,m,
x(0)=x(T)=0.

In subsequent work, Zhou et al. [11] established an extension incorporating the p-Laplacian operator:

D} (6, DIx(1) +q (1) 6, (x(0)) = £, (1, x (1)) , 1€ (3, 1;11]1,i=0,m,
A(GDY ¢, (SDYx (1)) =1 (x (1) ,i=T,m,

Dy, (D x ()= Dy "¢, (SD)x (1)) 1€ (tisil . i=T,m,
ID;_I(ﬁp (00sz (si‘)) = ,D’T'_lqﬁp (gD,yx (sl*)) ,i=1,m,

x(0)=x(T) =0,
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here y lies in the interval (%, 1, ¢,(x) = |x|P2x, p > 1. As demonstrated through the least
action principle, the system admitted the solution’s existence. Extending the methodology, Li
and collaborators [12] employed Ricceri’s three-critical-point theorem to derive multiple solution
existences for the problem. Subsequent studies [13,14] have significantly expanded this research
direction.

Conversely, the Kirchhoff-type equation serves as a generalization of the classical D’ Alembert wave
equation. It was originally derived by Kirchhoff [15] in 1883 during his investigation into the free
vibrations of elastic strings. An essential characteristic of Kirchhoff-type models is the incorporation
of a nonlocal term fOL %th, which fundamentally alters the nature of the problem from pointwise-
defined to be nonlocal in scope. In later literature, mathematical problems incorporating nonlocal terms
of this form has become conventionally termed Kirchhoff problems. With broad applications spanning
diverse disciplines, the Kirchhoff equation is utilized in non-Newtonian mechanics, astrophysics,
elastic electrodynamics, and population dynamics. The past few years have seen remarkable
developments in Kirchhoff equation research [16—18]. For illustration, we cite Liang’s 2014 work [19]
that employed variational principles to determine positive solution existence for Kirchhoff-type
equations of the form:

—(a+b [ IVx) Ax=f (t.%), inQ,
x=0, ondQ.

Later work by Fiscella and Valdinoci [20] incorporated the nonlocal characteristics of tension,
originating from the nonlocal metric of the string’s fractional-dimensional length. Fiscella and
Valdinoci generalized the conventional Kirchhoft equation to its fractional counterpart, establishing
existence results for non-negative solutions to certain Kirchhoff-type problems containing nonlocal
operators. Nevertheless, studies concerning Kirchhoff-type FIDEs have shown notable deficiencies in
the last ten years. The theoretical framework remains incomplete when nonlocal effects are coupled
with fractional-order operators and impulsive disturbances. The constructive theory demands thorough
investigation, especially regarding Kirchhoff-type FBVPs incorporating p-Laplacian operators coupled
with mixed impulses. Against this background, the application of variational approaches emerges as a
pivotal turning point. As a representative example, Wang and Tian’s 2023 work [21] solved Kirchhoft-
type FBVPs with (p, g)-Laplacian and instantaneous impulses using critical point theory:

M, (Ix112) DY (1 (0 6, (SDYx () + v (1) ¢, (x (1))
=F.(t,x@®),y®))+AG(t,x(@®),y(1), t # tj,a.e.t € [0,T],
M (I915) D5 (£ () 64 (S DFy () + 1 () 6, (v ()
=F,(t,x®),y®)+AG,(t,x(1),y(), t #;,a.e.t €[0,T],

(0, ()] ) 05 (a0 (50 0) = 1, (51 = T
A(M,B(”y (n)ll,?)) D5 (g(t’i) &, (g Dy (tf,.))) = J()).i=Ton,
x(0) = x(T) = y(0) = W(T) = 0,

here the exponents y and S range in (é, 1] and (%1’ 1] . Nevertheless, existing research has been limited
to cases with purely instantaneous impulses. For theoretical completeness, Yao and Zhang’s 2025
work [22] shifted focus to more complex mixed impulsive systems. Through variational techniques,
they examined multiple solutions for fractional p-Kirchhoff BVPs with mixed-type impulses, requiring
the nonlinear term to fulfill an Ambrosetti-Rabinowitz condition beyond p-th order growth.
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In summary, although the existing literature provides an important theoretical foundation for
Kirchhoff-type fractional p-Laplacian problems with mixed impulses, their key conclusions heavily
rely on the classical Ambrosetti-Rabinowitz-type super-p-linear growth condition. This restrictive
condition considerably limits the choice of nonlinear terms, thereby constraining the model’s
applicability in describing more complex nonlinear phenomena. In contrast, the core innovation
and significant advantage of our study lie in systematically breaking through the limitations of
this traditional framework. Specifically, first, we propose a class of growth assumptions that are
considerably weaker than the classical Ambrosetti-Rabinowitz condition. This enables our theoretical
framework to accommodate a broader range of more complex nonlinear functions, significantly
expanding the potential physical applications of the model. Second, compared to the results obtained
in [22] under specific strong growth conditions, our work not only proves the existence and multiplicity
of weak solutions under weaker assumptions but also establishes a more universal existence theory
by incorporating nonlinear terms that combine concave-convex features and weakened superlinear
conditions. Finally, the variational framework and technical approaches developed in this study
open new avenues for analyzing impulsive problems that do not satisfy the traditional Ambrosetti-
Rabinowitz condition, thereby enriching the research toolkit in this field. Therefore, this work is not
merely a simple extension of existing research but represents a substantial breakthrough in fundamental
theoretical limitations, establishing a more general and comprehensive theoretical framework for the
study of such problems.

To achieve a breakthrough in fundamental theoretical limitations, this paper aims to establish
a more general theoretical framework, with the core objective of systematically weakening the
traditional growth restrictions on nonlinear terms. Specifically, we will investigate a class of Kirchhoff-
type fractional p-Laplacian boundary value problems that incorporate both instantaneous and non-
instantaneous impulses:

M (lull”y D (R (6) ¢, (§ DY (1)) + a (), (w(8) = Af; (6, u (D)), £ € (53, i1 )i = Oy,

AM (lu @) DY (h (1) ¢, (§ DY (1)) = uli (u (1)) i = T,m,

M (lull”) D5 (h (1) ¢, (§Dfu (1))

=M (|lu)|") D5 () 6y (§DEu () t € i silui = Tom, (1.1)
M (JuGHIY) D57 (1 (57 5 (S D7 (57)))

= M (lu(sH|) DF ! ( ()8, (§D7u(s)) i = T,

u)=u(T) =0,

where the exponent p ranges in (1, +00) while « takes values in (i, 1. ¢, (u) = ulP~u (u  0), ¢,(0) =
0, A4, > 0. The operators OCD? (left Caputo type) and ,D7. (right Riemann-Liouville type) constitute
the a-th order fractional differential operators in their respective formulations. The function /4 belongs
to L*([0, T],R*), and its essential infimum hy = essinf,o ) A(f) is strictly positive. The function
a belongs to C ([0, T],R*) with the existence of positive constants a, and a° satisfying the uniform
bounds 0 < ay < a(f) < a° throughout the interval. Each I; belongs to C' (R, R), with at least one index
i €{l1,2,---,n}satisfying I; (u(t;)) # 0. f; € C' ((si, ti1 I XR,R), 0 = 5o < t; < 51 <th < -+ < §, <
tiw1 = T. M € C([0, +00), R) admits strictly positive lower and upper bounds M, = info M(s) and
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M° = sup,.o M(s) fulfilling My < M(s) < M? globally. Specifically, M (x) = (a + bx?)P~!, where the
coeflicients a, b are positive real numbers. The precise definition of the norm ||u|| appears in subsequent
Eq (2.1). Instantaneous impulses produce discontinuous state jumps at discrete points #;, whereas non-
instantaneous impulses induce persistent state variations over finite intervals (z;, s;]. Beyond this,

A M (lu @IP)) D5 (B (8 ¢ (§DFu (1))
=M (D) D57 (n () 8 (§DFu ())) = M ([l D) D5 (1) 8, (§DF (1))
M ([lu ") D5 (1) 8, (D7 ())) = lim M ) D5 (R (1) 8, (§DFu ).

M (JusDN”) D5 (1 (57) 8, (§D7 (57))) = lim M (lull”) D5 (1 (1) 8, (5 DFu (1))

Based on variational methods and critical point theory, this paper investigates the existence and
multiplicity of weak solutions to the boundary value problem (1.1). By constructing a variational
framework, we first prove the existence of solutions to problem (1.1) under weakened super-p-linear
growth conditions using the mountain pass theorem. Subsequently, by decomposing the nonlinear
term into components satisfying super-p-linear and sub-p-linear growth conditions, we establish the
multiplicity of solutions to problem (1.1) via genus theory.

The innovations and advantages of this study are mainly reflected in the following aspects: First,
we propose a class of growth assumptions that are significantly weaker than the classical super-p-
linear Ambrosetti-Rabinowitz condition; second, by introducing nonlinear terms that incorporate both
concave-convex components and weakened super-p growth conditions, we establish a more universal
theory of solution multiplicity. Compared with the classical Ambrosetti-Rabinowitz case treated in
reference [22], this work not only substantially relaxes the growth restrictions on nonlinear terms and
develops a more general theory for solution existence and multiplicity but also opens new avenues for
analyzing impulsive problems that do not satisfy the traditional Ambrosetti-Rabinowitz condition.

The organizational framework of this manuscript is presented below: The second section assembles
the requisite definitions and technical lemmas that underpin our later theoretical arguments. The
variational approach developed in Section 3 yields existence and multiplicity results for solutions to
FBVPs (1.1). The paper concludes with Section 4, which offers a comprehensive summary and a
perspective on future research trajectories.

2. Preliminaries

Definition 2.1. (/23]) The left Caputo derivative ng’u(t) and the right Riemann-Liouville derivative
D7u(t) of order a > 0 (n = [a]) for the function u(t) are defined respectively as

1 !
o DY u(r) = Th—a) f; (t — )" 'u"(s)ds,

N Gl O LA AP
tDTu(t)—mﬁf (S—t) u(s)ds.

Definition 2.2. ([23]) Let « € (0, 1], p € (1, +0c0). We define the fractional-order function space
Eg” ={u:[0,T]1 - Rlu, {Dfu(®) € L’ ((0,T),R),u(0) = u(T) = 0},
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where the associated norm is given by
1
C P \»
lellgo = (lall, + (|5 DTu][},)”

1
where ||ull,, = (fOT lu (t)lpdt)p is the norm of L? ((O, T) ,RN). Additionally, we define E;" to be the

completion of Ci¥ (((), T), RN) with respect to ||| gor. Since h(t) € L¥([0, T],R*), hy = essinf,cjorjh(t) >
0,a(t) e C(0,T],R"), and 0 < a; < a(t) < ay, 5o ||u|ge, is equivalent to

T T 5
||u||w,=( f h@|§Dfu )| dt + f a(t)lu(t)l”dt) :
0 0

Lemma 2.1. (/23]) Let @ € (0, 1], p € (1,+0). Then E;" enjoys both reflexivity and separability as a
Banach space.

Lemma 2.2. ([24]) Let q1,q> > 1, B > 0, and either q_1| + q—lz <1 +,30rq—1] + qu =1+6q #1,q, # 1.
Then for any x € L% ([0, T1,RY ), y € L% ([0, T],RY ), the following equality holds:

T T
fo oD x (0] y (1) dr = fo Dy 0] x ).
Lemma 2.3. (/23]) Let a € (0,1], 1 < p < co. Then

llullr <

(o a,p
u |LP, YueE,".

T c
Favnih?

Ifa>1 141 =1 then
P’ p

C
lll, < S Dru

1

I'(@)(@g— g+ 1D
where ||u||,, = trel[lgj)g] |u(2)| is the norm of C([0, T], R).

Lr’

Lemma 2.4. ([23]) Let% <a<l,1<p<oolfu— uinkEy", then uy — uin C([0,T],RY) with
[l — ull., = 0 as k — oo.

In the space E;"”, define a new norm

T n
||u||:(f0 h(p) |gD$u(z)|pdz+Zf
i=0 VS

Lemma 2.5. ([22]) The two norms ||ull,,, and ||ul| are equivalent for Yu € Eg’p, in the sense that there
are 01 and o, > 0 for which

tit1

a(t)|u (t)l”dt) p. 2.1

oillully,, < llull < oollull,, -
Lemma 2.6. (/22]) Assuming a € (%, +00), i + é =1, and 1 < p < oo, the infinity norm of u satisfies
the estimate ||u||, < K ||ul||, in which the constant K is defined as
1 _l
T vhy"

K = -
(o) ((@-1)g+ 1)«
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Lemma 2.7. ([25]) Suppose E is a reflexive Banach space over the real field. Additionally, let ® be
bounded and weakly order-closed, with ¢ being order-weakly lower semicontinuous over ®. Then, for
the function ¢ : ®@ C E — [—o0, +00], and under the condition that ® # ¢, the minimization problem
min ,cep (1) = € admits a solution.

Definition 2.3. (/26]) (Palais-Smale condition). Let E be a real Banach space and ¢ € C'(E,R). The
functional ¢ is said to satisfy the Palais-Smale condition (PS-condition), if any sequence {u,} C E
such that {¢(u,)} is bounded and ¢'(u,) — 0 in the dual space E* as n — oo, admits a convergent
subsequence in E.

Lemma 2.8. (/26]) Assume ¢ € C' (E,R) fulfills the PS-condition with ¢(0) = 0. Suppose additionally
that ¢ verifies the following two conditions:

(i) We can find p, o > 0 with the following property: if any element uy € E has its norm equal to p,
then the functional value ¢(uy) is bounded below by o;

(ii) The functional ¢ attains values below o at some point u; € E beyond the norm threshold p.
Consequently, ¢ admits a critical value € satisfying € > o. Additionally, € can be expressed as & =
infkeymaxse[o,l]go (k (S)), where

Y = {ke C'([0,1],E) : k(0) = ug, k(1) = ul}.

Definition 2.4. (/26]) (Krasnoselskii Genus). Let E be a real Banach space and U be a closed
symmetric subset of E \ {0}. The Krasnoselskii genus (or genus) of U is defined as the smallest integer
n for which there exists an odd continuous mapping ¥ : U — R" \ {0}. If no such integer exists, we
define y(U) = +oo0. By convention, y(0) = 0.

Lemma 2.9. (/26]) Given a C' even functional ¢ on the Banach space E, which satisfies the Palais-
Smale compactness property. For ¥m € N, z € R, set L = {(UCE—-{0}:UcC E be closed
and O-symmetric}, X, ={UeX:y(U)=2n}, K, ={ucE: o) =z,¢'(u) =0}, z, = li]nf sup ¢ (u).

C&n yel
Consequently,

(i) Given a nonempty class X, and a real number z,, the value z,, constitutes a critical value for the
functional ¢.

(ii) Suppose for some natural number [, the sequence z,, = Zy11 = Znso =+ = Zny1 = Z € R stabilizes
at a real value 7 # ¢ (0). Then the Krasnoselskii genus of K, satisfies y (K,) > [ + 1.

Remark 2.1. (/26, Remark 7.3]) implies that when the critical set K, belongs to ¥ and has genus
greater than 1, K, must contain an infinite number of distinct elements.

Definition 2.5. The function u € E;" is a weak solution of (1.1) if u satisfies the following equation:

tit1

T n
M(llull”)[ f h() ¢, (§DFu @) (SDv @) dr + ) f a(®) ¢, (u®)v () dt
0 i=0 Vi

(2.2)
n Tit1 n
= ﬂZf fitt,u () v(t)dt —uzli () v(t) Vv e Ey”.
i=0 i i=1
Consider the energy functional ¢, : E;” — R given by
1 n li+1 n
@1 (u) = EM(”MHP) —JZI F; (t,u(t))dt+,uZJi (u (1)), (2.3)
i=0 Vi i=1
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with M(u) = " M (s)ds, Fi(t,u(t)) = [ fi(t,s)ds, and J;(u) = [ I;(s)ds. Due to the continuity of
M, f,, and I, it follows that ¢, € C" (Eg’p, R), and

T n fiv1
(@ W), vy = M<||u||">( fo h(t) ¢, (SDSu @) (SDV (1)) dr + f a (t) g, (D) v (1) dr
i=0 vSi
2.4)

_AZIM fi(t,u(t))V(t)dt+,uZI,- W@)v (), v e .
i=0 Si =

In this framework, weak solutions to (1.1) bijectively correspond to critical points of ¢,.
3. Main results

This paper first presents the assumptions necessary for its main theorems and lemmas.
(H;) For p > 1, we can find growth exponents 0 < /; < p—1land A; > 0,B; >0 (i=1,2,--- ,n)
satisfying the subcritical growth condition:

| ()] < Ailul" + Bi, u € R.

(H3) limsup Hltw) — (i=0,1,---,n), holds almost everywhere uniformly for # € (s;, #;11].

lual?
|u|—0
(H3) There exists a superlinear exponent o > p such that the asymptotic inequality

. oF;(t,u) - fi (t,u)u
limsup
|| >0 |u|p

<0, (@=0,1,---,n),

holds almost everywhere uniformly for ¢ € (s;, #;41].
(H4) There are positivity subsets €; C (s;, ti+1], meas (€2;) > 0 where the nonlinear potential satisfies

F.(t
iminf £-6 0
lul—oo ul?

>0, i=0,1,---,n),

uniformly for almost every ¢ € Q,.

Remark 3.1. (On conditions (H3) and (Hy)). The requirement of “uniform convergence for almost
every t” is sufficient for the following reasons:

1) Measurability: For a fixed t, the limit in u, when uniform for almost every t, results in a limit
function f(t) that is measurable in t. This is because the limit is ultimately taken over a sequence of
measurable functions (in t), and uniformity outside a set of measure zero preserves measurability.

2) Integrability control: Combined with the growth assumptions, this uniform convergence
condition provides a uniformly integrable bound for sequences like & |’£t|17) This is crucial for applying
convergence theorems (e.g., the Lebesgue dominated convergence theorem), allowing the interchange
of limits and integrals, which is essential for establishing the continuity of the energy functional in our

variational framework.

Thus, “uniform convergence for almost every ¢’ is a condition that is weaker than uniform
convergence everywhere, yet sufficiently strong to ensure mathematical rigor in our analysis.
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Lemma 3.1. Given the validity of conditions (H,) and (H3), the energy functional ¢, fulfills the PS-
condition.

Proof. Consider a sequence {i}ue in Ey” with {@, (i)}, bounded and lim ¢’, (u,,) = O.

Consequently, we can find N > 0 satisfying the uniform bounds:

loa ()l < N, ||(,0’A (um)”* <N, meN, 3.1)

with ||-||, being the dual space norm of E;”.
We proceed by contradiction to prove the boundedness of {u,,}. Suppose {u,,} is unbounded, then
ltt]| — o0. Let v, = ”Z"’”, then ||v,,]| = 1. According to Lemma 2.4, assuming v,, — v, in E;”, then

Vm — Vo in C' ([0,T],R), as m — oco. Combining Lemma 2.4, Remark 2.1, and condition (H,), it
follows from (3.1) that there is a fixed constant N; > 0 satisfying

a o
(; - I)Mollumllp < ;M(Ilumll”) — M (|luml”) ll2tnll”

= 0@ (um) = ¢ ) thy — opt Z Ji (i (1)) + Z L (i (1)) t (1)

i=1 i=1

1y f (F 2,y (1)) = f; (1t (1) 1, (1) dt
i=0 Vi

< Ny (1+ ) + o Y

(AiK’f“ [
i=1

+ B,K m
I+ 1 |17 ||)

e S (AR Tl + Bl

i=1
n

+ay f (O F oty () = £ (01 1) 0, () .
0 VS

i=

From ||u,,|| — oo, it follows that

Ny (1 + ||, S (AK T " BiK ||y,
(g—l)Mollvmllps LA A ) Z( [l lu II)
p

217 I\l + Dl il
i (A,-Klf“numn’f“ Bl-KHumn)
S\ |l 21" (3.2)

5 [ @ (10 (0) = £ 11 (1) 0, (D)

lluel”

+A4

From (Hj3), it follows that there exists Q; C (s, ti41], meas(Q;p) = 0, such that the asymptotic
inequality

Fi t, = Ji(t,
limsupo- u) = filt.wu <0
|u]—c0 |u|p
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holds uniformly for 7 € (s;, #;+1] \Qp. We assert that

limsup L1 tn ) = i Gt D)t & - 00 I\, (3.3)

m—sco lleell”

If it does not exist, then there exists 7 € (s;, ti+1] \Q; and a subsequence (relabeled as {u,,}) satisfying

I o Fi(to, uy, (1)) — fi (to, y (to)) uy, (to)
imsup >

m—00 lluel”

0. (3.4)

Assuming the boundedness of {u,, (#;)}, we can find N, > 0 satisfying |u,, (#9)| < N,, Ym € N. Since f;
is continuous on €;g, it follows that

o F; (to, uy (1)) — fi (to, u (o)) wy (t0) < (c+1N,
(71 T lunll?

-0, m > oo,

which contradicts (3.4). Therefore, {u,, (ty)} admits a subsequence exhibiting divergence: |u,, (t))| —
oo, m — o0, Hence,

o F; (1o, n (10)) — fi (to, Uy (t0)) tm (f0)

limsup

m—co llet,ll”
F; (to, u,, (¢ — [;i (o, Uy (£ m (£
— limsup o F; (to, u ( 0))|u {t()l(; Uy, (t0)) t (o) v,y ()
m—oo m \t0
Fi Lo, Up, (& — Ji (o, Uy, (1 m (& .
= limsup — (o, u (0))|u {f()l(;’ b (o)) i G0) ;. Vi (0)I”
m—oo m L0 m—oo
<0.

This contradicts (3.4). Hence, (3.3) holds.
Through Eqgs (3.2) and (3.3), it follows that lim sup (% - I)Mollvmllp < 0. The condition o > p

m—00

implies the convergence |[v,||” — 0 as m — oo, which contradicts ||v,|]| = 1. As a result, {u,} is
energy-bounded in E;”.

The following proves that u,, — u in E;”. Indeed, by reflexivity of E;”, we may extract a

subsequence (still denoted u,,) converging weakly: u, — u in E;”. Consequently, u,, — u in

AIMS Mathematics Volume 10, Issue 11, 26293-26312.
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C'([0,T],R). Equation (2.4) shows that

(@' () =" (W), ty — 1)

T
= M (|ju,|l") fo (@) (6, (§ DS um ) = 6, (§ DT u®)) (§ D o (6) = u (1)) dt
T
+ (M (lunll”) = M (llul]?)) fo h(t) ¢y (§D5u () (§DF (i (1) — u (1)) dt

+ M (llul”) ZO f 0 (B G () = 8y @ (0)) ) w0
+ (M () - M(||u||ﬁ)>i] f " 408y ) (0 () - u () di
- Azoj f ot (0) = o000 i ) — w ()

u Zl (L Gt (1)) = T e (1)) (e (1) = (8.

From Lemma 2.4 and the boundedness of M (||u,,||”) — M (||u]|”), it follows that

T
(M (|t l”) = M (lull)) fo h(@®) ¢, (§D7u @) (5D (1) = u (1)) dt — 0,m — oo,

O ) = M) Y [ @08 o0 (a0 = @)t = 0. = o0,
i=0 Vi

(¢ () — ¢, (W), ty, —u) = 0, m — oo,

(L (i (1)) = 1; () (4 (1) — (1)) = 0, m — oo,
fH (fi (@ up (1) = fi (8, u (D)) (u (1) —u (D) dt = 0, m — oo.

According to [27, Eq (2.2)], we can find ¢y, ¢; > 0 satisfying
T
M (lulI7) f (@) (6 (5D un () = 6, (§DFu ) (§DF o () = u (@) dt
0

+ M () D f a0 (6 0 1) = B @) 0 () — u (@) dt
i=0 VSi

>

0 (IS D2 un(o)| +|S Dur)|)*" i (un@l+u@))*™”

T h CDam _CD(Y 2 n fiv _ 0
c2M<||um||P)( LA AL S ‘Mdt),l <p<2.
i=0

In summary, when p > 2, |lu,, — u|| = 0,m — +oo.

lerM (i) ( B R [SDzu, (1) =S Deu | dr + 20 S a @l (0 - u(rw’dr) P22,
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In the case 1 < p < 2, the Holder’s inequality implies

T
f h(@) [SDfuy (8) = $DFu @ dt
0

< 2(171)2(2p>[f h (t) |CDaum (t) CDQ ( )| ]p
0 ([SDzu, 0] + [SDRu0)])"

-

and
) f " a Ol (0 - u P
e p>(z f a(®) lun () — u (@) ) (o]
£ (it O + [ OF7 ) "
Consequently,
T
M (") [ f 1 (@) (8 (§ D um () = &, (607 ) (6D i (1) = u (1)) dr
0
> f a0y W (1)) = By @) U () = u (0) dt}
i=0 *Si
r
—_ p)CZM (lell?) (f (D) |6:D?um (t) - ngu ([)|pdt)
2P X (lull + Nl [Wo
+(Z [ awu0-u (r)V’dr]p
i=0 VSi
M (|lu1”) oo e ull? |
T2 xemax (207 1) (el + ]
To summarize, ||u,, — ul| = 0,m — +oo. That is, u,, = uin E;". O

Ligli+l 4 B(S) > 0, then

li+1

Theorem 3.1. If conditions (H,)—(H4) hold and the constant A = AZ??: —u 21 (

foreach A € (O ), problem (1.1) possesses at least two distinct weak solutions.

A
> k167
Proof. Denote by B, the open ball of radius r centered at the origin in the space E;””. Here, dB, stands

for the boundary of B,, and B, for its closure. Standard arguments demonstrate the weak closedness
and boundedness of B 5. Through meticulous verification, we demonstrate that ¢, («) is w.L.s.c. in Eg ’

According to Lemma 2.7, ¢, («) attains a local minimizer u, within B g5 that is, ¢, (1p) < ¢, (0) =0
By hypothesis (H,), when k > 0, i = 0,1,--- ,n, one can find 6 € (0, k) ensuring that for a.e.
t € (s;, tiv1], u € R satisfying |u| < 9, the following holds:

|Fi (t,w)] < klul”. (3.5)
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Assume ||u|]| < % By Lemma 2.6, we have ||u||,, < 6. Then for u € 9B,,(r <

Lemma 2.6, (H,), and (3.5), we obtain

%), combining

ea(u) 2 M(Ilull”)—/UcTK”Ilullp—#Z( || [ +BKIIMII)

> (% - /lkTKp) P — “Z(

Then, for all u € OB 5, We have

1,+1

AR B,-Kr).

l

M, Bl
(,oﬂ(u)>(?—/lkTKp)——,u ( 6’“+B§) N,.

Given that 4 € (0, ﬁ),
inf,cpp Rz () > @ (o).

it follows that ¢, (1) = N, > 0 > ¢, (up) holds for all u € B 5. Therefore,

For implementation purposes, each segment i = 0,1,---,n under constraints (H3)—(H;) with
_ 0 . . o,
continuous f; generates design parameters p > (”‘;)TA;KP, N3 > 0 and operational domain €; (positive
measure) satisfying
I (1, u)] > apfpmv’ ~Ns, reQ ueR. (3.6)

Select ug (1) € E;” with [lugl| < K and fQ lup (H)|Pdt = 1. For & > 0, it follows from (3.6) and (H,) that,

uo(t;)

o1 (Eup) < M(Ilé-’uoll”) AZ f Fi(t, fuo(t))dtﬂtz f I; (s)ds

0¢p

M
< pf ol = A2+ 1) L PR

+A Z Nimeas ()
i=0

n A l+1é‘;l+l L1
+MZ(T||M0|| +B§K||uo||)

~ A+ 1) = )§p+/lZN3meas(Q)

K2(l+1) 1i+1
+ Z( f Bisz).

(@—p)M°K?

prA(n+1)

the existence of u; > 0 with ||u;]|| > % that satisfies inf ey, ¢4 () > ¢, (u;). According to Lemmas 2.8
K

Noting that p > it follows that ¢, (é1y) — —co, & — oo. A rigorous analysis demonstrates

and 3.1, it is straightforward to see that there exists u, € E;” satisfying ¢’, (uz) = 0 and ¢, (uy) >
max {p, (1p) , ¢, (u1)}. In conclusion, u, and u, are two distinct weak solutions to problem (1.1). O

In what follows, we examine the scenario in problem (1.1) with the decomposition f(t,u) =
fa(t,u) + fo(t,u). In which f;(¢,u) exhibits superlinear growth as |u| — oo, whereas f;(¢, u) shows
sublinear behavior at infinity. We formally define the integral functions Fj; (f,u) = fou fa(t, s)ds
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and Fp (t,u) = fou fi (¢, s)ds for subsequent analysis. The rigorous mathematical assumptions are
enumerated below:
(Hy") Giveni=0,1,---,n, one can find o > p for which lim

|u| =00

Fiy(t,u)
Iul(r

= oo, uniformly in ¢ € (s;, t;+1];

(H;") Foreachi = 0,1,--- ,n, one can find positive numbers ky > 0, D > 0 for which f;; (t,u) u —
oF; (t,u) > —kou? is satisfied whenever ¢ € (s;, t;11], [u| > D;

(Hy)Giveni=0,1,--- ,n,onecanfind 1 <7 < pand K € L' ((s;, t;x1], R") for which |f (¢, u)| <
K, (1) [ul""! is satisfied whenever ¢ € (s;, #;11], u € R;

(Hs) Giveni = 0,1,--- ,n, one can find % € C' ((s;, t;1],R*Y) for which Fp, (¢, u) > G () Ju|” is

satisfied whenever ¢ € (s;, t;1], u € R.
Lemma 3.2. The validity of conditions (Hy), (Hy )—(H,") implies that ¢, fulfills the PS-condition.

Proof. Our first step establishes the boundedness of {u,,},,cx C E,”. We verify this by contradiction.
Assume that ||u,,|| = co,m — oco. Let v, = ”Z—’"”, then ||v,,|| = 1. According to Lemma 2.4, if v,, — v

in Eg’p ,then v,, = vy in C' ([0, T],R) as m — co. By virtue of hypothesis (H,4"), we obtain the growth
conditions:

1
fir (1, 1) ul < Ky (@O |ul” Fi (1 )] < —K ()l (3.7)

The subsequent analysis divides into two mutually exclusive cases: the trivial case vy = 0 and the
nontrivial case vy # 0.

Case 1: vy = 0. In view of assumption (H3") and the continuity of f;, we can find a constant k; > 0
for which the following inequality holds:

fatwu—oFy(t,u) > —kou” — ki, te€(s,tim], uecR. (3.8)
Therefore, from (3.1), (3.7), and (3.8), we obtain

_ ON 4 Nllull  oa W) = &' W) t

1) =
o lletll” - [174] 3
1 U (1)
T H
- (5 ) 1)M° " Tl Z; (“fo 1i (s) ds = 1 (p (6)) <r,~>)
el Z.: f (i 2t (1))t (1) = T F (1, 1 (1))

o U < Ao L4l
>|==-1|My- —— —— + Ailunlls + (0 + 1) Bl
_(p ) O TP g ((li+1 )Ilu | (o + 1) Biljuy| )

i=1

1 m fiv1 o
- Zf (Kolinl” + ki + 1+ )56, (0 ")
mi =0 Vs

n Al
. (Z _ 1) My- Y ((_(’ + A,.) K a1 + (o + 1) BiK ||um||)

P laal? £\ + 1

AT A o
= o Kl + ) = (1 S ) 1963 K
] A

> (Z - I)Mo — ATkoK?, m — 0.
P
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This indicates that {u,,} is bounded in E;”

Case 2: vog # 0. Let Q'; = {t € (s;,tie1] : vo (1) > 0}, i =0,1,--- ,n, then meas (Q’;) > 0. Observe
that ||u,,|| — oo, (m — o) together with the identity |u,, (t)| = |v,, (¢)|-||lu,,|| necessarily leads to |u,, ()] —
00, (m — o0) when t € Q’;. We therefore deduce from the combination of (3.1) and (3.7) that

n fi1
> @
i=0 Si
1 1 u n U (1) n tirl
:HWNW+EMWWHE;L n@w—;ﬁ Fo (tu(t))dt

N M (A 1 (7
< =+ —lluall” + £ (— " + Bi”um”oo) + —f K () |u (D] dt
p —\li+1 T Jo

A A A
N MO u n A'KIH'] KT

<=+ — mp+_ — mli+l+BiK m + —[IK mT'
) p/lllu l 1 2 ( 11 lletll llet,nll . IFC I et

Observing the parameter constraints oo > p, where 1 < [; + 1 < p and simultaneously 1 < 7 < p, we
consequently derive

th il (’ ”’"(t)) di<o(l), m— o (3.9)

Nevertheless, through an application of Fatou’s lemma combined with hypothesis (H,"), one obtains

lim Z f'“ il (t um (t)) Zf il |(|; I/ﬁn (t))
i=0 m

_ il (t U (t)) o
J%Zf G

This contradicts (3.9). In summary, the sequence {u,,},,c 1s bounded in Eg 7. Subsequently, employing
an analogous approach to that used in proving Lemma 3.1, we establish the convergence ||u,, — u|| — 0
in the space E;” when m — co. i

Theorem 3.2. Under hypotheses (H,), (Hy )—(H4"), and (Hs), if the functions I(u)(i = 1,2,--- ,n)
and fi(t,u)(i = 0,1,--- ,n) are odd with respect to u, then (1.1) possesses an infinite number of weak
solutions.

Proof. Clearly, ¢, is an even function and ¢,(0) = 0. Let {e,,} _, be an orthonormal basis of E
||eq|| =1, <eq, eq/> =0, 1 < g # ¢'. For each natural number m, let E,, be the linear span of the vectors

e, ey, - ey, and let S, denote the set of all unit vectors in E,,. So, for every vector u € E,,, we can
find real numbers 6y, 6,, - - - , 6,, satisfying
u()= > 0je;(1), te[0,T]. (3.10)

J=1
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In other words,

tit1

T n
lullP = f h(t)|gD§’u(t)|pdt+Z f a (t) |u (1) dt
i=0 VSi
T n tit+1
ej?(fo h(t)|ngej(t)|pdt++Zf a(t)|ej(t)|pdt) (.11)
i=0 Vi
le” = 8-
Jj=0

Conversely, hypothesis (Hs) guarantees that for each open bounded interval I1; contained in (s;, #;41]
(where i ranges from O to n), we may select a uniform lower bound % > 0 ensuring

(=]

DM 2DV

J

I
(=]

Fp (t,u (1) 2 76 @) lu O = Kslu (O (3.12)

holds throughout IT; X R. Regarding the open sets I1; previously introduced, the growth condition (H,")
requires positive coefficients K, s with the property that

Fi (6, u (1) = Kalul” = K (3.13)

holds uniformly for all # € I1; and u € R. Therefore, for Yu € S, it follows from (3.11)—(3.13) that

1 n it n nu(t;)
ea O) = - Mippull” = 3 ) f Fi(tmue(@)dt+p ). f i (s)ds
i=0 *Si i=1 70

nut;)

MO n n
S—Ilnull”—ﬂZf F,-(t,nu(t))dHqu 1:(s)ds

p i—0 V1L i=1 V0
M() p n m

Ly - s,y f 2,0

p i=0 Y |21
—An"K f

3201 )

< dt + AKsT

i

Zm: Oie; (1)

Tl i+

’ " (AK _
dt+p ) (%nun“l * B,-Knnun)
i=1 !

i ]‘:1
MOn? n m T
-2 —/117“7(4Zf > 0je; )| dt + AKsT
p i=0 Y [j=1
n m ’ nAK i
- AN"K Oie; (1) dt + ————— + BiK7p).
n 3;“[&;]@() ﬂ;( 1 n)

T

Furthermore, one may readily establish the positivity: }; fn 2. Oje; (t)' dt > 0. Noting the parameter
i=0 7 |j=1

constraints | <7< p,oc>p,and1 <[;+1 < p({foralli =1,---,n), we can find positive numbers
¢, w guaranteeing
pa(wu) < =&, u€es,. (3.14)
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Let S = {wu:ues,}, ® = {((1)1,(,()2, oL wy) ERM Y 9;’ < a)p}. From (3.14), it follows that
=1

m

@1 (1) < =&, u € S©. Combined with the even function ¢, € C! (Eg’p, R), we obtain ¢ c ¢ * € Z.
As a direct consequence of (3.10) and (3.11), we deduce an odd C'-smooth boundary mapping
Y : 00 — S« with homomorphic properties. From the genus theory, the energy level set satisfies:

y(9F) 2y (S =m. (3.15)

Therefore, gaf € X,,, which implies X,, # ¢. Let z,, = infyes, sup,cy9a (1). The minimax sequence
satisfies —co < z,, < —¢ < 0, as guaranteed by (3.15) and the lower semicontinuity of ¢, in E;”". In
other words, Ym € N, z,, € R™. Consequently, an application of Lemma 2.9 combined with Remark 2.2
shows that ¢, admits an infinite sequence of nontrivial critical points. In other words, (1.1) possesses
an infinite number of nontrivial solutions in the weak sense. |

Example 3.1. Leta =0.6,h(t) =T =1,n=1,p=3,1= %,,u = 2. We now study an FBVPs:
M (1) (DY (65 (6D u )))) + @ (1) ¢ (u ()
_w(l+sing ui 2+ cosn)

4 4
A (M (Il (DIF)) DT (¢3S DY Sw)) (1) = 24 (u (11)),

M (1) D7 (85 D) 00 = M ([l (D) D7 (5§ DY) 11 € 1,11,
M ([l ) D7 (5§ DESw) 50 = M (s ) D7 (85 DP %)) 5,
u(0) = u(l) =0,

NS (Si5ti+l]ai = 0’17

(3.16)

where 0 = s < t) = % <8 = % <ty = 1. Let us select M (u) = 5+ {—,u € R*,a(t) = ln(l +t2),
where t € [0,1]. Then, we have ay = 0 < a(t) < In2 = a°. Choose I,(u) = sinu, and there exist
A = B =21, = %, such that condition (H) holds. Integration gives the potential terms: F; =

4
61 5 3 . . .
uitsmb (lgbm”, Fp = —3“3(2: SO Through calculation, when we set ky = 2,D = 3,0 = 4, it can be verified

that both conditions (H,") and (H3") are fulfilled. With the choices T = %, K (1) = % +5,9% () = %,
hypotheses (H,") and (Hs) hold. Trivially, both fi(t,u) and I,(u) possess odd parity in the u-variable.
Whence, the full satisfaction of Theorem 3.2°s assumptions yields the existence of an unbounded
sequence of nontrivial weak solutions to (3.16).

4. Conclusions

This study has established the existence and multiplicity of weak solutions for a class of Kirchhoff-
type fractional p-Laplacian boundary value problems incorporating mixed instantaneous and non-
instantaneous impulses. The main contributions are twofold. First, by employing the mountain
pass theorem, we have proven the existence of at least two nontrivial weak solutions under growth
assumptions that are strictly weaker than the classical Ambrosetti-Rabinowitz super- p-linear condition
(Theorem 3.1). Second, utilizing the genus theory in critical point theory, we have demonstrated the

AIMS Mathematics Volume 10, Issue 11, 26293-26312.



26310

existence of multiple weak solutions when the nonlinear term exhibits a combined superlinear and
sublinear growth structure (Theorem 3.2).

The novelty of this study is primarily reflected in the following aspects: First, a systematic
weakened variational framework suitable for mixed impulse problems has been constructed, proposing
growth assumptions that are more lenient than the classical Ambrosetti-Rabinowitz condition. Second,
an analytical approach has been developed to simultaneously handle concave-convex nonlinearities
and weakened super-p-growth conditions, establishing a more universal theory for the existence and
multiplicity of solutions. Third, it breaks through the dependence of traditional variational methods on
strong growth conditions, opening up new avenues for studying impulse problems under non-standard
growth conditions. Compared with the existing literature [22], this paper not only significantly relaxes
the constraints on the growth conditions of nonlinear terms but also achieves substantial breakthroughs
in the theoretical framework and research methodology.

From an application perspective, the theoretical model established in this work shows
promising potential for describing complex dynamical systems characterized by instantaneous
mutations and memory-dependent after-effects. Typical application scenarios include simulating the
mechanical response and recovery process of composite materials under impact loads, modeling the
pharmacokinetic behavior of rapid drug injection coupled with sustained release, and analyzing self-
recovering circuit systems subject to transient disturbances. These potential connections provide viable
pathways for translating the theoretical findings into engineering practice.

Looking ahead, several promising research directions emerge from this work. On the theoretical
front, the present framework could be extended to problems involving variable exponents or more
general fractional operators. Investigating critical growth conditions also represents a meaningful
direction, though this would likely require developing new analytical tools. From an applied
perspective, we recommend focusing on two key tasks: First, developing effective numerical
computation methods (such as finite element methods) to visually demonstrate the dynamic
characteristics of weak solutions and validate theoretical findings; second, incorporating stochastic
disturbances by establishing random impulse models to more accurately describe uncertainties in
practical systems. These extended investigations would effectively compensate for the limitations of
purely theoretical analysis and facilitate the translation of research outcomes into practical applications.
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