Breast cancer is still one of the leading causes of death in women, and finding it early is essential for treatment to work. This study presents a sizeable deep learning architecture for classifying and segmenting breast ultrasound images. It utilizes federated learning to maintain patients' data privacy. The proposed pipeline begins with a thorough preprocessing stage that includes scaling, normalizing, and advanced image augmentation using affine and contrast-based changes. We employ four convolutional neural network architectures for hierarchical classification: ResNet50, EfficientNet, VGG16, and Xception. First, we distinguish between typical cases and abnormal ones. We then further classify abnormal images into benign and malignant classes. We employ an ensemble technique that combines the outputs of ResNet50 and EfficientNet through a weighted average optimized by a genetic algorithm to enhance the model's resilience. This method dramatically improves the classification's effectiveness, achieving higher accuracy and reliability. We use a federated learning system with the federated averaging (FedAvg) algorithm to improve data privacy. Our federated architecture maintains high accuracy while ensuring that the raw data stays at its local source. We test it with both single-client and multi-client setups. Ultimately, we employ a hybrid architecture that combines the feature maps of ResNet50 and EfficientNet to segment images of lesions known to be malignant. This yields significant spatial agreement with expert annotations. The Dice score and intersection over union (IoU) are two evaluation criteria that demonstrate the effectiveness of our segmentation model. This all-in-one system offers accurate and privacy-conscious breast ultrasound analysis, indicating that it could be beneficial in decentralized healthcare settings. The suggested method was tested using a standard breast magnetic resonance imaging (MRI) dataset, demonstrating its robustness and applicability in various situations. We used the accuracy, precision, recall, and F1-score to measure performance, and we found that the classification was accurate up to 96%. This paper discusses a scalable system that maintains people's privacy by utilizing ensemble learning, optimization-driven feature selection, and federated learning to aid doctors in early breast cancer detection using MRI data. This will make it easier for doctors to use this system in a broader range of medical tests.
Citation: Karim Gasmi, Ibtihel Ben Ltaifa, Moez Krichen, Shahzad Ali, Omer Hamid, Mohamed O. Altaieb, Lassaad Ben Ammar, Manel Mrabet, Mahmood Mohamed. Privacy-preserving breast disease detection via federated GA-optimized ensembles learning[J]. AIMS Mathematics, 2025, 10(11): 26260-26292. doi: 10.3934/math.20251155
Breast cancer is still one of the leading causes of death in women, and finding it early is essential for treatment to work. This study presents a sizeable deep learning architecture for classifying and segmenting breast ultrasound images. It utilizes federated learning to maintain patients' data privacy. The proposed pipeline begins with a thorough preprocessing stage that includes scaling, normalizing, and advanced image augmentation using affine and contrast-based changes. We employ four convolutional neural network architectures for hierarchical classification: ResNet50, EfficientNet, VGG16, and Xception. First, we distinguish between typical cases and abnormal ones. We then further classify abnormal images into benign and malignant classes. We employ an ensemble technique that combines the outputs of ResNet50 and EfficientNet through a weighted average optimized by a genetic algorithm to enhance the model's resilience. This method dramatically improves the classification's effectiveness, achieving higher accuracy and reliability. We use a federated learning system with the federated averaging (FedAvg) algorithm to improve data privacy. Our federated architecture maintains high accuracy while ensuring that the raw data stays at its local source. We test it with both single-client and multi-client setups. Ultimately, we employ a hybrid architecture that combines the feature maps of ResNet50 and EfficientNet to segment images of lesions known to be malignant. This yields significant spatial agreement with expert annotations. The Dice score and intersection over union (IoU) are two evaluation criteria that demonstrate the effectiveness of our segmentation model. This all-in-one system offers accurate and privacy-conscious breast ultrasound analysis, indicating that it could be beneficial in decentralized healthcare settings. The suggested method was tested using a standard breast magnetic resonance imaging (MRI) dataset, demonstrating its robustness and applicability in various situations. We used the accuracy, precision, recall, and F1-score to measure performance, and we found that the classification was accurate up to 96%. This paper discusses a scalable system that maintains people's privacy by utilizing ensemble learning, optimization-driven feature selection, and federated learning to aid doctors in early breast cancer detection using MRI data. This will make it easier for doctors to use this system in a broader range of medical tests.
| [1] |
M. Arnold, E. Morgan, H. Rumgay, A. Mafra, D. Singh, M. Laversanne, et al., Current and future burden of breast cancer: Global statistics for 2020 and 2040, Breast, 66 (2022), 15–23. https://doi.org/10.1016/j.breast.2022.08.010 doi: 10.1016/j.breast.2022.08.010
|
| [2] |
M. Krichen, M. S. Abdalzaher, Performance enhancement of artificial intelligence: A survey, J. Netw. Comput. Appl., 232 (2024), 104034. https://doi.org/10.1016/j.jnca.2024.104034 doi: 10.1016/j.jnca.2024.104034
|
| [3] |
S. A. Taghanaki, K. Abhishek, J. P. Cohen, J. Cohen-Adad, G. Hamarneh, Deep semantic segmentation of natural and medical images: A review, Artif. Intell. Rev., 54 (2021), 137–178. https://doi.org/10.1007/s10462-020-09854-1 doi: 10.1007/s10462-020-09854-1
|
| [4] |
N. I. Yassin, S. Omran, E. M. El Houby, H. Allam, Machine learning techniques for breast cancer computer aided diagnosis using different image modalities: A systematic review, Comput. Meth. Prog. Bio., 156 (2018), 25–45. https://doi.org/10.1016/j.cmpb.2017.12.012 doi: 10.1016/j.cmpb.2017.12.012
|
| [5] |
K. Suzuki, Overview of deep learning in medical imaging, Radiol. Phys. Technol., 10 (2017), 257–273. https://doi.org/10.1007/s12194-017-0406-5 doi: 10.1007/s12194-017-0406-5
|
| [6] |
Y. Qiu, S. Yan, R. R. Gundreddy, Y. Wang, S. Cheng, H. Liu, et al., A new approach to develop computer-aided diagnosis scheme of breast mass classification using deep learning technology, J. X-Rray Sci. Technol., 25 (2017), 751–763. https://doi.org/10.3233/xst-16226 doi: 10.3233/xst-16226
|
| [7] |
M. H. Yap, G. Pons, J. Marti, S. Ganau, M. Sentis, R. Zwiggelaar, et al., Automated breast ultrasound lesions detection using convolutional neural networks, IEEE J. Biomed. Health Inform., 22 (2018), 1218–1226. https://doi.org/10.1109/jbhi.2017.2731873 doi: 10.1109/jbhi.2017.2731873
|
| [8] |
H. Ju, Y. Cui, Q. Su, L. Juan, B. Manavalan, CODENET: A deep learning model for COVID-19 detection, Comput. Biol. Med., 171 (2024), 108229. https://doi.org/10.1016/j.compbiomed.2024.108229 doi: 10.1016/j.compbiomed.2024.108229
|
| [9] |
H. Ghazouani, Multi-residual attention network for skin lesion classification, Biomed. Signal Process. Control, 103 (2025), 107449. https://doi.org/10.1016/j.bspc.2024.107449 doi: 10.1016/j.bspc.2024.107449
|
| [10] |
K. Gasmi, A. Alyami, O. Hamid, M. O. Altaieb, O. R. Shahin, L. Ben Ammar, et al., Optimized hybrid deep learning framework for early detection of Alzheimer's disease using adaptive weight selection, Diagnostics, 14 (2024), 2779. https://doi.org/10.3390/diagnostics14242779 doi: 10.3390/diagnostics14242779
|
| [11] |
P. C. Gøtzsche, Beyond randomized controlled trials: Organized mammographic screening substantially reduces breast carcinoma mortality, Cancer, 94 (2002), 578. https://doi.org/10.1002/cncr.10224 doi: 10.1002/cncr.10224
|
| [12] |
A. Chong, S. P. Weinstein, E. S. McDonald, E. F. Conant, Digital breast tomosynthesis: Concepts and clinical practice, Radiology, 292 (2019), 1–14. https://doi.org/10.1148/radiol.2019180760 doi: 10.1148/radiol.2019180760
|
| [13] | S. V. Sree, E. Y. K. Ng, R. U. Acharya, O. Faust, Breast imaging: A survey, World J. Clin. Oncol., 2 (2011), 171–178. https://doi.org/10.5306/wjco.v2.i4.171 |
| [14] | L. Fass, Imaging and cancer: A review, Mol. Oncol., 2 (2008), 115–152. https://doi.org/10.1016/j.molonc.2008.04.001 |
| [15] |
K. M. Brindle, Molecular imaging using magnetic resonance: New tools for the development of tumour therapy, Brit. J. Radiol., 76 (2003), S111–S117. https://doi.org/10.1259/bjr/50577981 doi: 10.1259/bjr/50577981
|
| [16] |
M. Salhab, W. Al Sarakbi, K. Mokbel, The evolving role of the dynamic thermal analysis in the early detection of breast cancer, Int. Semin. Surg. Oncol., 2 (2005), 8. https://doi.org/10.1186/1477-7800-2-8 doi: 10.1186/1477-7800-2-8
|
| [17] |
D. Q. Zeebaree, A. M. Abdulazeez, D. A. Zebari, H. Haron, H. N. A. Hamed, Multi-level fusion in ultrasound for cancer detection based on uniform LBP features, Comput. Mater. Contin., 66 (2021), 3363–3382. https://doi.org/10.32604/cmc.2021.013314 doi: 10.32604/cmc.2021.013314
|
| [18] |
P. Pathak, A. S. Jalal, R. Rai, Breast cancer image classification: A review, Curr. Med. Imaging, 17 (2021), 720–740. https://doi.org/10.2174/0929867328666201228125208 doi: 10.2174/0929867328666201228125208
|
| [19] | M. Amrane, S. Oukid, I. Gagaoua, T. Ensari, Breast cancer classification using machine learning, In: 2018 Electric electronics, computer science, biomedical engineerings' meeting (EBBT), Istanbul: IEEE, 2018, 1–4. https://doi.org/10.1109/ebbt.2018.8391453 |
| [20] |
B. S. Abunasser, M. R. J. Al-Hiealy, I. S. Zaqout, S. S. Abu-Naser, Convolution neural network for breast cancer detection and classification using deep learning, Asian Pac. J. Cancer Prev., 24 (2023), 531–544. https://doi.org/10.31557/apjcp.2023.24.2.531 doi: 10.31557/apjcp.2023.24.2.531
|
| [21] | S. Murugan, B. M. Kumar, S. Amudha, Classification and prediction of breast cancer using linear regression, decision tree and random forest, In: 2017 International conference on current trends in computer, electrical, electronics and communication (CTCEEC), Mysore: IEEE, 2017,763–766. https://doi.org/10.1109/ctceec.2017.8455058 |
| [22] |
P. Bhuvaneswari, A. B. Therese, Detection of cancer in lung with k-nn classification using genetic algorithm, Proc. Mater. Sci., 10 (2015), 433–440. https://doi.org/10.1016/j.mspro.2015.06.077 doi: 10.1016/j.mspro.2015.06.077
|
| [23] |
V. J. Kadam, S. M. Jadhav, K. Vijayakumar, Breast cancer diagnosis using feature ensemble learning based on stacked sparse autoencoders and softmax regression, J. Med. Syst., 43 (2019), 263. https://doi.org/10.1007/s10916-019-1397-z doi: 10.1007/s10916-019-1397-z
|
| [24] | Y. A. Hamad, K. Simonov, M. B. Naeem, Breast cancer detection and classification using artificial neural networks, In: 2018 1st Annual international conference on information and sciences (AiCIS), Fallujah: IEEE, 2018, 51–57. https://doi.org/10.1109/aicis.2018.00022 |
| [25] |
M. F. Akay, Support vector machines combined with feature selection for breast cancer diagnosis, Expert Syst. Appl., 36 (2009), 3240–3247. https://doi.org/10.1016/j.eswa.2008.01.009 doi: 10.1016/j.eswa.2008.01.009
|
| [26] | S. K. Prabhakar, H. Rajaguru, Performance analysis of breast cancer classification with softmax discriminant classifier and linear discriminant analysis, In: Precision medicine powered by health and connected health, 2017,197–201. https://doi.org/10.1007/978-981-10-7419-6_33 |
| [27] |
S. ÖZŞEN, R. Ceylan, Comparison of AIS and fuzzy c-means clustering methods on the classification of breast cancer and diabetes datasets, Turk. J. Elec. Eng. Comp. Sci., 22 (2014), 1241–1254. https://doi.org/10.3906/elk-1210-62 doi: 10.3906/elk-1210-62
|
| [28] |
M. Kumar, S. Singhal, S. Shekhar, B. Sharma, G. Srivastava, Optimized stacking ensemble learning model for breast cancer detection and classification using machine learning, Sustainability, 14 (2022), 13998. https://doi.org/10.3390/su142113998 doi: 10.3390/su142113998
|
| [29] |
M. Nasser, U. K. Yusof, Deep learning based methods for breast cancer diagnosis: A systematic review and future direction, Diagnostics, 13 (2023), 161. https://doi.org/10.3390/diagnostics13010161 doi: 10.3390/diagnostics13010161
|
| [30] |
V. Nemade, S. Pathak, A. K. Dubey, A systematic literature review of breast cancer diagnosis using machine intelligence techniques, Arch Computat. Methods Eng., 29 (2022), 4401–4430. https://doi.org/10.1007/s11831-022-09738-3 doi: 10.1007/s11831-022-09738-3
|
| [31] |
C. Cong, X. Li, C. Zhang, J. Zhang, K. Sun, L. Liu, et al., MRI-based breast cancer classification and localization by multiparametric feature extraction and combination using deep learning, J. Magn. Reson. Imaging, 59 (2024), 148–161. https://doi.org/10.1002/jmri.28713 doi: 10.1002/jmri.28713
|
| [32] |
H. U. Rashid, T. Ibrikci, S. Paydaş, F. Binokay, U. Çevik, Analysis of breast cancer classification robustness with radiomics feature extraction and deep learning techniques, Expert Syst., 39 (2022), e13018. https://doi.org/10.1111/exsy.13018 doi: 10.1111/exsy.13018
|
| [33] | G. Altan, Breast cancer diagnosis using deep belief networks on ROI images, Pamukkale Ünive. Müh. Bilim. Derg., 28 (2022), 286–291. https://doi.org/10.5505/pajes.2021.38668 |
| [34] |
N. M. ud din, R. A. Dar, M. Rasool, A. Assad, Breast cancer detection using deep learning: Datasets, methods, and challenges ahead, Comput. Biol. Med., 149 (2022), 106073. https://doi.org/10.1016/j.compbiomed.2022.106073 doi: 10.1016/j.compbiomed.2022.106073
|
| [35] |
X. Wang, I. Ahmad, D. Javeed, S. A. Zaidi, F. M. Alotaibi, M. E. Ghoneim, et al., Intelligent hybrid deep learning model for breast cancer detection, Electronics, 11 (2022), 2767. https://doi.org/10.3390/electronics11172767 doi: 10.3390/electronics11172767
|
| [36] |
Z. Jafari, E. Karami, Breast cancer detection in mammography images: A CNN-based approach with feature selection, Information, 14 (2023), 410. https://doi.org/10.20944/preprints202305.2209.v1 doi: 10.20944/preprints202305.2209.v1
|
| [37] | E. L. Omonigho, M. David, A. Adejo, S. Aliyu, Breast cancer: Tumor detection in mammogram images using modified alexnet deep convolution neural network, In: 2020 International conference in mathematics, computer engineering and computer science (ICMCECS), Ayobo: IEEE, 2020, 1–6. https://doi.org/10.1109/icmcecs47690.2020.240870 |
| [38] |
Y. Zhang, Y. L. Liu, K. Nie, J. Zhou, Z. Chen, J. H. Chen, et al., Deep learning-based automatic diagnosis of breast cancer on MRI using mask R-CNN for detection followed by ResNet50 for classification, Acad. Radiol., 30 (2023), S161–S171. https://doi.org/10.1016/j.acra.2022.12.038 doi: 10.1016/j.acra.2022.12.038
|
| [39] | Q. A. Al-Haija, G. F. Manasra, Development of breast cancer detection model using transfer learning of residual neural network (resnet-50), Am. J. Sci. Eng., 1 (2020), 30–39. |
| [40] |
A. R. Bushara, R. V. Kumar, S. S. Kumar, An ensemble method for the detection and classification of lung cancer using computed tomography images utilizing a capsule network with visual geometry group, Biomed. Signal Process. Control, 85 (2023), 104930. https://doi.org/10.1016/j.bspc.2023.104930 doi: 10.1016/j.bspc.2023.104930
|
| [41] |
R. Rajakumari, L. Kalaivani, Breast cancer detection and classification using deep CNN techniques, Intell. Autom. Soft Comput., 32 (2022), 1089–1107. https://doi.org/10.32604/iasc.2022.020178 doi: 10.32604/iasc.2022.020178
|
| [42] |
S. Khan, N. Islam, Z. Jan, I. U. Din, J. J. C. Rodrigues, A novel deep learning based framework for the detection and classification of breast cancer using transfer learning, Pattern Recogn. Lett., 125 (2019), 1–6. https://doi.org/10.1016/j.patrec.2019.03.022 doi: 10.1016/j.patrec.2019.03.022
|
| [43] | S. Al Garea, S. Das, Image segmentation methods: Overview, challenges, and future directions, In: 2024 Seventh international women in data science conference at Prince Sultan University (WiDS PSU), Riyadh: IEEE, 2024, 56–61. https://doi.org/10.1109/wids-psu61003.2024.00026 |
| [44] |
A. Abo-El-Rejal, S. E. Ayman, F. Aymen, Advances in breast cancer segmentation: A comprehensive review, Acadlore Trans. Mach. Learn., 3 (2024), 70–83. https://doi.org/10.56578/ataiml030201 doi: 10.56578/ataiml030201
|
| [45] |
I. R. B. Godoy, R. P. Silva, T. C. Rodrigues, A. Y. Skaf, A. de C. Pochini, A. F. Yamada, Automatic MRI segmentation of pectoralis major muscle using deep learning, Sci. Rep., 12 (2022), 5300. https://doi.org/10.1038/s41598-022-09280-z doi: 10.1038/s41598-022-09280-z
|
| [46] |
E. Michael, H. Ma, H. Li, F. Kulwa, J. Li, Breast cancer segmentation methods: Current status and future potentials, Biomed Res. Int., 2021 (2021), 9962109. https://doi.org/10.1155/2021/9962109 doi: 10.1155/2021/9962109
|
| [47] | S. Gu, Y. Ji, Y. Chen, J. Wang, J. U. Kim, Study on breast mass segmentation in mammograms, In: 2015 3rd International conference on computer, information and application, Yeosu: IEEE, 2015, 22–25. https://doi.org/10.1109/cia.2015.13 |
| [48] |
N. Karunanayake, S. Moodleah, S. S. Makhanov, Edge-driven multi-agent reinforcement learning: A novel approach to ultrasound breast tumor segmentation, Diagnostics, 13 (2023), 3611. https://doi.org/10.3390/diagnostics13243611 doi: 10.3390/diagnostics13243611
|
| [49] | H. Su, F. Liu, Y. Xie, F. Xing, S. Meyyappan, L. Yang, Region segmentation in histopathological breast cancer images using deep convolutional neural network, In: 2015 IEEE 12th international symposium on biomedical imaging (ISBI), USA: IEEE, 2015, 55–58. https://doi.org/10.1109/isbi.2015.7163815 |
| [50] |
N. M. Zaitoun, M. J. Aqel, Survey on image segmentation techniques, Procedia Comput. Sci., 65 (2015), 797–806. https://doi.org/10.1016/j.procs.2015.09.027 doi: 10.1016/j.procs.2015.09.027
|
| [51] |
L. Yu, W. Min, S. Wang, Boundary-aware gradient operator network for medical image segmentation, IEEE J. Biomed. Health Inform., 28 (2024), 4711–4723. https://doi.org/10.1109/jbhi.2024.3404273 doi: 10.1109/jbhi.2024.3404273
|
| [52] |
P. Ma, H. Yuan, Y. Chen, H. Chen, G. Weng, Y. Liu, A Laplace operator-based active contour model with improved image edge detection performance, Digit. Signal Process., 151 (2024), 104550. https://doi.org/10.1016/j.dsp.2024.104550 doi: 10.1016/j.dsp.2024.104550
|
| [53] |
Z. Xu, X. Ji, M. Wang, X. Sun, Edge detection algorithm of medical image based on Canny operator, J. Phys.: Conf. Ser., 1955 (2021), 012080. https://doi.org/10.1088/1742-6596/1955/1/012080 doi: 10.1088/1742-6596/1955/1/012080
|
| [54] |
S. Jardim, J. António, C. Mora, Image thresholding approaches for medical image segmentation-short literature review, Procedia Comput. Sci., 219 (2023), 1485–1492. https://doi.org/10.1016/j.procs.2023.01.439 doi: 10.1016/j.procs.2023.01.439
|
| [55] |
N. S. Hassan, A. M. Abdulazeez, D. Q. Zeebaree, D. A. Hasan, Medical images breast cancer segmentation based on K-means clustering algorithm: A review, Asian J. Res. Comput. Sci., 9 (2021), 23–28. https://doi.org/10.9734/ajrcos/2021/v9i130212 doi: 10.9734/ajrcos/2021/v9i130212
|
| [56] |
S. B. Shokouhi, A. Fooladivanda, N. Ahmadinejad, Computer-aided detection of breast lesions in DCE-MRI using region growing based on fuzzy C-means clustering and vesselness filter, EURASIP J. Adv. Signal Process., 2017 (2017), 39. https://doi.org/10.1186/s13634-017-0476-x doi: 10.1186/s13634-017-0476-x
|
| [57] |
C. Gallego-Ortiz, A. L. Martel, A graph-based lesion characterization and deep embedding approach for improved computer-aided diagnosis of nonmass breast MRI lesions, Med. Image Anal., 51 (2019), 116–124. https://doi.org/10.1016/j.media.2018.10.011 doi: 10.1016/j.media.2018.10.011
|
| [58] |
S. Gu, Y. Chen, F. Sheng, T. Zhan, Y. Chen, A novel method for breast mass segmentation: from superpixel to subpixel segmentation, Mach. Vis. Appl., 30 (2019), 1111–1122. https://doi.org/10.1007/s00138-019-01020-0 doi: 10.1007/s00138-019-01020-0
|
| [59] |
A. E. Ilesanmi, O. P. Idowu, S. S. Makhanov, Multiscale superpixel method for segmentation of breast ultrasound, Comput. Biol. Med., 125 (2020), 103879. https://doi.org/10.1016/j.compbiomed.2020.103879 doi: 10.1016/j.compbiomed.2020.103879
|
| [60] |
S. H. Abdulla, A. M. Sagheer, H. Veisi, Breast cancer segmentation using K-means clustering and optimized region-growing technique, Bulletin Electr. Eng. Inf., 11 (2022), 158–167. https://doi.org/10.11591/eei.v11i1.3458 doi: 10.11591/eei.v11i1.3458
|
| [61] |
X. Shen, H. Ma, R. Liu, H. Li, J. He, X. Wu, Lesion segmentation in breast ultrasound images using the optimized marked watershed method, Biomed. Eng. Online, 20 (2021), 57. https://doi.org/10.21203/rs.3.rs-137797/v1 doi: 10.21203/rs.3.rs-137797/v1
|
| [62] | A. Kaur, M. Rashid, A. K. Bashir, S. A. Parah, Detection of breast cancer masses in mammogram images with watershed segmentation and machine learning approach, In: Artificial intelligence for innovative healthcare informatics, Cham: Springer, 2022, 35–60. https://doi.org/10.1007/978-3-030-96569-3_2 |
| [63] | N. Ramadijanti, A. Barakbah, F. A. Husna, Automatic breast tumor segmentation using hierarchical k-means on mammogram, In: 2018 International electronics symposium on knowledge creation and intelligent computing (IES-KCIC), Bali: IEEE, 2018,170–175. https://doi.org/10.1109/kcic.2018.8628467 |
| [64] |
S. U. Khan, N. Islam, Z. Jan, K. Haseeb, S. I. A. Shah, M. Hanif, A machine learning-based approach for the segmentation and classification of malignant cells in breast cytology images using gray level co-occurrence matrix (GLCM) and support vector machine (SVM), Neural Comput. Applic., 34 (2022), 8365–8372. https://doi.org/10.1007/s00521-021-05697-1 doi: 10.1007/s00521-021-05697-1
|
| [65] | J. Y. Lee, K. Lee, B. K. Seo, K. R. Cho, O. H. Woo, S. E. Song, et al., Radiomic machine learning for predicting prognostic biomarkers and molecular subtypes of breast cancer using tumor heterogeneity and angiogenesis properties on MRI, Eur. Radiol., 32, (2022), 650–660. https://doi.org/10.1007/s00330-021-08146-8 |
| [66] |
L. Hirsch, Y. Huang, S. Luo, C. R. Saccarelli, R. Lo Gullo, I. D. Naranjo, et al., Radiologist-level performance by using deep learning for segmentation of breast cancers on MRI scans, Radiol. Artif. Intell., 4 (2021), e200231. https://doi.org/10.1148/ryai.200231 doi: 10.1148/ryai.200231
|
| [67] | L. Zhang, Z. Luo, R. Chai, D. Arefan, J. Sumkin, S. Wu, Deep-learning method for tumor segmentation in breast DCE-MRI, In: Medical imaging 2019: Imaging informatics for healthcare, research, and applications, 10954 (2019), 109540F. https://doi.org/10.1117/12.2513090 |
| [68] |
H. Sun, C. Li, B. Liu, Z. Liu, M. Wang, H. Zheng, et al., AUNet: attention-guided dense-upsampling networks for breast mass segmentation in whole mammograms, Phys. Med. Biol., 65 (2020), 055005. https://doi.org/10.1088/1361-6560/ab5745 doi: 10.1088/1361-6560/ab5745
|
| [69] |
T. Shen, C. Gou, J. Wang, F. Y. Wang, Simultaneous segmentation and classification of mass region from mammograms using a mixed-supervision guided deep model, IEEE Signal Process. Lett., 27 (2019), 196–200. https://doi.org/10.1109/lsp.2019.2963151 doi: 10.1109/lsp.2019.2963151
|
| [70] |
N. Saffari, H. A. Rashwan, M. Abdel-Nasser, V. K. Singh, M. Arenas, E. Mangina, et al., Fully automated breast density segmentation and classification using deep learning, Diagnostics, 10 (2020), 988. https://doi.org/10.3390/diagnostics10110988 doi: 10.3390/diagnostics10110988
|
| [71] |
M. S. Hossain, Microc alcification segmentation using modified U-net segmentation network from mammogram images, J. King Saud Univ. Comput. Inf. Sci., 34 (2022), 86–94. https://doi.org/10.1016/j.jksuci.2019.10.014 doi: 10.1016/j.jksuci.2019.10.014
|
| [72] |
Y. Xue, J. Zha, D. Pelusi, P. Chen, T. Luo, L. Zhen, et al., Neural architecture search with progressive evaluation and sub-population preservation, IEEE Trans. Evol. Comput., 29 (2025), 1678–1691. https://doi.org/10.1109/tevc.2024.3393304 doi: 10.1109/tevc.2024.3393304
|
| [73] |
Y. Xue, X. Han, F. Neri, J. Qin, D. Pelusi, A gradient-guided evolutionary neural architecture search, IEEE Trans. Neural Netw. Learn. Syst., 36 (2025), 4345–4357. https://doi.org/10.1109/tnnls.2024.3371432 doi: 10.1109/tnnls.2024.3371432
|
| [74] | P. Jiang, Y. Xue, F. Neri, Score predictor-assisted evolutionary neural architecture search, IEEE Trans. Emerg. Top. Comput. Intell., 2025, 1–15. http://dx.doi.org/10.1109/TETCI.2025.3526179 |
| [75] |
O. N. Oyelade, A. E. Ezugwu, A bioinspired neural architecture search based convolutional neural network for breast cancer detection using histopathology images, Sci. Rep., 11 (2021), 19940. https://doi.org/10.1038/s41598-021-98978-7 doi: 10.1038/s41598-021-98978-7
|
| [76] |
W. Al-Dhabyani, M. Gomaa, H. Khaled, A. Fahmy, Dataset of breast ultrasound images, Data Brief, 28 (2020), 104863. https://doi.org/10.1016/j.dib.2019.104863 doi: 10.1016/j.dib.2019.104863
|
| [77] | S. Anwar, A. Rahming, M. Fernander, O. Udedibor, S. Ali, Breast cancer diagnosing system: Using a rough set-ensemble classifier approach, In: Pattern recognition. ICPR 2024 International workshops and challenges, 2025, 22–35. https://doi.org/10.1007/978-3-031-88220-3_2 |
| [78] |
A. Sahu, P. K. Das, S. Meher, Recent advancements in machine learning and deep learning-based breast cancer detection using mammograms, Phys. Med., 114 (2023), 103138. https://doi.org/10.1016/j.ejmp.2023.103138 doi: 10.1016/j.ejmp.2023.103138
|
| [79] |
A. Sahu, P. K. Das, S. Meher, An efficient deep learning scheme to detect breast cancer using mammogram and ultrasound breast images, Biomed. Signal Process. Control, 87 (2024), 105377. https://doi.org/10.1016/j.bspc.2023.105377 doi: 10.1016/j.bspc.2023.105377
|
| [80] |
B. Munteanu, A. Murariu, M. Nichitean, L. G. Pitac, L. Dioşan, Value of original and generated ultrasound data towards training robust classifiers for breast cancer identification, Inf. Syst. Front., 27 (2025), 75–96. https://doi.org/10.1007/s10796-024-10499-6 doi: 10.1007/s10796-024-10499-6
|
| [81] |
H. M. Rai, S. Dashkevych, J. Yoo, Next-generation diagnostics: The impact of synthetic data generation on the detection of breast cancer from ultrasound imaging, Mathematics, 12 (2024), 2808. https://doi.org/10.3390/math12182808 doi: 10.3390/math12182808
|