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Abstract: Breast cancer is still one of the leading causes of death in women, and finding it early is
essential for treatment to work. This study presents a sizeable deep learning architecture for classifying
and segmenting breast ultrasound images. It utilizes federated learning to maintain patients’ data
privacy. The proposed pipeline begins with a thorough preprocessing stage that includes scaling,
normalizing, and advanced image augmentation using affine and contrast-based changes. We employ
four convolutional neural network architectures for hierarchical classification: ResNet50, EfficientNet,
VGG16, and Xception. First, we distinguish between typical cases and abnormal ones. We then further
classify abnormal images into benign and malignant classes. We employ an ensemble technique that
combines the outputs of ResNet50 and EfficientNet through a weighted average optimized by a genetic
algorithm to enhance the model’s resilience. This method dramatically improves the classification’s
effectiveness, achieving higher accuracy and reliability. We use a federated learning system with the
federated averaging (FedAvg) algorithm to improve data privacy. Our federated architecture maintains
high accuracy while ensuring that the raw data stays at its local source. We test it with both single-
client and multi-client setups. Ultimately, we employ a hybrid architecture that combines the feature
maps of ResNet50 and EfficientNet to segment images of lesions known to be malignant. This yields
significant spatial agreement with expert annotations. The Dice score and intersection over union (IoU)
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are two evaluation criteria that demonstrate the effectiveness of our segmentation model. This all-in-
one system offers accurate and privacy-conscious breast ultrasound analysis, indicating that it could
be beneficial in decentralized healthcare settings. The suggested method was tested using a standard
breast magnetic resonance imaging (MRI) dataset, demonstrating its robustness and applicability in
various situations. We used the accuracy, precision, recall, and F1-score to measure performance, and
we found that the classification was accurate up to 96%. This paper discusses a scalable system that
maintains people’s privacy by utilizing ensemble learning, optimization-driven feature selection, and
federated learning to aid doctors in early breast cancer detection using MRI data. This will make it
easier for doctors to use this system in a broader range of medical tests.

Keywords: SDG 3; federated learning; ensemble learning; genetic algorithm; breast cancer detection;
weight selection; classification
Mathematics Subject Classification: 62H30, 68T05, 68U35, 90C59, 92C50

1. Introduction

Breast cancer is still the most common type of cancer among women around the world, and it
is a significant cause of cancer deaths. The World Health Organization said that in 2020 that more
than 2.3 million women were diagnosed with breast cancer. This resulted in more than 685,000 deaths
worldwide [1]. There is a strong link between the stage of breast cancer when it is found and the
outlook and survival rate of people who have just been diagnosed with the disease. An early and
accurate diagnosis can significantly lower the death rate by allowing for timely intervention and the
creation of personalized treatment plans.

The diagnosis of breast cancer is challenging because of several things, such as the fact that the
tumour is not the same in all cases, the breast tissues are very dense, and the quality of imaging can
vary. Ultrasound is a promising imaging method because it is readily available, does not use ionizing
radiation, and can distinguish between cystic and solid masses. On the other hand, the interpretation
of ultrasound images depends significantly on the reader, varying from person to person and even from
one observer to another. Due to these issues, there has been a growing interest in developing automated
diagnostic systems that utilize artificial intelligence (Al) [2] and deep learning to enable radiologists
to identify and describe breast lesions more accurately and consistently.

Medical professionals have found computer vision methods that utilize Al to be helpful. These
systems can accurately locate, outline, and classify malignant tumors using medical imaging tools
like mammography [3]. Traditional methods employed image processing and machine learning to
extract handcrafted and basic features from images to identify likely locations. As false positive results
increase and accuracy decreases, new deep learning algorithms slowly replace old tumor segmentation
methods. These new algorithms are superior to the ones currently in use [4]. They combine information
about the surrounding tissue and automatically extract features for tumour delineation and classification
in computer-aided diagnosis systems. Convolutional neural networks (CNNss) are utilized in automated
computer-aided design systems and medical imaging to detect and identify features, particularly
patterns associated with breast cancer. Deep learning models are gaining popularity as computers
become faster and more powerful. This is because these models can automatically get a lot of
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information from medical images without needing to know anything about them or do any feature
engineering first [5]. This has improved the results of the automated systems by finding a balance
between how many lesions they can find in a mammogram and how accurate they are [6, 7].

Deep learning methods, particularly CNNs, have demonstrated excellent performance in visual
recognition tasks such as classifying and segmenting diagnostic medical images. Several CNN designs,
including ResNet, EfficientNet, VGG, and Xception, have been successfully utilized to detect breast
cancer. These models can learn to distinguish between normal, benign, and malignant tissues, and they
can also extract complex information from ultrasound images. On the other hand, these models only
work effectively when they have access to large datasets containing a wide range of information. In
the medical field, however, these types of datasets are often limited due to concerns about privacy, data
silos within institutions, and regulations that restrict access.

Federated learning (FL) has become a significant solution to these problems, offering a compelling
alternative to the traditional method of centralized training. FL enables many healthcare institutions
or edge devices to collaborate in training machine learning models without requiring the sharing of
patient data. A central server allows people to to communicate with each other and track changes to
the model, while maintaining the data’s safety and privacy. This decentralized approach adheres to the
rules for managing medical data, providing people with access to more extensive and diverse datasets
as they are distributed across various institutions. Recent studies have demonstrated that FL. can be
applied in other healthcare settings. Some of these applications include identifying COVID-19 [8],
categorizing skin lesions [9], and segmenting brain tumors [10].

In this case, we present a complete deep learning framework for analyzing breast ultrasounds.
This framework utilizes CNN-based classification and segmentation, along with the benefits of FL,
to ensure the safety of individuals’ privacy. Our plan includes a two-step classification process. The
first step is to differentiate between normal and abnormal ultrasound images. The second step is to
classify the abnormal images as benign or malignant on the basis of their characteristics. We employ a
genetic algorithm to determine the optimal weights for an ensemble learning method that combines the
predictions of ResNet50 and EfficientNet. This helps us create a more substantial and accurate model.

The last step of the process uses a segmentation model that combines the feature representations of
the ResNet and EfficientNet backbones. After that, the malignant cases are looked at more closely. The
model accurately represents lesion boundaries, making it easier to assess and make informed decisions
in the clinic. Changes are made to every part of the pipeline to work in a FL setting. This is done to
ensure the raw patient data remains safe at each client’s site. Our contributions show a workable and
effective way to use ultrasound imaging systems to decentralize the diagnosis of breast cancer.

The results of our study show that the proposed framework can classify and segment tasks with an
accuracy of 0.97. This suggests that the framework is practical and can be applied in real-life clinical
settings. The rest of this work is organized as follows: Section 2 provides a comprehensive overview
of the existing research on breast cancer detection. In Section 3, we outline our proposed framework,
which includes a complete description of the preprocessing steps, data augmentation methods, hybrid
feature extraction methods, and the ensemble learning architecture that uses deep classifiers and the
optimizer algorithm. In Section 4, we talk about the experimental setup, which includes the dataset, the
evaluation measures, and the baseline configurations. In Section 5, we talk about the empirical results.
This includes comparing individual models with our ensemble technique and examining how well the
hybrid characteristics work. In conclusion, Section 5 summarizes the most important contributions and
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talks about possible topics for future research.
2. Related work

Breast cancer research is a crucial area of study in medical image analysis. Digital mammography
can help find breast cancer early, which makes it more likely that the person will survive.
There are many ways to check for breast cancer, such as mammography [11], digital breast
tomosynthesis (DBT) [12], computed tomography (CT) [13], positron emitted tomography (PET) [14],
thermography [13], magnetic resonance imaging (MRI) [15], and ultrasound [16]. Radiologists often
struggle to accurately judge mammography screening images without the aid of a computer-aided
diagnosis (CAD) system. The goal of a computer-aided diagnosis (CAD) system is to automatically
detect breast cancer tumors and distinguish between healthy and cancerous tissues [17]. Several studies
have come up with automated methods for finding, classifying, and diagnosing breast cancer. These
methods are now used in computer-aided design systems [18]. These studies provide an overview of
the fundamental steps in image processing, including preprocessing, segmentation, feature extraction,
and classification. Pre-processing images is one of the first steps in every computer-aided design
system. It is essential to get the best possible results for the next steps. MRI images typically contain
additional noise that must be removed before they can be sent to the computer-aided design system.
Pre-processing facilitates the identification of meniscal and unusual lesions, while also enhancing the
key image features for subsequent processing. Segmentation and feature extraction are two of the most
critical steps in image pre-processing. In this section, we talk about the breast cancer literature and
new ways to use MRI images to find, classify, and separate breast cancer.

2.1. Classification approches

Classification of breast cancer aims to find a systematic and objective prognostic for
pathologists [19]. Generally, the most recurrent classification is binary: Benign tumors or cancer.
Several studies have reviewed automated techniques and investigation methods used to explore
breast images from different perspectives, depending on the disease status and the type of screening
images [20]. Several Al and neural network methods have been proposed to enhance the effectiveness
of breast cancer detection and classification. Machine learning is a popular tool for evaluating
algorithms that facilitate breast cancer prediction, recognition, and classification. Breast cancer is
classified with several techniques such as linear regression [21], K-nearest neighbors (KNN) [22],
softmax regression [23], artificial neural networks (ANNs) [24], and support vector machine
(SVM) [25]. Breast cancer is also classified using techniques such as the softmax discriminant
classifier, linear discriminant analysis [26], and fuzzy C means clustering [27]. Amrane et al. [19]
proposed two different classifiers: The naive bayes classifier and KNN for breast cancer classification.
After comparing the two algorithms, it was found that KNN achieved a higher accuracy. In [28],
the authors proposed an optimized stacking ensemble learning model called OSEL that incorporates
multiple classification algorithms to determine the most effective combination for early breast cancer
prediction.

Over the last few years, deep learning has become a popular tool for detecting and classifying breast
cancer [29]. Several studies have demonstrated that deep learning methods can detect and identify
breast cancer up to 12 months earlier than those using traditional clinical procedures [30]. Moreover,
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deep learning-based techniques can be deployed to determine the most pertinent features [31,32]. Thus,
various deep learning-based methods have been used in breast cancer classification, including CNN,
DNNs (deep neural networks), RNNs (recurrent neural networks), DBNs (deep belief networks) [33],
and AutoEncoder (AE).

Several challenges and limitations are associated with using deep learning techniques for breast
detection and classification [34]. Several studies have demonstrated that the CNN model has shown
greater accuracy in breast cancer detection [20, 35]. These studies applied the CNN model to extract
relevant features from validated gene expression data [36]. The CNNs deployed for breast cancer
diagnosis can be grouped into transfer learning-based models and de novo trained models [30]. A de
novo trained model is a CNN model that was generated and trained from scratch. In contrast, transfer
learning-based CNN methods utilize a trained neural network, such as AlexNet [37], the residual neural
network (ResNet) [38,39], or the visual geometry group (VGG) [40], among others.

Abunasser et al. in [20] proposed a deep learning model that adds five fine-tuned deep learning
models, including Xception, InceptionV3, VGG16, MobileNet, and ResNet50, to detect and classify
breast cancer into eight classes. In [41], the authors proposed a deep neural convolutional network
that utilizes GoogleNet and AlexNet for breast cancer recognition, using DDSM (digital database for
screening mammography) breast cancer images with three classes: Normal, benign, and malignant.
Khan et al. [42] proposed a classification framework that combines three CNN architectures, including
GooglLeNet, VGGNet, and ResNet, to extract different low-level features, which are then fed into a
fully connected layer.

2.2. Segmentation techniques

Image segmentation methods aim to partition the initial image into multiple distinct regions, called
regions of interest (ROIs) [43]. In particular, they aim to distinguish important areas from the rest of
the image using specific criteria such as region or edge characteristics. In the case of MRI images,
segmentation becomes crucial for delimiting pathological regions and enabling accurate diagnosis
methods [44]. In the case of breast cancer, accurate segmentation of the ROI realizes precise tumor
detection within the rest of the breast region [45]. As a result, a new representation with significant
image characteristics is meaningful and easier to interpret.

Several segmentation methods have been employed in medical imaging, mainly focusing on breast
cancer detection and diagnosis [46]. They aim to isolate the ROI within mammographic images for
detecting the breast mass [47]. Methods employed in segmentation include classical, machine learning,
and deep learning segmentation techniques.

Classical segmentation deploys different techniques, including edge-driven segmentation [48] and
region segmentation [49]. These segmentation methods rely on two characteristics or features of
images: discontinuity and similarity [43]. The edge-based methods rely on Discontinuity features
that identify objects’ edges. These methods are grouped into gradient operators [50, 51], Laplacian
operators [52], and optimal operators (Canny) [53]. On the other side, the region based-
segmentation approaches deploy different methods such as threshold methods [54], clustering
methods [55, 56], graph-based methods [57], superpixels methods [58, 59], region growing
methods [60], and morphological watersheds [61,62].

Machine learning segmentation methods applied in medical image analysis require using images
annotated by qualified medical experts. These methods aim to identify ROIs in MRI scans such as
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tumor tissues (e.g., malignant, benign), background tissues, lesions (mass/non-mass enhancements),
and fibroglandular tissue. Unsupervised and supervised machine learning methods are used for
image segmentation. In unsupervised machine learning, various techniques are employed, including
hierarchical k-clustering [63], k-means clustering [55], and fuzzy C-clustering. In supervised machine
learning, various models are employed, including vector machines [64] and naive Bayes models [65].
Various deep learning models are deployed for mammogram image segmentation [66, 67]. For
medical imaging tasks, the U-Net model [68] has gained significant attention due to its effectiveness,
especially in scenarios with limited annotated data. Shen et al. [69] used the U-Net model (ResCUNet)
to segment and classify mammography images. In [70], the authors proposed a novel segmentation
model, the full-resolution convolutional network (FrCN), for mammogram image segmentation. In
addition, they used three traditional deep learning models: InceptionResNet-V2, ResNet-50, and a
feedforward CNN to classify the segmented breast lesions as benign or malignant. Hossain [71]
proposed a modified U-Net segmentation network for segmenting microcalcifications in mammogram
images. In [68], the authors developed a novel model called AUNet for segmenting breast masses.

2.3. Neural architecture search and modern hybrid design

A neural architecture search (NAS) automates the design of neural network architectures by
concurrently defining a search space (encompassing cells, operators, or macro-topologies), a
search strategy (which may involve evolutionary, reinforcement, differentiable, or surrogate-assisted
methods), and an evaluation protocol (generally multi-objective, accounting for metrics such as
accuracy, latency, and memory). Recent improvements that have improved efficiency and versatility
include the following. Progressive evaluation with sub-population preservation retains medium and
large candidates with developmental potential through an extended training time, thereby diminishing
the search costs while preserving diversity [72]; gradient-guided evolutionary NAS (ENAS) blends
first-order sensitivity with evolutionary exploration to accelerate convergence while averting supernet
coupling [73]; and score-predictor—assisted ENAS presents a learning surrogate that maintains
the candidates’ ranking, enabling cost-effective selection of extensive populations [74]. In the
context of breast cancer histopathology utilizing the BACH/BreakHis datasets, a bio-inspired neural
architecture search employing block-based stochastic categorical-to-binary (BSCB) encoding and the
Ebola optimization search algorithm (EOSA) effectively identified CNNs that rival state-of-the-art
techniques, according to a multi-criteria assessment [75].

In this scenario, we emphasize privacy (no unprocessed images may leave the hospital) and
inter-institutional diversity (several institutions utilize distinct populations, methodologies, and
technologies). This federated architecture complicates end-to-end NAS operations due to substantial
communication demands, intricate secure aggregation processes, and the global model’s susceptibility
to site shifts that may occur during supernet training or frequent candidate alterations. We opted for
another technique. We commence with a compact assembly of robust backbones, such as ResNet50 or
EfficientNet, and subsequently employ a lightweight genetic algorithm (GA) to optimize an ensemble
in weight space. Each client uses its own local validation partition to ascertain the mixing weights.
The server uses FedAvg to integrate the models and amalgamate the mixture weight proposals from
the clients into a global mixture, all while preserving the confidentiality of the raw data. This GA-
weighted ensemble under FL mitigates the impact of complementary inductive biases among models,
enhances stability across locations, and adheres to regulations governing healthcare data management.
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Our pipeline remains operational with NAS. If a NAS technique subsequently develops a more
robust backbone through pretraining on institutional or public data, it may be incorporated as an
additional expert in the ensemble. The genetic algorithm only readjusts the mixture weights throughout
the federation process. NAS focuses on the types of backbones to be incorporated, whereas our
GA-weighted FL architecture emphasizes integrating these backbones while considering privacy and
heterogeneity. This division of effort ensures that the advantages of network-attached storage are
utilized effectively while maintaining reliable and secure performance across multiple sites.

3. Methodology

Our proposed architecture features a multi-stage deep learning pipeline that utilizes FL to classify
breast ultrasound images while maintaining users’ privacy. The first step in the system involves
thoroughly preprocessing and augmenting the ultrasound dataset. This step aims to standardize all
images to a uniform size, enhance the visual features, and increase the applicability of existing models
across a broader range of situations. We utilize several cutting-edge CNN architectures, including
ResNet50, EfficientNet, VGG16, and Xception, to construct individual and ensemble classification
models for bots. The classification work is done at two levels. The first level distinguishes between
normal and abnormal ultrasound scans. The second level separates abnormal scans into benign
and malignant lesions. We use an ensemble method that combines the outputs of ResNet50 and
EfficientNet. A genetic algorithm selects the optimal fusion weights on the basis of a customized
fitness function. This helps us make our system more substantial and better at making predictions.

We use the federated averaging (FedAvg) protocol for FL. This approach keeps patients’
information private while allowing multiple people to collaborate on developing a model. Because
of this, several decentralized clients can train their models in private, and the central server only gets
information about weight changes. We simulate single-client and multi-client FL scenarios to evaluate
the performance of our ensemble models in this distributed setup. Before the updates are sent to
everyone, each client goes through several local training epochs. This ensures that the models will
converge and that the gearbox will operate as efficiently as possible.

In the final step of the process, which involves segmenting malignant lesions, a hybrid model
combining feature maps from ResNet50 and EfficientNet is utilized. To create accurate lesion masks,
the images are combined using a weighted average, then processed through convolutional and sigmoid
layers, and finally combined again. The Dice score and the intersection over union (IoU) are two
evaluation measures that demonstrate the spatial alignment of manual annotations. Our pipeline is a
complete way to use ultrasound imaging to diagnose breast cancer in general. It provides very accurate
lesion localization, respects privacy in various settings, and offers many other features. The Figure 1
shows all of the processes that are described below.
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Figure 1. Proposed model for breast cancer classification and detection.

3.1. Preprocessing

Preprocessing is an essential step in deep learning pipelines that lays the groundwork for good

training. We prepared the breast ultrasound image dataset for this work by combining normalization,
reshaping, and encoding techniques. This was done to ensure compatibility with the latest neural
networks and maintain data accuracy across classification and segmentation tasks. This was done to
achieve the desired results.

e Image resizing: The sizes of the images were changed to fit the requirements of the chosen
CNNs. For cumbersome models like ResNet50, VGG16, and Xception, the images’ resolution
was 224 by 224 pixels. We used a small size of 128 * 128 to reduce the extra work that
lighter architectures like EfficientNet needed to perform. This was done while keeping the basic
structural parts in place.

e Normalization: Normalization plays a pivotal role in stabilizing learning. We employed model-
specific normalization routines.

— ResNet and VGG: Standard score normalization using x’ = =£.

— EfficientNet: Pixel rescaling with x” = 5.

e Label encoding: The dataset comprises multiple classification levels, first into “normal” and
“abnormal”, and then further classification of “abnormal” images into “benign” and “malignant”.
Labels were encoded in binary or one-shot vector formats.

e Data splitting: Stratified sampling divided the dataset into 80% training, 10% validation,
and 10% testing sets.

e Directory structuring and file integrity: Datasets were structured by the client for FL

experiments and checked for format consistency.
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¢ Channel adaptation: Grayscale images were converted to red, green, and blue (RGB) via I,,, =
[1,1,1].

e Data pipeline optimization: TensorFlow batching, shuffling, caching, and prefetching were used
to ensure reproducibility.

3.2. Data augmentation

Data augmentation is a process used to increase the size of the dataset and provide the model with
a broader range of image types to work with. This is especially useful in medical imaging, where
datasets are often tiny.

Two primary libraries were used:

e ImageDataGenerator from Keras for simple affine transformations;
e Albumentations for advanced augmentation strategies with greater control.

3.3. Keras-based augmentations

e Rotation: Rotates the image by an angle of 6, implemented as: R(6) = xcos 6 — ysin6.
e Translation: Shifts the image by Ax, Ay, T(x,y), T(x,y) = (X + Ax, y + Ay).
e Shear: Applies a distortion defined as: S(x, y) = (x + ky, y).

3.4. Albumentation-based augmentations

o Contrast stretching: I'(x,y) = a(I(x,y) = I) + I.

e Brightness shift: I'(x,y) = I(x,y) + 5.

e Contrast limited adaptive histogram equalization: Enhances local contrast and preserves edge
detail, which isespecially useful for lesion regions.

All augmentation functions were applied using medical imaging-specific probability thresholds and
parameter ranges to preserve the meaning of the images.

3.5. Classification models

The classification pipeline in this study is divided into two parts. The first step is to distinguish
between normal and abnormal breast ultrasound images. After that, the unusual cases are categorized
as either benign or malignant. This two-part method makes diagnoses more specific and facilitates
easier clinical decision-making hierarchies.

ResNet50, EfficientNet, VGG16, and Xception are four of the most advanced CNN architectures.
They were all trained on ImageNet first. We compared all of these architectures. Each model features
a dense classification head that can handle both binary and multi-class outputs. They also all received
a global average pooling layer.

3.5.1. ResNet50

ResNet50 is a deep residual network with 50 layers. It leverages shortcut connections based on
identity to address the issue of gradients disappearing in deep networks. The residual block is the most
critical part of ResNet, and it is defined as follows:

y=F(x,{W}) +x.
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The expression F'(x, W;) shows the residual mapping that needs to be learnt, and the symbol x shows the
same shortcut connection. This structure facilitates the training of more complex models by allowing
gradients to flow directly through the network. Our tests demonstrated that ResNet50 can reliably
extract spatial features while ignoring image noise.

3.5.2. EfficientNetBX

EfficientNetBX belongs to the EfficientNet family, which employs compound scaling to scale
network depth d, width w simultaneously, and input resolution r using a global scaling coefficient

@:

Subject to the constraint:
a- By 2.

This model achieves state-of-the-art accuracy while maintaining computational efficiency. It benefits
fine-grained classification tasks, such as differentiating between benign and malignant tumors.

3.5.3. VGGI16

VGG16 is a deep CNN consisting of 13 convolutional layers and 3 fully connected layers. It uses
small 3 x 3 filters and ReLU stands for Rectified linear unit (ReLU) activations. The basic form of each
convolutional layer output is given by:

y = max(0, W x x + b),

where * denotes convolution, W is the kernel, and b is the bias. Despite its relatively simple design,
VGG16 remains a strong baseline for visual tasks. However, it has a higher memory footprint compared
with other modern architectures.

3.5.4. Xception

Extreme Inception, or Xception, is based on the idea that it is possible to completely separate
the spatial and channel-wise correlations found in feature maps. The use of depthwise separable
convolutions is:

y= (x * Kdepthwise) * Kpointwise~

This approach significantly reduces the number of parameters and computations while maintaining
accuracy. Xception’s high representational capacity effectively models complex lesion boundaries in
our setting.

3.5.5. Training protocol

The breast ultrasound dataset helped us optimize each model to its maximum potential. The last
dense layer calculates a probability for each class using either a softmax activation (for tasks with
three classes) or a sigmoid activation (for functions with two classes). We used the Adam optimizer to
lower the cross-entropy loss. Batch normalization and dropout were also used to lessen the effects of
overfitting.
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We employed several model architectures to investigate the various trade-offs among the model’s
complexity, data processing speed, and accuracy in classifying both coarse-grained and fine-grained
breast ultrasound data.

3.6. Ensemble learning with genetic algorithm weight optimization

Enhanced image classification capabilities are achieved by utilizing an ensemble learning model,
which capitalizes on the benefits of two robust CNNs. Both models are initially supplied with weights
that have been pre-trained using ImageNet, providing a solid foundation for extracting features. One
of the most critical aspects of the combination is th weighted average of the results obtained from each
model’s global average pooling layers. This weighted average is an excellent method for combining
the learned characteristics of both models, thereby capitalizing on their strengths. After feeding the
combined features into a dense layer with 256 neurons and ReLU activation, a final thick layer with
softmax activation is applied to classify the data into the desired classes. Compared with utilizing either
model independently, this ensemble model tries to generate a more reliable and accurate classification.
This is accomplished by merging the feature representations from both models.

An algorithm that utilizes genetics can automatically determine the optimal combination of weights
for deep learning models, thereby eliminating the need for manual weight assignment. In this method,
the weights are viewed as genes within a population of possible solutions. An accuracy evaluation is
performed on each solution, representing a collection of weights, based on how well it performs on a
validation set. After that, the genetic algorithm will iteratively evolve the population by picking the
solutions that perform the best (with the highest accuracy), using genetic operators such as mutation
and crossover to create new solutions, and then repeating the evaluation process. Throughout several
generations, the algorithm will eventually arrive at a collection of weights that will maximize the
precision of the ensemble model when applied to the validation data. The genetic algorithm uses the
principles of natural selection to conduct an intelligent exploration of the weight space. Compared
with manual weight assignment, it enables the identification of the ideal combination, resulting in
improved classification performance. To optimize the weight combination for the ensemble model, the
following Algorithm 1 illustrates the evolutionary process used. This method involves evaluating each
individual’s fitness, depending on the quality of their classification accuracy.
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Algorithm 1 Genetic algorithm for optimal ensemble weight selection.

1: Initialization: Generate an initial population of N candidate solutions, where each solution
consists of weights w; and w, for Model 1 and Model 2, such that w; +w, = 1, and wy, w; € [0, 1].
2: for each generation g = 1 to G do

3 for each individual i in the population do
4 Apply w', and w} to the ensemble model.
5 Evaluate on the validation set.
6: Set fitness f; = accuracy(w', w)).
7 end for
8 Selection: Choose the top k individuals with the highest fitness (accuracy) as parents.
9 Crossover: Generate offspring by combining the parent weights
Wchild _ wparentl + WparentZ
2
10: Mutation: With the small probability p, slightly perturb the offspring weights to explore new
solutions.
11 Replacement: Form the new generation by selecting the best individuals from current and new
populations.
12: end for

13: Output: Return the individual with the highest fitness (best validation accuracy).

To enhance generalization and robustness, we developed an ensemble of ResNet50 and EfficientNet
outputs:

Yensemble = W1YResNet T W2VEffiNets W1 + W2 = 1.

A genetic algorithm was used to optimize the weights wy, w, with:

fitness = accuracy.

3.6.1. Genetic algorithm configuration

We employ the optimization of ensemble weights on the probability simplex. We do this by
encoding an unrestricted vector z and transforming it to w = softmax(z), ensuring that w,, > 0 and
>mWm = 1. The fitness score is the macro-F1-score derived from the validation split, which is
logical, considering the class imbalance and clinical significance. To resolve the connections, we
utilize sensitivity at a consistently elevated specificity. The tournament sampling approach, with a size
of t=3, is employed for selection; one-point crossover is applied with a probability of p.; and mutation
is executed by introducing a zero-mean Gaussian noise to z with a probability of p,,. Elitism retains
the top e% candidates from each generation, while early stopping terminates the process when the
fitness fails to improve for a certain number of consecutive generations. In the federated context, each
client executes this genetic algorithm on their own machines to obtain w;. The server uses FedAvg to
obtain the base models and, optionally, executes a brief global genetic algorithm with {w;} to derive
the broadcast weight vector w*. The attributes and default configurations of the genetic algorithm
employed in this study are presented in Table 1, outlining the key factors that guided the optimization
process.
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Table 1. Attributes and defaults of the genetic algorithm used in this study.

Attribute Symbol/option Default/range Purpose/notes
Population size N 50 (30-80) Exploration capacity of candidate
weight vectors
Generations G 100 (50-150)  Convergence depth; early stopping
may end sooner
Initialization Zo Small N(0,0.1) Diversity; seeds include a
plus uniform near-uniform w
seeds
Selection Tournament sizet =3 Stable selection pressure under
class imbalance
Crossover One-point p.=0.8 Mix parental solutions while
preserving the structure
Mutation Gaussian on z pm = 0.1; o = Escape local optima; operates prior
0.05 to softmax
Elitism Top % e=5% Keep the best candidates each
generation
Constraint handling softmax w = softmax(z) Enforces w,,>0 and ), w,=1
Fitness metric J(w) macro-F1 Matches clinical preference and
class imbalance
Early stopping patience 10 generations ~ Prevents overfitting and excess
compute
Random seed Seed Fixed (report) Reproducibility of GA runs
Local optimization Wi per client Adapts to site-specific distributions
Server fusion (option) ~ w* GA-global or Seeds with {w;}; broadcasts the

barycenter final weights

3.7. Federated learning integration

We employed the FedAvg method to implement FL using distributed datasets while maintaining
patients’ data privacy. Multiple decentralized clients can train a shared global model using this
technology without sharing raw data. This kind of plan is beneficial in healthcare, where data
centralization is impossible due to its sensitive nature and governing rules.

In our system, each client i was responsible for maintaining a local dataset of size n; that was
up to date. Clients trained their local models with weights w' over several local epochs using either
stochastic gradient descent (SGD) or the Adam optimizer. This training happened every time there
was a communication round ¢. After the local training, the most recent weights were sent to the central
server. The server then used a weighted average to create a new global model:

K n K
P
Wig] = E ;w; where n = E n;.
i=1 i=1

This aggregation formula ensures that customers with larger datasets will have a significant impact on
the global update. The process will continue iteratively until it reaches a point of convergence or a
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certain number of communication rounds have been completed. Algorithm 2 below shows how to train
FedAvg. This method utilizes a central server to coordinate decentralized clients in building a global
model without sharing raw data.

Algorithm 2 FedAvg algorithm.

1: Input: Number of clients K, local epochs E, number of rounds 7', initial global model wy.
2: Output: Final global model wr

3: fort=0toT —1do

4: Server broadcasts the global model w;, to all clients

5 for each clienti € {1,..., K} in parallel do

6 Initialize w! « w;,

7: Train wi on local dataset D; for E epochs using SGD
8 Send updated model w' to server

9 end for

/| Server aggregates updates:

10 War — 2k 2wl wheren = Y5 n;

11: end for

12: return wr

All clients used the Adam optimizer with a learning rate of 7 = 0.001, a batch size of 32, and a local
training epoch count of £ = 5. There were 10 rounds of communication during the global training.

In TensorFlow federated (TFF), we employed techniques such as dataset caching, shuffling, and
batch prefetching to manage the substantial computational load associated with processing large
amounts of image data in federated settings. We also ensured the model’s stability by adding
protections against non-finite updates, such as Not a Numbers or infinite values.

In conclusion, FL is a method for training high-performance deep learning models in areas where
privacy is crucial, such as breast cancer ultrasound imaging. It is both possible and scalable.

3.7.1. Privacy model and why FL is unique in healthcare

We employ a threat model that is both candid and attentive to the interests of clients and servers. In
medical Al, it is crucial to consider several key issues, including model alterations that lead to gradient
leakage, membership inference from global snapshots, the introduction of poisons or backdoors, and
the surveillance of channels. In FL, only modifications to the model are communicated, excluding raw
images or labels. This renders FL a distinctive method for fulfilling data minimization requirements.
We utilize a technique referred to as “secure aggregation” to ensure that the server receives only an
aggregate of client changes. We also allow users to select the “DP-SGD” mode, which applies layer-
wise clipping with Gaussian noise and reports (g, 0) when activated. The transport layer employs the
Transport Layer Security (TLS) to provide provenance and auditability, while the clients authenticate
updates through signatures. These design-stage constraints enhance privacy and security without
imposing additional burdens on the testers. They are particularly advantageous for healthcare facilities
with different locations, where data centralization is unfeasible.
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3.7.2. Security by design: Threat model and risk mitigations

Rather than providing actual attack benchmarks, which necessitate additional permissions, data
governance stages, and computational resources, we present documentation of the security posture
embedded within our design. The danger model posits that the server is honest yet inquisitive,
whereas the clients may likewise exhibit curiosity. The hazards encompass revealing gradients,
identifying members, introducing poisoning/backdoors, and eavesdropping on the channel. A crucial
component of our privacy-preserving solution is data localization, meaning that no unprocessed images
or labels may exit the premises. Additional capabilities include secure aggregation to maintain the
confidentiality of updates and an optional DP-SGD mode that employs clipping and Gaussian noise
to prevent information leakage. TLS encrypts transmissions, while the clients authenticate updates to
ensure traceability and source identification. Table 2 illustrates the correlation between dangers and
our corresponding management strategies within the system.

Table 2. Threat-informed security checklist (design time).

Threat Mitigation in our framework
Update inspection / gradient Secure aggregation; optional DP-SGD with (g, §) accounting;
leakage raw data remain on-site

Membership inference on
global model

Poisoning /  backdoor
attempts

Adversarial inputs at
inference

Channel eavesdropping

DP-SGD option; limited model exposure; audit logging of
model exports

Client update signing; anomaly screening on update norms;
cross-round consistency checks
Operator guidance for thresholding;
evaluation noted as future work

TLS for client—server traffic

empirical attack

3.8. Deep learning-based segmentation of malignant cases

Segmentation is the last and most crucial step in our pipeline. The purpose is to identify the edges
of lesions in images diagnosed as malignant. Segmentation provides doctors with pixel-level accuracy,
allowing them to examine the shape, area, and regularity of the lesion’s boundaries. These are essential
signs in cancer diagnosis. Classification, on the other hand, gives a rough diagnosis.

We utilized the segmentation models PyTorch (SMP) module to aid in building the U-Net
architecture, which we employed for malicious lesion segmentation. This design has been effective
in biomedical imaging due to its encoder-decoder structure, skip connections, and ability to preserve
both semantic and spatial information.

The encoder is the central component of the U-Net network, which is why it is sometimes referred
to as the backbone. Backbones are a type of CNN that have already been trained to find hierarchical
features in the images sent to them. These features can capture low-level details, such as edges and
textures, as well as the high-level semantic information necessary for identifying the correct object. The
backbone in our system is essential for the quality of the feature representations sent to the decoder part
of the network. Using pre-trained backbones trained on large datasets, such as ImageNet, can facilitate
transfer learning, accelerate convergence, and make medical imaging tasks more manageable with less
training data.
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We examined various convolutional backbones, including ResNet50, VGG16, DenseNet201,
EfficientNet-B7, MobileOne-S4, Xception, and timm-efficientnet. We used our breast ultrasound
dataset to fine-tune all of them. We selected these backbones because they have been demonstrated to
perform well in classification and segmentation tasks. These backbones have unique structural features,
such as depth, skip connections, or compound scaling, which alter how the features are extracted and
retained.

When compared with the other models tested, the timm-efficientnet and ResNet50 models both
performed better. The timm-efficientnet library is a high-capacity EfficientNet version pretrained on
ImageNet21k. It is built from the timm (PyTorch image models) library. It can achieve accurate
multi-resolution features due to its compound scaling and more thorough design. This makes it ideal
for delineating complex lesion borders in ultrasound images. In addition to providing strong spatial
encoding through residual connections, ResNet50 also shows high accuracy across several evaluation
measures.

We made a hybrid model by combining the results of ResNet50 and EfficientNet. This was done to
make the segmentation methods even more stable and reliable. To be more specific, each model makes
its unique probability mask. These masks are then combined using a weighted average:

M = a'MResNet + (1 - a’)MEﬁNet-

This fusion method leverages the best aspects of both designs: ResNet’s structural sensitivity and
EfficientNet’s fine-grained encoding. At the same time, it minimizes the effects of each model’s
limitations.
The final segmentation map is refined through a convolutional layer followed by a sigmoid
activation function:
Mena = O'(W x* M + b)

This produces a pixel-wise probability map for lesions’ presence.

Visual inspection of segmentation maps (Figure 2) confirmed that the model could reliably find the
edges of lesions. This was true even in challenging situations with low contrast or different textures.
This segmentation stage is the last step in building our end-to-end Al architecture. It accurately detects
malignant lesions, making automated breast ultrasound analysis more valuable and reliable in clinical
settings.

(a) Original Image (Index 5) I:b:I Ground Truth Mask (C) Prediction

Figure 2. Qualitative segmentation example ((a) original ultrasound; (b) ground truth; (c)
prediction). Shown as a prototype illustration.
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4. Result and discussion

This section provides an overview of how we tested our proposed framework for classifying and
segmenting breast cancer using ensemble deep learning and FL techniques. The evaluation is done
using ultrasound imaging data, with a focus on two main classification tasks: (1) Finding normal and
abnormal instances, and (2) sorting abnormal cases into groups that are either benign or malignant.
We examine the performance of several deep learning models, including ResNet-50, EfficientNet-B7,
VGG-16, and Xception. We also examine the performance of the ensemble model, which combines
the outputs of these models using weighted averaging optimized by a GA. We also look at the FL.
setup to determine how to balance data’s accuracy and privacy. We investigate the performance of U-
Net-based architectures with different encoder backbones (such as ResNet50 and EfficientNet-L2) in
identifying malignant lesions for segmentation. We use evaluation metrics like accuracy, precision,
recall, Fl-score, Mathews correlation coefficient (MCC), IoU, and the Dice coefficient to test the
model’s performance thoroughly. The results demonstrate that the proposed pipeline can be applied in
clinical settings, as it shows how model fusion and decentralized training can enhance the robustness
of classification and the accuracy of segmentation.

4.1. Dataset description

“Dataset-BUSI-with-GT” (breast ultrasound images with ground truth) is a standard dataset often
used in research on classifying and segmenting breast cancer. This study’s experimental evaluation is
based on this dataset, available to the public at *. Al-Dhabyani et al. [76] made this dataset available,
with 780 ultrasound images. We assigned these images into normal, benign, and malignant groups.
A corresponding ground truth mask accompanies each image. This makes it easier to evaluate lesion
boundaries on a pixel-by-pixel basis. This mask is used for tasks that involve separating benign and
malignant groups.

This collection features black and white photos at various resolutions. These images depict various
visual patterns, textures, and noise levels similar to those found in real-life clinical settings. There are
three folders in the dataset, which are as follows:

e Normal/ — containing 133 images without tumor regions;
e Benign/ — containing 437 images and the corresponding binary masks;
e Malignant/ — containing 210 images and the corresponding binary masks.

The photos were resized to the exact resolution (128 * 128 or 224 * 224, depending on the model
used), converted to RGB by duplicating channels, and then normalized to meet the preprocessing
requirements of various deep learning architectures. This was done to utilize the data for training and
testing purposes. We used a stratified method of 80:10:10 to divide the dataset into training, validation,
and testing subsets, ensuring that there was no imbalance between the classes.

Because there are labelled masks and clinically relevant differences in lesions, this dataset is
a good starting point for classification and segmentation research. Another helpful feature is that
benchmarking works for centralized and FL situations.

Metadata limitation: The present study cannot conduct subgroup analyses based on density or
size due to the lack of annotations concerning lesion size or breast density in the publicly available

*https://www.kaggle.com/datasets/aryashah2k/breast-ultrasound-images-dataset/data
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dataset employed. The aim is to do subgroup analyses in future cohorts with more extensive metadata.
The segmentation example is presented to demonstrate the prototype’s completeness, not to assert
that the segmentation model has undergone comprehensive benchmarking. The primary objective is
classification.

4.2. Evaluation metrics

To assess the models’ performance, we employed a comprehensive set of evaluation metrics suitable
for binary classification tasks. These the following.

Accuracy
TP+TN
Accuracy = . “.1)
TP+TN+FP+FN
Precision TP
Precision = ———. 4.2)
TP+ FP
Recall TP
Recall = ———. 4.3)
TP+ FN
F1-score Procisi Recall
X
Fle2x recz‘sz'on eca _ (4.4)
Precision + Recall
Mcc TP-TN—-FP-FN
MCC = , 4.5)
V(TP + FPYTP + FN)(TN + FP)TN + FN)
where:

e T P: True positives;

e TN: True negatives;
e F'P: False positives;
e FN: False negatives.

The MCC returns a value between —1 and +1, where +1 indicates a perfect prediction, O represents
random prediction, and —1 indicates total disagreement between the prediction and the observation.

IoU
_IPNG

IPUG|
where P stands for the predicted segmentation mask and G stands for the ground truth mask. The
numerator in this equation shows how many pixels are shared by the prediction and the ground truth,
and the denominator shows how many pixels are in either the prediction or the ground truth, p, is the
observed accuracy, and p, is the expected accuracy by random chance.

These tools help us thoroughly understand the model’s success, particularly concerning the aging
class imbalance and ensuring strong detection performance in real-world environments.

(4.6)

4.3. Performance analysis of deep learning models for breast cancer classification

In this section, we discuss how well the deep learning classifiers perform with various types of
models. The first step is to create baseline models and assess the performance of traditional algorithms
before moving on to ensemble methods.
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4.3.1. Classification of normal and pathological ultrasound images

This section presents the results of experiments that utilized various deep learning models to
distinguish between normal and abnormal breast ultrasound images in a binary classification problem.
Table 3 compares how well the different models classify things. This study uses accuracy, precision,
recall, Fl-score, area under the curve (AUC), balanced accuracy, and MCC as its metrics.

Table 3. Performance comparison of various deep learning models and basic ensemble
learning for the classification of normal and abnormal breast lesions.

Accuracy Precision Recall Fl1- AUC  Balanced MCC
score accuracy
Resnet50 0.9067 1.0000 0.4167 0.5882 0.9778 0.7083 0.6124
EfficientNetB7 0.8400 0.5000 0.4167 0.4545 0.8439 0.6687 0.3638
EfficientNetB0 0.8800 0.6667 0.5000 0.5714 0.8879 0.7262 0.5104
MobileNetV3Large 0.8733 0.8571 0.2500 0.3871 0.9229 0.6210 0.4207
InceptionV3 0.7200 0.3333 0.7500 0.4615 0.8042 0.7321 0.3546
VGGl16 0.8733 0.8571 0.2500 0.3871 0.9378 0.6210 0.4207
Xception 0.8600 0.7143 0.2083 0.3226 0.8046 0.5962 0.3345
InceptionResNetV2  0.3800 0.2000 0.9583 0.3309 0.7464 0.6141 0.1978
Basic ensemble 0.9400 1.0000 0.6250 0.7692 0.9911 - 0.7638

The results of the classification tests for distinguishing between normal and abnormal breast
ultrasound images reveal significant differences in the models’ performance. These differences
highlight the architectural strengths and weaknesses of the models when applied to medical imaging.
ResNet50 achieves the highest overall accuracy (90.67%), the highest precision (1.000), and the highest
MCC (0.6124) compared with the other models. It can accurately distinguish between the two groups
because it has a high AUC score of 0.9778. However, its recall is still very low (0.4167), indicating
that it prefers the regular class and may miss unusual cases.

EfficientNetBO performs just as well as ResNet50, achieving an accuracy of 88.00%, a better
recall of 0.5000, and a good MCC of 0.5104. Compared with its lighter version, EfficientNetB7,
EfficientNetB7 does not perform as well. It has lower accuracy (84.00%) and MCC (0.3638), possibly
because it was overfitted or not fine-tuned enough on the dataset. MobileNetV3Large and VGG16
have similar accuracy (87.33%) and precision (0.8571) scores. However, their low recall (0.2500)
shows they are biased towards the majority class.

InceptionV3 and Xception have high recall values (0.7500 and 0.2083, respectively), but their
precision and Fl-scores are low, resulting in overprediction of the abnormal class and creation of
false positives. InceptionResNetV2 has the highest recall of 0.9583 among all the models. This means
that it can identify almost all unusual cases. Its accuracy, on the other hand, drops to 38.00%, which
gives it the lowest MCC (0.1978) of all the models. This balance between sensitivity and specificity
indicates a tendency to identify all samples as pathological.

Essential ensemble learning, which combines predictions from multiple models, achieves the best
overall performance. The ensemble achieves impressive results, with an accuracy of 94.00%, perfect
precision of 1.00, improved recall of 0.6250, and a strong F1-score of 0.7692. The AUC score
of 0.9911 indicates that it can distinguish between things very effectively, and the MCC score of 0.7638
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demonstrates that the predicted and actual labels agree very well. These results demonstrate that
ensemble methods are beneficial because they combine the best features of different models to make
them more robust and able to generalize.

In short, although each model has its own strengths and weaknesses regarding precision or recall,
the ensemble approach is the only one that gives a more balanced and reliable performance. This
demonstrates that ensemble learning is a suitable approach for our proposed framework and highlights
the importance of balancing sensitivity and specificity in medical diagnostics, where even a single false
negative could have severe clinical consequences.

4.3.2. Clinical interpretation (normal vs. abnormal)

The current confusion matrix indicates [TN=126, FP=0, FN=5, TP=19]. The GA-optimized
ensemble (ResNet50: EffNetBO = 0.7:0.3) has a precision of 1.000, a negative predictive
value of around 0.962, a sensitivity of roughly 0.7917, a specificity of 1.000, an accuracy of
approximately 0.9667, and an AUC of 0.9911. In screening scenarios when it is crucial to exclude
disease, an operational point with a precision of 1.0 eliminates false positives. The drawback is that
the recall 1s approximately 0.79, indicating that around 20.8 out of every 100 aberrant instances will be
overlooked. To enhance memory for triage operations when the AUC approaches 1, we should adjust
the thresholds to the left to get greater sensitivity.

4.3.3. Malignancy classification of detected abnormalities

This section aims to discuss the performance of deep learning models in the binary classification
task of distinguishing between benign and malignant breast lesions using ultrasound images. Table 4
shows the evaluation results, which use various performance metrics to show how well each model
works.

Table 4. Performance comparison of various deep learning models and basic ensemble
learning for the classification of benign and malignant breast lesions.

Accuracy Precision Recall Fl1- AUC  Balanced MCC
score accuracy
Resnet50 0.8333 0.9565 0.5238 0.6769 0.9048 0.7560 0.6247
EfficientNetB7 0.7619 0.7727 0.4048 0.5312 0.8455 0.6726 0.4287
EfficientNetBO 0.7857 0.7419 0.5476 0.6301 0.8260 0.7262 0.4951
MobileNetV3Large 0.8413 0.8667 0.6190 0.7222 0.9351 0.7857 0.6325
InceptionV3 0.6984 0.5588 0.4524 0.5000 0.7526 0.6369 0.2908
VGG16 0.8730 0.8611 0.7381 0.7949 0.9368 0.8393 0.7081
Xception 0.7937 0.6905 0.6905 0.6905 0.8231 0.7679 0.5357
InceptionResNetV2  0.3333 0.3333 1.0000 0.5000 0.5060 0.5000 0.0000
Ensemble learning  0.9206 0.9444 0.8095 0.8718 0.9674 - 0.8199

One of the most significant problems in medical imaging is determining the difference between
benign and malignant breast lesions. This choice has substantial effects on the healthcare system. The
tested models have various strengths in identifying malignant cases. Ensemble learning always gives
the best results.
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The VGG16 model performs the best among all the models, achieving an accuracy of 87.30%, an
F1-score of 0.7949, and an MCC of 0.7081. These numbers indicate that it can accurately recognize
both classes in a balanced manner, primarily due to its high recall of 0.7381, which is crucial for
identifying as many cancers as possible. MobileNetV3Large also performs well, with a slightly lower
accuracy (84.13%) but good generalization, as shown by a recall of 0.6190 and an MCC of 0.6325,
indicating that the predictions are generally reliable. MobileNetV3Large also does a good job.

ResNet50 has a low recall (0.5238), but it achieves a high level of precision (0.9565), indicating
that it generates few false positives. This is because it is well-known for its powerful spatial feature
extraction capabilities. This demonstrates a careful approach to classification, leaning towards benign
predictions, which could result in malignant cases going unnoticed. EfficientNetBO0 also strikes a good
balance, with an accuracy of 78.57%, a recall of 0.5476, and an MCC of 0.4951. EfficientNetB7
performs poorly, with the lowest F1-score among all EfficientNet variations. This could be because it
is easy to fine-tune.

Interestingly, Xception has a symmetrical performance profile, with a precision and recall of 0.6905.
This makes it a reliable choice for use in the real world, where consistency is essential in all classes.
InceptionV3 performs well for many visual tasks, but not in this case. It does not perform an excellent
job of distinguishing between different types of lesions, as evidenced by its low accuracy (69.84%),
F1-score (0.5000), and MCC (0.2908). InceptionResNetV?2 could recall samples 1000 perfectly, but it
did so at the cost of a 33% accuracy and a zero MCC. This means that it incorrectly identified almost
all samples as malignant, resulting in numerous false positives.

The ensemble learning method has the best overall performance, with an accuracy of 92.06%, a
precision of 0.9444, a recall of 0.8095, an F1-score of 0.8718, and a AUC of 0.9674. This is the result
that stands out the most. When diagnosing cancer, finding a balance between accuracy and memory
is essential. This model combines the best aspects of various architectures, enhancing recall without
compromising accuracy. Its MCC value of 0.8199 shows that the projected and actual classes are very
similar.

Ensemble learning makes the classification problem much more reliable and accurate, even though
different models capture different aspects. Ultimately, ensemble learning represents a significant step
forward. To minimize errors during breast cancer screening, clinical Al pipelines must achieve both
high sensitivity (recall) and specificity. These results demonstrate the critical importance of hybrid
methods in this case.

4.3.4. Clinical interpretation (benign vs. malignant)

The GA-weighted ensemble exhibits an accuracy of approximately 0.9603, a negative predictive
value of roughly 0.965, a sensitivity of approximately 0.9286, a specificity of about 0.9762, and an
AUC of around 0.9674, as derived from the confusion matrix [TN = 82, FP = 2, FN = 3, TP = 39]. At
this operational juncture, the expected number of overlooked malignant occurrences is around 100*(1
- 0.9286), equating to about 7.1 per 100 malignant cases. This represents an improved equilibrium for
assisting in diagnostic determinations. Clinicians may choose varying criteria to optimize sensitivity
and specificity, contingent upon the requisite number of biopsies, the prevalence of the ailment, and
safety standards.
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4.4. Performance analysis of weight selection for deep learning model fusion

We used a late-fusion method that combined predictions from ResNet50 and EfficientNet using a
weighted average. This enhanced the classification’s reliability and leveraged the strengths of various
CNN architectures. We employed a GA to identify the optimal combinations of weights that yielded
the best possible classification performance. The GA improves a multi-objective fitness function by
determining accuracy and selecting the optimal weights. This function encompasses the model’s ability
to distinguish, be sensitive, and make balanced predictions.

4.4.1. Evaluation on normal vs. abnormal classification

This subsection presents the results of applying the genetic algorithm-guided weight selection
method to combine ResNet50 and EfficientNetBO for the binary classification task. The challenging
part is distinguishing between normal and abnormal cases. Table 5 summarizes the evaluation metrics
collected when different combinations of fusion weight measurements were used.

Table 5. Classification performance for normal vs. abnormal detection using different weight
combinations of ResNet50 and EfficientNetBO.

ResNet weight EfficientNet weight Accuracy Precision Recall Fl-score MCC

0.024 0.976 0.8733 0.7273 0.3333 0.4571 0.4353
0.401 0.599 0.9533 1.0000 0.7083 0.8293  0.8192
0.845 0.155 0.9200 1.0000 0.5000 0.6667  0.6757
0.881 0.119 0.9533 0.9048 0.7917 0.8444  0.8197
0.711 0.289 0.9667 1.0000 0.7917 0.8837  0.8726

The GA examined various combinations of ResNet and EfficientNet weights to determine which
ones were normal and which were not. ResNet made up 71.1% of the ensemble output, and EfficientNet
made up 28.9%. This mix yielded the best accuracy (96.67%). This setup resulted in an Fl-score
of 0.8837 and an MCC of 0.8726, which is excellent. It also had perfect precision (1.0000) and a
high recall (0.7917). These results suggest a good balance between false positives and false negatives.
This is particularly important for screening activities and situations where failing to identify atypical
cases could be very harmful. It was confirmed that EfficientNet alone could not adequately capture all
discriminative features, as a lower ResNet weight (for example, 0.024) resulted in a significant drop
in recall and F1-score. High ResNet weights (like 0.845-0.881), on the other hand, improved memory
and MCC, but they were at their best when those weights were balanced around the 70-30 range. This
demonstrates that both models present valid yet distinct perspectives.

4.5. Evaluation on benign vs. malignant classification

This subsection summarizes the effectiveness of the weight fusion technique in addressing the
benign versus malignant classification problem. It is based on GAs. Table 6 shows a complete analysis
of how different weight distributions affect the classification results.
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Table 6. Classification performance for benign vs. malignant detection using different weight
combinations of ResNet50 and EfficientNetBO.

ResNet weight EfficientNet weight Accuracy Precision Recall Fl-score MCC

0.02 0.98 0.8254 0.8846 0.5476 0.6765  0.5963
0.358 0.642 0.8889 09118 0.7381 0.8158  0.7459
0.878 0.122 0.8571 1.0000 0.5714 0.7273  0.6860
0.806 0.194 0.8730 0.8611 0.7381 0.7949  0.7081
0.700 0.300 0.9603 0.9512 0.9286 0.9398  0.9103

When classifying benign and malignant tumours, the best fusion again favoured a more substantial
contribution from ResNet (70 %) and a minor contribution from EfficientNet (30 %). This resulted in
an Fl-score of 0.9398, a precision of 0.9512, a recall of 0.9286, and an accuracy of 96.03%. The MCC
for this value of 0.9103 shows a strong agreement between the predictions and the actual data. This
is better than any one model. Other combinations of weights that were examined revealed different
trade-offs. For example, a ResNet weight of 0.358 provided a good balance (accuracy 88.89%, F1-
score 0.8158), but a weight of 0.98 for EfficientNet resulted in a drop in recall and F1-Score. This
demonstrates the importance of ResNet’s robust spatial encoding in detecting cancers.

These results demonstrate that ResNet50 and EfficientNet possess complementary features, and
that combining them via genetic optimization not only enhances performance but also addresses the
issues inherent in separate networks. This is why choosing weights based on the GA is essential to our
ensemble method. This is especially true for sensitive tasks like diagnosing cancer, where both false
positives and false negatives have a lot of clinical weight. By using this method, we achieved better
results in both binary classification stages. This indicates that it can also be applied in other medical
imaging workflows.

4.6. Comparative analysis with state-of-the-art approaches

The results in Table 7 demonstrate that our proposed FL framework for breast cancer classification
outperforms many other methods considered to be the best. In a FL environment, our method
utilizes optimized weight selection and feature selection algorithms to incorporate deep learning
classifiers. According to what we learned from existing centralized and hybrid frameworks, the model
demonstrated good accuracy in classification, outperforming the results of other frameworks.

Table 7. Comprehensive evaluation: FL with optimized weight selection and classifier

integration.
Dataset
Methods Accuracy (%)
Proposed model  Ensemble learning based on weight selection 96
Anwar et al. [77] Ensemble model based on CNN and random forest 94
Sahu et al. [78] Hybrid framework 93.18
Sahu et al. [79] Homogeneous ensemble 94.62
Bianca et al. [80] CNN 86
Rai et al. [81] Real+GAN 92
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Compared with the ensemble CNN and random forest model of Anwar et al., [77] (94%) and the
hybrid framework of Sahu et al., [78] (93.18%), our FL-based model does a much better job of making
predictions. These two models both use CNN and random forest in different ways. It is especially
impressive that Sahu et al. [79] used a homogeneous ensemble technique with an accuracy of 94.62%.
On the other hand, Bianca et al. [80] got an accuracy of 86% by using only a CNN. These comparisons
highlight the limitations of traditional pipelines, which rely on a single model, and underscore the
importance of utilizing a diverse range of classifiers and adaptive weighting methods.

Rai et al. [81] developed a GAN-based synthetic data augmentation strategy that achieved 92%
accuracy. This is a good start, but less accurate than our federated architecture. Unlike these centralized
methods, our model operates in a way that ensures that people’s privacy remains safe. It spreads the
training process across fake customers without sharing private information, ensuring that it is accurate
and adheres to modern healthcare data governance rules.

The performance improvement that was seen can be traced back to two main factors: (1) The
use of a genetically optimized weighting scheme to combine multiple classifiers, like ResNet50
and EfficientNetBO, and (2) the use of a GA for weight selection to cut down on redundancy and
computational overhead while keeping the ability to tell the difference between things. As a result,
our model was better able to generalize across decentralized data divisions, which made learning more
efficient and less prone to overfitting.

In conclusion, the results demonstrate that our federated ensemble learning architecture can achieve
high classification accuracy while maintaining data privacy. This is a critical need for use in real-life
medical settings. This new development makes it possible for breast cancer testing to be scalable and
safe and done by healthcare institutions spread out over a large area.

4.7. Detection of breast cancer based on deep learning models

Finding and separating breast cancer lesions correctly is significant for making clinical decisions.
This is because it allows radiologists to examine the tumor’s shape, size, and edges, which helps them
make a diagnosis, plan treatment, and monitor its progress. This study aimed to evaluate several deep
learning models and ensemble methods to assess their ability to distinguish between cancerous and
non-cancerous lesions in breast ultrasound images. We examined key performance metrics, including
accuracy, precision, Fl-score, recall, and IoU. Table 8 shows the results gathered for this work.

Table 8. Performance comparison of various deep learning models and ensemble learning
methods for the breast cancer detection.

Accuracy Precision F1-score Recall IoU
resnet50 0.9738 0.9806 0.9291 0.8828 0.8676
VGG16 0.9695 0.9824 0.9163 0.8585 0.8455
efficientnet-b7 0.9767 0.9697 0.9381 0.9084 0.8833
mobileone_s4 0.9797 0.9417 0.9481 0.9545 0.9012
timm-efficientnet-12 0.9794 0.9635 0.9461 0.9293 0.8977
densenet201 0.9697 0.9573 0.9188 0.8833 0.8498
xception 0.9737 0.9636 0.9300 0.8986 0.8691
Ensemble learning 0.9742 0.9665 0.9311 0.8981 0.8710
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All models did well overall, but MobileOne-S4 and EfficientNet-L2 (both from the timm library)
stood out as the best. MobileOne-S4 had the highest accuracy (97.97%), Fl-score (0.9481), and
recall (0.9545). This demonstrates that it can identify most lesion pixels while maintaining a low
rate of false negatives. It excels at defining lesion contours, as evidenced by its IoU of 0.9012, which
demonstrates a substantial spatial overlap with the ground truth annotations.

Timm-EfficientNet-L2 comes in a close second with an accuracy of 97.94%, a high recall of 0.9293,
and the second-best Fl-score of 0.9461. It also has an outstanding IoU of 0.8977. On the basis
of these results, we can conclude that EfficientNet-L2 can accurately capture small amounts of
spatial and contextual data, which aids in accurate lesion boundary prediction. EfficientNet-B7 also
generalizes significantly, with the third-highest recall (0.9084) and F1-score (0.9381). This suggests
that compound-scaled architectures are effective for medical segmentation.

The accuracy of ResNet50 and Xception, which exceeds 97.3 %, their F1-scores, which are close
to 0.93; and their recall, which exceeds 0.88, all indicate that they are effective at capturing lesion-
specific patterns. The recall and IoU values for VGG16 and DenseNet201 are slightly lower than those
of other neural networks (for example, for VGG16, recall = 0.8585 and IoU = 0.8455). This means
that these neural networks may be unable to segment lesions or discern finer boundary details, even
though they are highly accurate.

It is interesting to note that the ensemble learning strategy combines the results of many models
to create a balanced performance. This gives an accuracy of 97.42%, an F1-score of 0.9311, a recall
of 0.8981, and an IoU of 0.8710. The ensemble’s ability to make the model more resilient and less
likely to overfit specific patterns is demonstrated by the fact that it performs well on all metrics, even
though it does not consistently outperform the best individual model on every parameter. Due to this,
it is an excellent choice for use in real-world clinical workflows, where consistency is crucial.

MobileOne-S4 and EfficientNet-L2 are the best choices for detecting lesions, although other models
are also very effective at segmentation. The ensemble model also appears to be helpful because it
provides a solution that is both stable and can be applied in various situations. These results show
how important it is to have a variety of models and a pleasing architectural design in the field of
medical segmentation when it comes to diagnosing breast cancer. They also emphasize the importance
of striking a balance between recall and precision to ensure that lesion mapping is accurate and
trustworthy, as illustrated in Figure 3, which presents the segmentation results.

(3) Original Image (Index 5) (b) Ground Truth Mask (C) Prediction

Figure 3. Breast cancer detection.
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5. Conclusions

This study aims to develop a more comprehensive and multi-phase learning framework that will
enhance breast cancer diagnosis using ultrasound imaging while maintaining patients’ data privacy
through FL. The framework combines advanced preprocessing, augmentation, classification, ensemble
fusion, and segmentation components to make a single, therapeutically beneficial and technologically
cutting-edge pipeline. We can demonstrate the ability to classify breast ultrasound images into normal,
benign, and malignant classes with high accuracy using cutting-edge CNN architectures such as
ResNet50, EfficientNetB7, VGG16, and Xception.

Using a genetic algorithm to optimize an ensemble learning technique helped us make our models
stronger and more accurate at making predictions. This helped us overcome the limitations of using
only one model. Additionally, using the FedAvg algorithm for FL enabled the training of models across
simulated clients in a distributed manner without sharing sensitive patient data during the process.
Our research shows that FL only slightly improves classification performance compared with regular
centralized training. However, it enhances privacy and compliance with laws regarding medical data.

The segmentation part of our method provides accurate lesion boundaries for malignant cases,
making our technology significantly more helpful in the clinic. This is important for both planning
treatment and evaluating follow-up care. The combination of ResNet50 and EfficientNetB7’s features
for segmentation, followed by sigmoid activation and evaluation using Dice and IoU metrics,
demonstrates the accuracy of our method.

Our tests showed that the suggested system could achieve an accuracy rate of 0.96 for the
classification stage and 0.97 for the segmentation stage. This indicates that our technology performs
exceptionally well and is highly reliable.

In conclusion, our architecture demonstrates that deep learning and federated computing can be
effectively combined in a medical setting to achieve high accuracy, protect patients’ data, and facilitate
real-time clinical decision-making. This is important because medicine is a very delicate field. In the
future, work will include field deployment on edge devices. This work represents the first step toward
developing Al systems that are scalable, secure, and easy to understand in medical imaging.

Our design emphasizes privacy through construction via FL and secure aggregation, with an
optional differentially private training mode. Empirical attack benchmarking is left for future work.

We intend to (i) establish cohorts enriched with metadata to facilitate subgroup analyses based on
breast density and lesion size; (i1) implement personalized FL (such as FedBN/FedPer) to address
the persistent shift in inter-client distribution; (iii) employ end-to-end DP-SGD with designated
privacy budgets and utility-privacy curves; (iv) assess uncertainty and utilize calibration-aware triage
thresholds; (v) adopt resource-aware deployment strategies (quantization/pruning) with latency and
energy profiling on edge devices; and (vi) conduct a human-Al reader study to evaluate time-to-
decision and sensitivity enhancement.
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