The aim of this article is to introduce a novel and logically motivated approach that successfully yields a new refinement of the discrete form of Jensen's inequality. The proposed refinement is further applied to several important areas, including inequalities involving means, Hölder's inequality, and information theory, thereby demonstrating both the theoretical strength and practical utility of the result.
Citation: Sumaira Sahar, Muhammad Adil Khan, Hidayat Ullah, Nannan Fang, Khalid A. Alnowibet. A novel approach to refining discrete Jensen's inequality and its applications[J]. AIMS Mathematics, 2025, 10(11): 26058-26076. doi: 10.3934/math.20251147
The aim of this article is to introduce a novel and logically motivated approach that successfully yields a new refinement of the discrete form of Jensen's inequality. The proposed refinement is further applied to several important areas, including inequalities involving means, Hölder's inequality, and information theory, thereby demonstrating both the theoretical strength and practical utility of the result.
| [1] | S. A. Azar, Jensen's inequality in finance, Int. Adv. Econ. Res., 14 (2008), 433–440. |
| [2] |
M. W. Akram, S. Iqbal, A. Fahad, Y. H. Wang, Hermite-Hadamard-type inequalities for $h$-Godunova-Levin convex fuzzy interval-valued functions via Riemann-Liouville fractional $q$-integrals, Fractal Fract., 9 (2025), 1–23. https://doi.org/10.3390/fractalfract9090578 doi: 10.3390/fractalfract9090578
|
| [3] | I. Ansari, K. A. Khan, A. Nosheen, Đ. Pečarić, J. Pečarić, Estimation of divergence measures via weighted Jensen inequality on time scales, J. Inequal. Appl., 2021 (2021), 93. |
| [4] |
A. Basir, M. A. Khan, H. Ullah, Y. Almalki, S. Chasreechai, T. Sitthiwirattham, Derivation of bounds for majorization differences by a novel method and its applications in information theory, Axioms, 12 (2023), 1–17. https://doi.org/10.3390/axioms12090885 doi: 10.3390/axioms12090885
|
| [5] |
M. Denny, The fallacy of the average: on the ubiquity, utility and continuing novelty of Jensen's inequality, J. Exp. Biol., 220 (2017), 139–146. https://doi.org/10.1242/jeb.140368 doi: 10.1242/jeb.140368
|
| [6] |
S. S. Dragomir, A new refinement of Jensen's inequality in linear spaces with applications, Math. Comput. Model., 52 (2010), 1497–1505. https://doi.org/10.1016/j.mcm.2010.05.035 doi: 10.1016/j.mcm.2010.05.035
|
| [7] | S. S. Dragomir, An improvement of Jensen's inequality, Bull. Math. Soc. Sci. Math. Roumanie, 34 (1990), 291–298. |
| [8] |
S. S. Dragomir, A further improvement of Jensen's inequality, Tamkang J. Math., 25 (1994), 29–36. https://doi.org/10.5556/j.tkjm.25.1994.4422 doi: 10.5556/j.tkjm.25.1994.4422
|
| [9] |
S. S. Dragomir, A refinement of Jensen's inequality with applications for $f$-divergence measures, Taiwanese J. Math., 14 (2010), 153–164. https://doi.org/10.11650/twjm/1500405733 doi: 10.11650/twjm/1500405733
|
| [10] |
L. Horváth, Integral Jensen-Mercer and related inequalities for signed measures with refinements, Mathematics, 13 (2025), 1–19. https://doi.org/10.3390/math13030539 doi: 10.3390/math13030539
|
| [11] |
L. Horváth, Refining the integral Jensen inequality for finite signed measures using majorization, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. (RACSAM), 118 (2024), 129. https://doi.org/10.1007/s13398-024-01627-7 doi: 10.1007/s13398-024-01627-7
|
| [12] |
J. H. Kim, Further improvement of Jensen inequality and application to stability of time-delayed systems, Automatica, 64 (2016), 121–125. https://doi.org/10.1016/j.automatica.2015.08.025 doi: 10.1016/j.automatica.2015.08.025
|
| [13] |
M. A. Khan, G. A. Khan, T. Ali, A. Kilicman, On the refinement of Jensen's inequality, Appl. Math. Comput., 262 (2015), 128–135. https://doi.org/10.1016/j.amc.2015.04.012 doi: 10.1016/j.amc.2015.04.012
|
| [14] |
T. X. Li, D. Acosta-Soba, A. Columbu, G. Viglialoro, Dissipative gradient nonlinearities prevent $\delta$-formations in local and nonlocal attraction-repulsion chemotaxis model, Stud. Appl. Math., 154 (2025), e70018. https://doi.org/10.1111/sapm.70018 doi: 10.1111/sapm.70018
|
| [15] | T. X. Li, Y. V. Rogovchenko, Oscillation criteria for second-order superlinear Emden-Fowler neutral differential equations, Monatsh. Math., 184 (2017), 489–500. https://doi.org/10.1007/s00605-017-1039-9 |
| [16] | J. Pečarić, S. S. Dragomir, A refinements of Jensen inequality and applications, Stud. Univ. Babes Bolyai Math., 24 (1989), 15–19. |
| [17] |
Đ. Pečarić, J. Pečarić, M. Rodić, About the sharpness of the Jensen inequality, J. Inequal. Appl., 2018 (2018), 337. https://doi.org/10.1186/s13660-018-1923-4 doi: 10.1186/s13660-018-1923-4
|
| [18] |
H. Ullah, M. Adil Khan, T. Saeed, Determination of bounds for the Jensen gap and its applications, Mathematics, 9 (2021), 1–29. https://doi.org/10.3390/math9233132 doi: 10.3390/math9233132
|
| [19] |
M. Vivas-Cortez, S. Ramzan, M. U. Awan, M. Z. Javed, A. G. Khan, M. A. Noor, I.V-CR-$\gamma$-convex functions and their application in fractional Hermite-Hadamard inequalities, Symmetry, 15 (2023), 1–25. https://doi.org/10.3390/sym15071405 doi: 10.3390/sym15071405
|
| [20] |
Y. H. Wang, U. Asif, M. Z. Javed, M. U. Awan, A. Kashuri, O. M. Alsalami, Super-quadratic stochastic processes with fractional inequalities and their applications, Fractal Fract., 9 (2025), 1–29. https://doi.org/10.3390/fractalfract9100627 doi: 10.3390/fractalfract9100627
|