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1. Introduction

In 1905, Jensen proved the following inequality:

Ψ
(
L̄
)
≤

1
F

m∑
k=1

ξkΨ(ϱk), (1.1)

if Ψ : [δ1, δ2] → R is a convex function, ϱk ∈ [δ1, δ2], ξk ≥ 0 with F :=
∑m

k=1 ξk > 0 and L̄ :=
1
F

∑m
k=1 ξkϱk.

This inequality has attracted the attention of numerous mathematicians, and extensive research has
been conducted on its generalizations, extensions, and refinements. There are several applications
of this inequality in various directions. Some recent related results on generalized convexity can be
found in [2, 19], while several useful inequalities and their applications are discussed in [14, 20]. One
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of the most interesting aspects of research on the Jensen inequality is the pursuit of its refinements.
In 1989, Pečarić and Dragomir obtained the refinement of (1.1) containing the means of certain points
of ϱk

′s [15]. Some related results are derived in [7, 8]. In [12], the delay-dependent stability of
linear systems with time-varying delays is investigated, with particular emphasis on refining Jensen’s
inequality, which has been widely used in stability analysis via Lyapunov-Krasovskii functionals.
A novel integral inequality, formulated as an infinite series and developed without relying on the
Wirtinger inequality, is proposed to enhance the classical Jensen-based approach. The sharpness
results for the discrete as well as integral Jensen inequality were derived using the Green function
approach, and applied the results for different divergence measures and the Zipf-Mandelbrot law [16].
The refinement derived in [6], based on functionals constructed from indexing sets, offers a clear
and easily understandable proof. As a consequence, the more complex refinement obtained earlier
in [9] can be deduced directly. A further generalization with respect to arbitrary n indexing sets is
presented in [13]. The use of signed measures and majorization inequalities has been employed to
derive and refine Jensen’s inequality through a novel approach. In particular, a refinement of the
Jensen-Steffensen inequality has also been deduced in [11]. Some more related results are given in [10].
An interesting approach was introduced in [17] for deriving results related to Jensen’s inequality. This
method focuses on establishing an integral identity involving the difference form of Jensen’s inequality.
By applying various classes of convex functions, along with the Hölder inequality and the integral
form of Jensen’s inequality, several refined results were obtained. These results were further utilized to
derive applications in classical inequalities and information theory. In 2008, Azar [1] demonstrated the
economic and statistical significance of Jensen’s inequality through its variants in financial economics.
These variants of Jensen’s inequality arise in contexts such as foreign exchange pricing, forward market
efficiency, and expected utility theory. Using simulations, the study confirmed their practical relevance
despite the presence of sampling error. The findings underscore that Jensen’s inequality serves as
a foundational, rather than merely theoretical, tool in financial analysis. Denny [5] highlighted the
significance of Jensen’s inequality by providing a clear graphical interpretation of its effects and
examining its implications across atomic, molecular, organismal, and ecological levels. In 2023, Vivas-
Cortez et al. [18] derived novel discrete and integral versions of Jensen’ s inequality and extended
several classical fractional integral inequalities for their newly introduced class of interval-valued
functions, termed CR-γ-convex functions. Their findings were further supported through illustrative
applications and graphical representations. By employing a weighted time scales form of Jensen’s
inequality, Ansari et al. [3] established novel inequalities related to various divergences and distances
within the framework of time scales. Their work significantly advanced the theory by introducing
new results in h-discrete and quantum calculus, while also generalizing several existing inequalities.
Basir et al. [4] explored new forms of weighted majorization inequality by utilizing Jensen’s inequality.
To show the value of their work, they also demonstrated how these results can be applied in areas like
information theory.

A careful study of the existing literature on Jensen’s inequality reveals that deriving new and
meaningful refinements has become a highly challenging task due to the depth and maturity of prior
results. In this article, we successfully present a new refinement of Jensen’s inequality by employing
a novel and logically structured approach. Specifically, we express both sides of the inequality in a
carefully formulated manner that enables the effective application of the Hermite-Hadamard inequality,
leading to an improved version of the classical Jensen inequality. Building upon this refinement, we
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further derive enhanced forms of Hölder’s inequality and inequalities involving means. Finally, we
apply the derived results to obtain several applications in the framework of information theory.

2. Refinement

We contribute to the literature by presenting the following refinement of Jensen’s inequality.

Theorem 2.1. Suppose ϱk ∈ [δ1, δ2], ξk ≥ 0 for each k ∈ {1, 2, . . . ,m} with F :=
m∑

k=1
ξk > 0, and let the

function Ψ : [δ1, δ2]→ R be convex. Then

Ψ

( 1
F

m∑
k=1

ξkϱk

)
≤

1
F2

m∑
k=1

m∑
l=1

ξkξlΨ
(ϱk + ϱl

2

)
≤

1
F2

( m∑
k=1

ξ2
kΨ(ϱk) + 2

∑
k<l

ξkξl
1

ϱl − ϱk

∫ ϱl

ϱk

Ψ(σ)dσ
)
≤

1
F

m∑
k=1

ξkΨ(ϱk). (2.1)

The inequality (2.1) reversed whenever function Ψ is concave.

Proof. Clearly, the following identity holds:

1
F2

m∑
k=1

m∑
l=1

ξkξlΨ
(ϱk + ϱl

2

)
=

1
F2

( m∑
k=1

ξ2
kΨ(ϱk) +

∑
k,l

ξkξlΨ
(ϱk + ϱl

2

))
=

1
F2

( m∑
k=1

ξ2
kΨ(ϱk) +

∑
k<l

ξkξlΨ
(ϱk + ϱl

2

)
+

∑
k>l

ξkξlΨ
(ϱk + ϱl

2

))
=

1
F2

( m∑
k=1

ξ2
kΨ(ϱk) + 2

∑
k<l

ξkξlΨ
(ϱk + ϱl

2

))
. (2.2)

With the function Ψ being convex, the below Hermite-Hadamard inequality is valid:

Ψ

(
δ1 + δ2

2

)
≤

1
δ2 − δ1

∫ δ2

δ1

Ψ(σ)dσ ≤
Ψ(δ1) + Ψ(δ2)

2
. (2.3)

Without compromising the generality, let’s consider that all ϱk are distinct for k = 1, 2, . . . ,m.
Applying (2.3) with δ1 as ϱk and δ2 as ϱl, the inequality obtained is as follows:

Ψ

(
ϱk + ϱl

2

)
≤

1
ϱl − ϱk

∫ ϱl

ϱk

Ψ(σ)dσ ≤
Ψ(ϱk) + Ψ(ϱl)

2
. (2.4)

The inequality below is deduced by substituting (2.4) into (2.2) :

1
F2

m∑
k=1

m∑
l=1

ξkξlΨ
(ϱk + ϱl

2

)
≤

1
F2

( m∑
k=1

ξ2
kΨ(ϱk) + 2

∑
k<l

ξkξl
1

ϱl − ϱk

∫ ϱl

ϱk

Ψ(σ)dσ
)

≤
1

F2

( m∑
k=1

ξ2
kΨ(ϱk) + 2

∑
k<l

ξkξl
(Ψ(ϱk) + Ψ(ϱl)

2

))
. (2.5)
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Because of the convexity of function Ψ, we can employ the Jensen inequality, which allows us to
establish the following inequality:

Ψ

(
1
F

m∑
k=1

ξkϱk

)
= Ψ

(
1

F2
n

(2F
m∑

k=1
ξkϱk

2

))
= Ψ

(
1

F2

(F
m∑

k=1
ξkϱk + F

m∑
l=1
ξlϱl

2

))

= Ψ

(
1

F2

( m∑
k=1

m∑
l=1
ξkξlϱk +

m∑
k=1

m∑
l=1
ξkξlϱl

2

))
≤

1
F2

m∑
k=1

m∑
l=1

ξkξlΨ
(
ϱk + ϱl

2

)
. (2.6)

The right-hand side of (2.5) can be expressed as

1
F2

( m∑
k=1

ξ2
kΨ(ϱk) + 2

∑
k<l

ξkξl
(Ψ(ϱk) + Ψ(ϱl)

2

))
=

1
F2

( m∑
k=1

ξ2
kΨ(ϱk) +

∑
k<l

ξkξl
(Ψ(ϱk) + Ψ(ϱl)

2

)
+

∑
k>l

ξkξl
(Ψ(ϱk) + Ψ(ϱl)

2

))
=

1
F2

( m∑
k=1

ξ2
kΨ(ϱk) +

∑
i, j

ξkξl
(Ψ(ϱk) + Ψ(ϱl)

2

))

=
1

2F2

m∑
k=1

m∑
l=1

ξkξl
(
Ψ(ϱk) + Ψ(ϱl)

)
=

1
2F2

m∑
k=1

ξk

(
FΨ(ϱk) +

m∑
l=1

ξlΨ(ϱl)
)

=
1

2F2

(
F

m∑
k=1

ξkΨ(ϱk) + F
m∑

l=1

ξlΨ(ϱl)
)

=
1
F

m∑
k=1

ξkΨ(ϱk). (2.7)

Upon amalgamating (2.5)–(2.7), we attain (2.1).

The following result refines the simple form of Jensen’s inequality.

Corollary 2.1. Let the function Ψ : [δ1, δ2]→ R be convex and ϱk ∈ [δ1, δ2]. Then

Ψ

( 1
m

m∑
k=1

ϱk

)
≤

1
m2

m∑
k=1

m∑
l=1

Ψ
(ϱk + ϱl

2

)
≤

1
m2

( m∑
k=1

Ψ(ϱk) + 2
∑
k<l

1
ϱl − ϱk

∫ ϱl

ϱk

Ψ(σ)dσ
)

≤
1
m

m∑
k=1

Ψ(ϱk). (2.8)

Proof. Substituting ξk = 1 for k = 1, 2, . . . ,m in (2.1) leads us to derive (2.8).
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3. Applications for the means inequality

This section focuses on the applications of established refinement to power and quasi-arithmetic
means. We present results that provide improved inequalities refining the relationships between these
means. To proceed, we begin with the definition of power means:

Definition 3.1. Let p = (ξ1, ξ2, · · · , ξm) and x = (ϱ1, ϱ2, · · · , ϱm) be positive tuples with F :=
m∑

k=1
ξk. The

power mean of order ζ1 ∈ R is then defined as follows:

Mζ1(p, x) =


(

1
F

m∑
k=1
ξkϱ
ζ1
k

) 1
ζ1
, ζ1 , 0,( m∏

k=1
ϱ
ξk
k

) 1
F

, ζ1 = 0.
(3.1)

The following corollary is a direct application of Theorem 2.1, providing a refined relation for the
power means.

Corollary 3.1. Let ξk, ϱk > 0 for k = 1, 2, . . . ,m with F :=
∑m

k=1 ξk and ζ1, ζ2 ∈ R such that ζ1 ≥ ζ2.
Then
(i)

Mζ2(p, x) ≤
( 1
F2

m∑
k=1

m∑
l=1

ξkξl
(ϱζ2k + ϱ

ζ2
l

2

) ζ1
ζ2

) 1
ζ1

≤

( 1
F2

( m∑
k=1

ξ2
kϱ
ζ1
k +

2ζ2
ζ1 + ζ2

∑
k<l

ξkξl
(
ϱ
ζ1+ζ2
l − ϱ

ζ1+ζ2
k

)
ϱ
ζ2
l − ϱ

ζ2
k

)) 1
ζ1

≤ Mζ1(p, x), ζ1, ζ2 , 0. (3.2)

(ii)

Mζ1(p, x) ≥
( 1
F2

m∑
k=1

m∑
l=1

ξkξl
(ϱζ1k + ϱ

ζ1
l

2

) ζ2
ζ1

) 1
ζ2

≥

( 1
F2

( m∑
k=1

ξ2
kϱ
ζ2
k +

2ζ1
ζ2 + ζ1

∑
k<l

ξkξl
(
ϱ
ζ2+ζ1
l − ϱ

ζ2+ζ1
k

)
ϱ
ζ1
l − ϱ

ζ1
k

)) 1
ζ2

≥ Mζ2(p, x), ζ1, ζ2 , 0. (3.3)

Proof. (i) In the situation, where ζ1 and ζ2 both hold positive values, or in the scenario where ζ1
remains positive while ζ2 takes negative values, the function Ψ(σ) = σ

ζ1
ζ2 is convex, while obeying

the condition ζ1 ≥ ζ2. Consequently, by utilizing inequality (2.1) with the choices Ψ(σ) = σ
ζ1
ζ2 and

ϱk = ϱ
ζ2
k , we arrive at

1
F

m∑
k=1

ξk
(
ϱ
ζ2
k

) ζ1
ζ2 ≥

1
F2

m∑
k=1

ξ2
k
(
ϱ
ζ2
k

) ζ1
ζ2 +

2
F2

∑
k<l

ξkξl

ϱ
ζ2
l − ϱ

ζ2
k

∫ ϱ
ζ2
l

ϱ
ζ2
k

σ
ζ1
ζ2 dσ
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≥
1

F2

m∑
k=1

m∑
l=1

ξkξl

(ϱζ2k + ϱ
ζ2
l

2

) ζ1
ζ2

≥

( 1
F

m∑
k=1

ξkϱ
ζ2
k

) ζ1
ζ2
. (3.4)

Upon performing some calculations in inequality (3.4), and then taking the exponent as 1
ζ1

, we led to
the following inequality:( 1

F

m∑
k=1

ξkϱ
ζ1
k

) 1
ζ1
≥

( 1
F2

m∑
k=1

ξ2
kϱ
ζ1
k +

2r
(ζ1 + ζ2)F2

∑
k<l

ξkξl

ϱ
ζ2
l − ϱ

ζ2
k

(
ϱ
ζ1+ζ2
l − ϱ

ζ1+ζ2
k

)) 1
ζ1

≥

( 1
F2

m∑
k=1

m∑
l=1

ξkξl
(ϱζ2k + ϱ

ζ2
l

2

) ζ1
ζ2

) 1
ζ1

≥
( 1
F

m∑
k=1

ξkϱ
ζ2
k

) 1
ζ2 . (3.5)

Without a doubt, the inequality (3.5) corresponds to the inequality (3.2).

The case when both ζ1 and ζ2 are negative with ζ1 ≥ ζ2, then the function Ψ(σ) = ϱ
ζ1
ζ2 demonstrates

concave behavior. Hence, by employing the reverse inequality in (2.1) and following the same
procedure, we derive (3.2).

(ii) In this part, we consider the function Ψ(σ) = σ
ζ2
ζ1 . By applying the same procedure as in the first

part, we arrive at (3.3).

We now recall the definition of the quasi-arithmetic mean:

Definition 3.2. Let p = (ξ1, ξ2, · · · , ξm) and x = (ϱ1, ϱ2, · · · , ϱm) be tuples with positive components
and h be a continuous and strictly monotonic function. The quasi-arithmetic mean associated with h
is then defined as follows:

Mh(p, x) = h−1
( 1∑m

k=1 ξk

m∑
k=1

ξkh(ϱk)
)
. (3.6)

The next result establishes a relation for quasi-arithmetic means as a direct application of
Theorem 2.1.

Corollary 3.2. Assuming that the function h is continuous and strictly monotonic such that Ψ ◦ h−1 is

convex on (0,∞), and ξk, ϱk > 0 for k = 1, 2, . . . ,m with F :=
m∑

k=1
ξk, then

Ψ
(
Mh(p, x)

)
≤

1
F2

m∑
k=1

m∑
l=1

ξkξlΨ ◦ h−1
(h(ϱk) + h(ϱl)

2

)
≤

1
F2

( m∑
k=1

ξ2
kΨ(ϱk) + 2

∑
k<l

ξkξl
h(ϱl) − h(ϱk)

∫ h(ϱl)

h(ϱk)
Ψ(σ)dσ

)
≤

1
F

m∑
k=1

ξkΨ(ϱk). (3.7)
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Proof. By replacing ϱk by h(ϱk) and Ψ by Ψ ◦ h−1 in inequality (2.1), we deduce

Ψ ◦ h−1
( 1
F

m∑
k=1

ξkh(ϱk)
)
≤

1
F2

m∑
k=1

m∑
l=1

ξkξlΨ ◦ h−1
(h(ϱk) + h(ϱl)

2

)
≤

1
F2

( m∑
k=1

ξ2
kΨ ◦ h−1(h(ϱk)

)
+ 2

∑
k<l

ξkξl
h(ϱl) − h(ϱk)

∫ h(ϱl)

h(ϱk)
Ψ ◦ h−1(h(σ)

)
dσ

)
≤

1
F

m∑
k=1

ξkΨ ◦ h−1(h(ϱk)
)
. (3.8)

Instantly, simplifying (3.8), we obtain (3.7).

4. Applications for the Hölder inequality

In this section, we present several refinements of Hölder’s inequality as applications of the main
results. We begin with the following corollary, which offers a refinement of the classical inequality.

Proposition 4.1. Let ξk and ϱk be positive real numbers, where k = 1, 2, . . . ,m.
(i) If ζ1, ζ2 > 1 with 1

ζ1
+ 1
ζ2
= 1, then

m∑
k=1

ξkϱk ≤

( 1(∑m
k=1 ξ

ζ2
k

)2

m∑
k=1

m∑
l=1

ξ
ζ2
k ξ
ζ2
l

(ξ− ζ2ζ1k ϱk + ξ
−
ζ2
ζ1

l ϱl

2

)ζ1) 1
ζ1 ( m∑

k=1

ξ
ζ2
k

)
≤

[ 1(∑m
k=1 ξ

ζ2
k

)2

( m∑
k=1

ξ
ζ2
k ϱ
ζ1
k +

2
ζ1 + 1

∑
k<l

ξ
ζ2
k ξ
ζ2
l

ξ
−
ζ2
ζ1

l ϱl − ξ
−
ζ2
ζ1

k ϱk

×

((
ξ
−
ζ2
ζ1

l ϱl

)ζ1+1
−

(
ξ
−
ζ2
ζ1

k ϱk

)ζ1+1
))] 1

ζ1 ( m∑
k=1

ξ
ζ2
k

)
≤

( m∑
k=1

ξ
ζ2
k

) 1
ζ2
( m∑

k=1

ϱ
ζ1
k

) 1
ζ1 . (4.1)

(ii) If 0 < ζ1 < 1, with ζ2 =
ζ1
ζ1−1 , then

( m∑
k=1

ϱ
ζ1
k

) 1
ζ1
( m∑

k=1

ξ
ζ2
k

) 1
ζ2 ≤

1∑m
k=1 ξ

ζ2
k

m∑
k=1

m∑
l=1

ξ
ζ2
k ξ
ζ2
l

(ϱζ1k ξ
ζ1(1−ζ2)
k + ϱ

ζ1
l ξ
ζ1(1−ζ2)
l

2

) 1
ζ1

≤
1∑m

k=1 ξ
ζ2
k

( m∑
k=1

ϱkξ
(1−ζ2)
k +

2ζ1
ζ1 + 1

∑
k<l

ξ
ζ2
k ξ
ζ2
l

ϱ
ζ1
l ξ
ζ1(1−ζ2)
l − ϱ

ζ1
k ξ
ζ1(1−ζ2)
k

×

(((
ϱ
ζ1
l ξ
ζ1(1−ζ2)
l

) ζ1+1
ζ1
−

(
ϱ
ζ1
k ξ
ζ1(1−ζ2)
k

) ζ1+1
ζ1

))
≤

m∑
k=1

ξkϱk. (4.2)
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(iii) If ζ1 < 0 and ζ2 =
ζ1
ζ1−1 , then

( m∑
k=1

ξ
ζ2
k

) 1
ζ2
( m∑

k=1

ϱ
ζ1
k

) 1
ζ1 ≤

1
m∑

k=1
ϱ
ζ1
k

m∑
k=1

m∑
l=1

ϱ
ζ2
k ϱ
ζ2
l

(ξζ2k ϱ
ζ2(1−ζ1)
k + ξ

ζ2
l ϱ
ζ2(1−ζ1)
l

2

) 1
ζ2

≤
1

m∑
k=1
ϱ
ζ1
k

( m∑
k=1

ξkϱ
(ζ1+1)
k +

2ζ2
ζ2 + 1

∑
k<l

ϱ
ζ2
k ϱ
ζ2
l

ξ
ζ2
l ϱ
ζ2(1−ζ1)
l − ξ

ζ2
k ϱ
ζ2(1−ζ1)
k

×

((
ξ
ζ2
l ϱ
ζ2(1−ζ1)
l

) ζ2+1
ζ2 −

(
ξ
ζ2
k ϱ
ζ2(1−ζ1)
k

) ζ2+1
ζ2

))
≤

m∑
k=1

ξkϱk. (4.3)

Proof. (i) Let us consider the function Ψ(ϱ) = ϱζ1 , where ϱ ∈ (0,∞). Then Ψ
′′

(ϱ) = ζ1(ζ1 − 1)ϱζ1−2. It
is evident that Ψ′′(ϱ) > 0 for ϱ > 0 and ζ1 > 1. This observation solidifies the assertion regarding the

convex nature of Ψ. Hence, apply (2.1) for Ψ(ϱ) = ϱζ1 , ξk = ξ
ζ2
k , and ϱk = ϱkξ

−
ζ2
ζ1

k , we arrive at

( m∑
k=1
ξ
ζ2
k ξ

−ζ2
ζ1

k ϱk∑m
k=1 ξ

ζ2
k

)ζ1
≤

1(∑m
k=1 ξ

ζ2
k

)2

m∑
k=1

m∑
l=1

ξ
ζ2
k ξ
ζ2
l

(ξ −ζ2ζ1k ϱk + ξ
−ζ2
ζ1

l ϱl

2

)ζ1

≤
1(∑m

k=1 ξ
ζ2
k

)2

( m∑
k=1

ξ
2q
k

(
ξ
−ζ2
ζ1

k ϱk

)ζ1
+ 2

∑
k<l

ξ
ζ2
k ξ
ζ2
l

ξ
−ζ2
ζ1

l ϱl − ξ
−ζ2
ζ1

k ϱk

∫ ξ

−ζ2
ζ1

l ϱl

ξ

−ζ2
ζ1

k ϱk

ϱζ1dϱ
)

≤
1∑m

k=1 ξ
ζ2
k

m∑
k=1

ξ
ζ2
k

(
ξ
−ζ2
ζ1

k ϱk

)ζ1
. (4.4)

Now, taking power as 1
ζ1

of (4.4) and then doing some calculation, we gain

1∑m
k=1 ξ

ζ2
k

m∑
k=1

ξkϱk ≤

[ 1(∑m
k=1 ξ

ζ2
k

)2

m∑
k=1

m∑
l=1

ξ
ζ2
k ξ
ζ2
l

(ξ −ζ2ζ1k ϱk + ξ
−ζ2
ζ1

l ϱl

2

)ζ1] 1
ζ1

≤

[ 1(∑m
k=1 ξ

ζ2
k

)2

( m∑
k=1

ξ
ζ2
k ϱ
ζ1
k +

2
ζ1 + 1

∑
k<l

ξ
ζ2
k ξ
ζ2
l

ξ
−ζ2
ζ1

l ϱl − ξ
−ζ2
ζ1

k ϱk

×

((
ξ
−ζ2
ζ1

l ϱl

)ζ1+1
−

(
ξ
−ζ2
ζ1

k ϱk

)ζ1+1
))]ζ1

≤

( m∑
k=1

ϱ
ζ1
k

) 1
ζ1
( m∑

k=1

ξ
ζ2
k

)− 1
ζ1
. (4.5)

AIMS Mathematics Volume 10, Issue 11, 26058–26076.



26066

Multiplying (4.5) by
∑m

k=1 ξ
ζ2
k , we receive

m∑
k=1

ξkϱk ≤

[ 1(∑m
k=1 ξ

ζ2
k

)2

m∑
k=1

m∑
l=1

ξ
ζ2
k ξ
ζ2
l

(ξ −ζ2ζ1k ϱk + ξ
−ζ2
ζ1

l ϱl

2

)ζ1] 1
ζ1
( m∑

k=1

ξ
ζ2
k

)

≤

[ 1(∑m
k=1 ξ

ζ2
k

)2

( m∑
k=1

ξ
ζ2
k ϱ
ζ1
k +

2
ζ1 + 1

∑
k<l

ξ
ζ2
k ξ
ζ2
l

ξ
−ζ2
ζ1

l ϱl − ξ
−ζ2
ζ1

k ϱk

×

((
ξ
−ζ2
ζ1

l ϱl

)ζ1+1
−

(
ξ
−ζ2
ζ1

k ϱk

)ζ1+1
))] 1

ζ1
( m∑

k=1

ξ
ζ2
k

)
≤

( m∑
k=1

ϱ
ζ1
k

) 1
ζ1
( m∑

k=1

ξ
ζ2
k

)1− 1
ζ1
. (4.6)

Obviously, (4.6) is the same as that of (4.1).
(ii) When 0 < ζ1 < 1, then 1

ζ1
> 1. Therefore, replacing ζ1 by 1

ζ1
, ζ2 by 1

1−ζ1
, ξk by ξ−ζ1k , and ϱk by(

ξkϱk
)ζ1 in (4.1), we receive

m∑
k=1

ξ
−ζ1
k

(
ξkϱk

)ζ1 ≤ [ 1(∑m
k=1

(
ξ
−ζ1
k

) 1
1−ζ1

)2

m∑
k=1

m∑
l=1

(
ξ
−ζ1
k

) 1
1−ζ1

(
ξ
−ζ1
l

) 1
1−ζ1

×

((ξ−ζ1k

) −ζ1
1−ζ1

(
ξkϱk

)ζ1 + (
p−ζ1l

) −ζ1
1−ζ1

(
ξlϱl

)ζ1
2

) 1
ζ1
]ζ1( m∑

k=1

(
ξ
−ζ1
k

) 1
1−ζ1

)
≤

[ 1(∑m
k=1

(
ξ
−ζ1
k

) 1
1−ζ1

)2

( m∑
k=1

(
ξ
−ζ1
k

) 1
1−ζ1

[(
ξkϱk

)ζ1] 1
ζ1

+
2ζ1
ζ1 + 1

∑
k<l

(
ξ
−ζ1
k

) 1
1−ζ1

(
ξ
−ζ1
l

) 1
1−ζ1(

ξ
−ζ1
l

) −ζ1
1−ζ1

(
ξlϱl

)ζ1 − (
ξ
−ζ1
k

) −ζ1
1−ζ1

(
ξkϱk

)ζ1
×

(((
ξ
−ζ1
l

) −ζ1
1−ζ1

(
ξlϱl

)ζ1) ζ1+1
ζ1
−

((
ξ
−ζ1
k

) −ζ1
1−ζ1

(
ξkϱk

)ζ1) ζ1+1
ζ1

))]ζ1
×

( m∑
k=1

(
ξ
−ζ1
k

) 1
1−ζ1

)
≤

( m∑
k=1

(
ϱ
−ζ1
k

) 1
1−ζ1

)1−ζ1( m∑
k=1

[(
ξkϱk

) 1
ζ1

]ζ1)ζ1
. (4.7)

By simplifying (4.7), and then taking exponent as 1
ζ1
, we deduce

( m∑
k=1

ϱ
ζ1
k

) 1
ζ1
≤

1(∑m
k=1 ξ

ζ2
k

)2

m∑
k=1

m∑
l=1

ξ
ζ2
k ξ
ζ2
l

(ϱζ1k ξ
ζ1(1−ζ2)
k + ϱ

ζ1
l ξ
ζ1(1−ζ2)
l

2

) 1
ζ1
( m∑

k=1

ξ
ζ2
k

) 1
ζ1

≤
1(∑m

k=1 ξ
ζ2
k

)2

( m∑
k=1

ϱkξ
(1−ζ2)
k +

2ζ1
ζ1 + 1

∑
k<l

ξ
ζ2
k ξ
ζ2
l

ϱ
ζ1
l ξ
ζ1(1−ζ2)
l − ϱ

ζ1
k ξ
ζ1(1−ζ2)
k
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×

(((
ϱ
ζ1
l ξ
ζ1(1−ζ2)
l

) ζ1+1
ζ1
−

(
ϱ
ζ1
k ξ
ζ1(1−ζ2)
k

) ζ1+1
ζ1

))( m∑
k=1

ξ
ζ2
k

) 1
ζ1

≤

( m∑
k=1

ξ
ζ2
k

) 1−ζ1
ζ1

( m∑
k=1

ξkϱk

)
. (4.8)

Instantly multiplying (4.8) by
(∑m

k=1 ξ
ζ2
k

) ζ1−1
ζ1 , we get

( m∑
k=1

ϱ
ζ1
k

) 1
ζ1
( m∑

k=1

ξ
ζ2
k

) ζ1−1
ζ1
≤

1∑m
k=1 ξ

ζ2
k

m∑
k=1

m∑
l=1

ξ
ζ2
k ξ
ζ2
l

(
ϱ
ζ1
k ξ
ζ1(1−ζ2)
k + ϱ

ζ1
l ξ
ζ1(1−ζ2)
l

2

) 1
ζ1

≤
1∑m

k=1 ξ
ζ2
k

( m∑
k=1

ϱkξ
(1−ζ2)
k +

2ζ1
ζ1 + 1

∑
k<l

ξ
ζ2
k ξ
ζ2
l

ϱ
ζ1
l ξ
ζ1(1−ζ2)
l − ϱ

ζ1
k ξ
ζ1(1−ζ2)
k

×

(((
ϱ
ζ1
l ξ
ζ1(1−ζ2)
l

) ζ1+1
ζ1
−

(
ϱ
ζ1
k ξ
ζ1(1−ζ2)
k

) ζ1+1
ζ1

))
≤

m∑
k=1

ξkϱk. (4.9)

The inequalities stated in (4.9) are the same as those of the inequalities given in (4.2).
Consequently, (4.9) proves (4.2) for the case, when ζ1 ∈ (0, 1).

(iii) Now, we prove the last case. For ζ1 < 0, then certainly, ζ2 = 1
1−ζ1
∈ (0, 1). Replacing ζ1, ζ2, ϱk,

and ξk by 1
ζ2

, 1
1−ζ2
, ϱ
−ζ2
k , and

(
ξkϱk

)ζ2 respectively in (4.1), we acquire

m∑
k=1

ϱ
−ζ2
k

(
ξkϱk

)ζ2 ≤ [ 1(∑m
k=1

[
ϱ
−ζ2
k

] 1
1−ζ2

)2

m∑
k=1

m∑
l=1

[
ϱ
−ζ2
k

] 1
1−ζ2

[
ϱ
−ζ2
l

] 1
1−ζ2

×

([ϱ−ζ2k

] −1
1−q

1
ζ2

(
ξkϱk

)ζ2 + [
ϱ
−ζ2
l

] −1
1−ζ2

1
ζ2

(
ξlϱl

)ζ2
2

) 1
ζ2
]ζ2
×

( m∑
k=1

[
ϱ
−ζ2
k

] 1
1−ζ2

)
≤

[ 1(∑m
k=1

[
ϱ
−ζ2
k

] 1
1−ζ2

)2

( m∑
k=1

[
ϱ
−ζ2
k

] 1
1−ζ2

[(
ξkϱk

)ζ2] 1
ζ2

+
1

1
ζ2
+ 1

∑
k<l

[
ϱ
−ζ2
k

] 1
1−ζ2

[
ϱ
−ζ2
l

] 1
1−ζ2

[
ϱ
−ζ2
l

] −1
1−ζ2

1
ζ2

(
ξlϱl

)ζ2 − [
ϱ
−ζ2
k

] −1
1−ζ2

1
ζ2

(
ξkϱk

)ζ2
×

[([
ϱ
−ζ2
l

] −1
1−ζ2

1
ζ2

(
ξlϱl

)ζ2) 1
ζ2
+1

−

([
ϱ
−ζ2
k

] −1
1−ζ2

1
ζ2

(
ξkϱk

)ζ2) 1
ζ2
+1]ζ2
×

( m∑
k=1

[
ϱ
−ζ2
k

] 1
1−ζ2

)
≤

( m∑
k=1

[
ϱ
−ζ2
k

] 1
1−ζ2

)(1−ζ2)( m∑
k=1

ξkϱk

)ζ2
. (4.10)
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By simplifying (4.10), and then taking exponent 1
ζ2
, we deduce

( m∑
k=1

ξ
ζ2
k

) 1
ζ2 ≤

1(∑m
k=1 ϱ

ζ1
k

)2

m∑
k=1

m∑
l=1

ϱ
ζ2
k ϱ
ζ2
l

(ξζ2k ϱ
ζ2(1−ζ1)
k + ξ

ζ2
l ϱ
ζ2(1−ζ1)
l

2

) 1
ζ2 ( m∑

k=1

ϱ
ζ1
k

) 1
ζ2

≤
1(∑m

k=1 ϱ
ζ1
k

)2

( m∑
k=1

ξkϱ
(ζ1+1)
k +

2ζ2
ζ2 + 1

∑
k<l

ϱ
ζ2
k ϱ
ζ2
l

ξ
ζ2
l ϱ
ζ2(1−ζ1)
l − ξ

ζ2
k ϱ
ζ2(1−ζ1)
k

×

((
ξ
ζ2
l ϱ
ζ2(1−ζ1)
l

) ζ2+1
ζ2 −

(
ξ
ζ2
k ϱ
ζ2(1−ζ1)
k

) ζ2+1
ζ2

))( m∑
k=1

ϱ
ζ1
k

) 1
ζ2

≤
( m∑

k=1

ϱ
ζ1
k

) 1−ζ2
ζ2

( m∑
k=1

ξkϱk

)
. (4.11)

Instantly multiplying (4.11) by
(∑m

k=1 ϱ
ζ1
k

) ζ2−1
ζ2 , we get

( m∑
k=1

ξ
ζ2
k

) 1
ζ2
( m∑

k=1

ϱ
ζ1
k

) ζ2−1
ζ2 ≤

1∑m
k=1 ϱ

ζ1
k

m∑
k=1

m∑
l=1

ϱ
ζ2
k ϱ
ζ2
l

(ξζ2k ϱ
ζ2(1−ζ1)
k + ξ

ζ2
l ϱ
ζ2(1−ζ1)
l

2

) 1
ζ2

≤
1∑m

k=1 ϱ
ζ1
k

( m∑
k=1

ξkϱ
(ζ1+1)
k +

2ζ2
ζ2 + 1

∑
k<l

ϱ
ζ2
k ϱ
ζ2
l

ξ
ζ2
l ϱ
ζ2(1−ζ1)
l − ξ

ζ2
k ϱ
ζ2(1−ζ1)
k

×

((
ξ
ζ2
l ϱ
ζ2(1−ζ1)
l

) ζ2+1
ζ2 −

(
ξ
ζ2
k ϱ
ζ2(1−ζ1)
k

) ζ2+1
ζ2

))
≤

m∑
k=1

ξkϱk. (4.12)

Hence, (4.12) proves the desired inequalities stated in (4.3) for the condition, when ζ1 < 0.

Proposition 4.2. Assume that ξk and ϱk are both positive for k = 1, 2, . . . ,m.
(i) If ζ1 > 1 and ζ2 =

ζ1
ζ1−1 , then( m∑

k=1

ϱ
ζ1
k

) 1
ζ1
( m∑

k=1

ξ
ζ2
k

) 1
ζ2
≥

1∑m
k=1 ξ

ζ2
k

m∑
k=1

m∑
l=1

ξ
ζ2
k ξ
ζ2
l

(ξ−ζ2k ϱ
ζ1
k + ξ

−ζ2
l ϱ

ζ1
l

2

) 1
ζ1

≥
1∑m

k=1 ξ
ζ2
k

( m∑
k=1

ξ
ζ2
( 2ζ1−1
ζ1

)
k ϱk +

2ζ1
ζ1 + 1

∑
k<l

ξ
ζ2
k ξ
ζ2
l

ξ
−ζ2
l ϱ

ζ1
l − ξ

−ζ2
k ϱ

ζ1
k

×

((
ξ
−ζ2
l ϱ

ζ1
l

) 1
ζ1
+1
−

(
ξ
−ζ2
k ϱ

ζ1
k

) 1
ζ1
+1

))
≥

m∑
k=1

ξkϱk. (4.13)

(ii) If ζ1 ∈ (0, 1), and ζ2 =
ζ1
ζ1−1 , then

m∑
k=1

ξkϱk ≥

[ 1∑m
k=1 ξ

ζ2
k

m∑
k=1

m∑
l=1

ξ
ζ2
k ξ
ζ2
l

(ϱkξ
(1−ζ2)
k + ϱlξ

(1−ζ2)
l

2

)ζ1] 1
ζ1
( m∑

k=1

ξ
ζ2
k

) 1
ζ2
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≥

[ 1∑m
k=1 ξ

ζ2
k

( m∑
k=1

ϱ
ζ1
k ξ
ζ2(2−ζ1)+ζ1
k +

2
ζ1 + 1

∑
k<l

ξ
ζ2
k ξ
ζ2
l

ϱlξ
(1−ζ2)
l − ϱkξ

(1−ζ2)
k

×

((
ϱlξ

(1−ζ2)
l

)ζ1+1
−

(
ϱkξ

(1−ζ2)
k

)ζ1+1
))] 1

ζ1
( m∑

k=1

ξ
ζ2
k

) 1
ζ2

≥
( m∑

k=1

ϱ
ζ1
k

) 1
ζ1
( m∑

k=1

ξ
ζ2
k

) 1
ζ2 . (4.14)

(iii) If ζ1 < 0 and ζ2 =
ζ1
ζ1−1 , then

m∑
k=1

ξkϱk ≥
1

m∑
k=1
ξ
ζ2
k

m∑
k=1

m∑
l=1

ξ
ζ2
k ξ
ζ2
l

(ξ(ζ2−ζ1)
k ϱ

ζ2
k + ξ

(ζ2−ζ1)
l ϱ

ζ2
l

2

)ζ2( m∑
k=1

ξ
ζ1
k

) 1
ζ1

≥
1∑m

k=1 ξ
ζ2
k

( m∑
k=1

ξ
ζ1(2−ζ2)+ζ1
k ϱ

ζ2
k +

2
ζ2 + 1

∑
k<l

ξ
ζ2
k ξ
ζ2
l

ξ
(ζ2−ζ1)
l ϱ

ζ2
l − ξ

(ζ2−ζ1)
k ϱ

ζ2
k

×

((
ξ

(ζ2−ζ1)
l ϱ

ζ2
l

)ζ2+1
−

(
ξ

(ζ2−ζ1)
l ϱ

ζ2
l

)ζ2+1
))( m∑

k=1

ξ
ζ1
k

) 1
ζ1

≥
( m∑

k=1

ϱ
ζ2
k

) 1
ζ2
( m∑

k=1

ξ
ζ1
k

) 1
ζ1 . (4.15)

Proof. (i) The functionΨ(ϱ) = ϱ
1
ζ1 exhibits concavity over (0,∞) for values of ζ1 > 1, becauseΨ

′′

(x) =
1
ζ1

( 1
ζ1
− 1

)
ϱ

1
ζ1
−2
< 0. Therefore, by employing the inequality (2.1) with the function Ψ(ϱ) = ϱ

1
ζ1 , and

setting ξk = ξ
ζ2
k and ϱk = ϱ

ζ1
k ξ
−ζ2
k , we obtain( 1∑m

k=1 ξ
ζ2
k

m∑
k=1

ξ
ζ2
k ξ
−ζ2
k ϱ

ζ1
k

) 1
ζ1
≥

1(∑m
k=1 ξ

ζ2
k

)2

m∑
k=1

m∑
l=1

ξ
ζ2
k ξ
ζ2
l

(ξ−ζ2k ϱ
ζ1
k + ξ

−ζ2
l ϱ

ζ1
l

2

) 1
ζ1

≥
1(∑m

k=1 ξ
ζ2
k

)2

( m∑
k=1

ξ
2ζ2
k

(
ϱ
ζ1
k ξ
−ζ2
k

) 1
ζ1

+
2ζ1
ζ1 + 1

∑
k<l

ξ
ζ2
k ξ
ζ2
l

ξ
−ζ2
l ϱ

ζ1
l − ξ

−ζ2
k ϱ

ζ1
k

∫ ξ
−ζ2
l ϱ

ζ1
l

ξ
−ζ2
k ϱ

ζ1
k

ϱ
1
ζ1 dϱ

)
≥

1∑m
k=1 ξ

ζ2
k

m∑
k=1

ξ
ζ2
k

(
ξ
−ζ2
k ϱ

ζ1
k

) 1
ζ1 . (4.16)

By simplifying (4.16), and subsequently multiplying by
∑m

k=1 ξ
ζ2
k , we attain

( m∑
k=1

ϱ
ζ1
k

) 1
ζ1
( m∑

k=1

ξ
ζ2
k

)1− 1
ζ1 ≥

1∑m
k=1 ξ

ζ2
k

m∑
k=1

m∑
l=1

ξ
ζ2
k ξ
ζ2
l

(ξ−ζ2k ϱ
ζ1
k + ξ

−ζ2
l ϱ

ζ1
l

2

) 1
ζ1

≥
1∑m

k=1 ξ
ζ2
k

( m∑
k=1

ξ
ζ2
( 2ζ1−1
ζ1

)
k ϱk +

2ζ1
ζ1 + 1

∑
k<l

ξ
ζ2
k ξ
ζ2
l

ξ
−ζ2
l ϱ

ζ1
l − ξ

−ζ2
k ϱ

ζ1
k
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×

((
ξ
−ζ2
l ϱ

ζ1
l

) 1
ζ1
+1
−

(
ξ
−ζ2
k ϱ

ζ1
k

) 1
ζ1
+1

))
≥

m∑
k=1

ξkϱk. (4.17)

Evidently, the inequality (4.17) is the same as that of (4.13).
(ii) When ζ1 assumes values between 0 and 1, then 1

ζ1
will have values greater than 1. Therefore,

apply (4.13) with the replacement of ζ1 by 1
ζ1

, ζ2 by 1
1−ζ1

, ξk by ξ−ζ1k , and ϱk by
(
ξkϱk

)ζ1 , we reach

( m∑
k=1

[(
ξkϱk

)ζ1] 1
ζ1

)ζ1( m∑
k=1

(
ξ
−ζ1
k

) 1
1−ζ1

)1−ζ1

≥
1∑m

k=1 ξ
ζ2
k

m∑
k=1

m∑
l=1

(
ξ
−ζ1
k

) 1
1−ζ1

(
ξ
−ζ1
l

) 1
1−ζ1 ×

((ξ−ζ1k

) −1
1−ζ1

[(
ξkϱk

)ζ1] 1
ζ1 +

(
ξ
−ζ1
l

) −1
1−ζ1

[(
ξlϱl

)ζ1] 1
ζ1

2

)ζ1
≥

1∑m
k=1 ξ

ζ2
k

( m∑
k=1

(
ξ
−ζ1
k

)( 1
1−ζ1

)(
2
ζ1
−1

1
ζ1

)(
ξkϱk

)ζ1 + 2
ζ1 + 1

∑
k<l

(
ξ
−ζ1
k

) 1
1−ζ1

(
ξ
−ζ1
l

) 1
1−ζ1(

ξ
−ζ1
l

) −1
1−ζ1

[(
ξlϱl

)ζ1] 1
ζ1 −

(
ξ
−ζ1
k

) −1
1−ζ1

[(
ξkϱk

)ζ1] 1
ζ1

×

(((
ξ
−ζ1
l

) −1
1−ζ1

[(
ξlϱl

)ζ1] 1
ζ1
)ζ1+1
−

((
ξ
−ζ1
k

) −1
1−ζ1

[(
ξkϱk

)ζ1] 1
ζ1
)ζ1+1

))
≥

m∑
k=1

(
ξkϱk

)ζ1ξ−ζ1k . (4.18)

By doing the calculation in (4.18), and then taking power 1
ζ1

, we arrive at

( m∑
k=1

ξkϱk

)( m∑
k=1

ξ
ζ2
k

) 1−ζ1
ζ1 ≥

[ 1∑m
k=1 ξ

ζ2
k

m∑
k=1

m∑
l=1

ξ
ζ2
k ξ
ζ2
l

(ϱkξ
(1−ζ2)
k + ϱlξ

(1−ζ2)
l

2

)ζ1] 1
ζ1

≥

[ 1∑m
k=1 ξ

ζ2
k

( m∑
k=1

ϱ
ζ1
k ξ
−ζ2(2−ζ1)+ζ1
k +

2
ζ1 + 1

∑
k<l

ξ
ζ2
k ξ
ζ2
l

ξlξ
(1−ζ2)
l − ξkξ

(1−ζ2)
k

×

((
ϱlξ

(1−ζ2)
l

)ζ1+1
−

(
ϱkξ

(1−ζ2)
k

)ζ1+1
))] 1

ζ1

≥

( m∑
k=1

ϱ
ζ1
k

) 1
ζ1
. (4.19)

The following inequality can be achieved by multiplying (4.19) by
(∑m

k=1 ξ
ζ2
k

) ζ1−1
ζ1 :

m∑
k=1

ξkϱk ≥

[ 1∑m
k=1 ξ

ζ2
k

m∑
k=1

m∑
l=1

ξ
ζ2
k ξ
ζ2
l

(ϱkξ
(1−ζ2)
k + ϱlξ

(1−ζ2)
l

2

)ζ1] 1
ζ1
( m∑

k=1

ξ
ζ2
k

) ζ1−1
ζ1

≥

[ 1∑m
k=1 ξ

ζ2
k

( m∑
k=1

ϱ
ζ1
k ξ
ζ2(2−ζ1)+ζ1
k +

2
ζ1 + 1

∑
k<l

ξ
ζ2
k ξ
ζ2
l

ϱlξ
(1−ζ2)
l − ϱkξ

(1−ζ2)
k
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×

((
ϱlξ

(1−ζ2)
l

)ζ1+1
−

(
ϱkξ

(1−ζ2)
k

)ζ1+1
))] 1

ζ1
( m∑

k=1

ξ
ζ2
k

) ζ1−1
ζ1

≥
( m∑

k=1

ϱ
ζ1
k

) 1
ζ1
( m∑

k=1

ξ
ζ2
k

) ζ1−1
ζ1 . (4.20)

Clearly, (4.20) is coincident to (4.14).
(iii) When ζ1 < 0, then ζ2 =

ζ1
ζ1−1 will assume values in (0, 1). Therefore, by applying (4.13) while

replacing ζ1 by 1
ζ2

, ζ2 by 1
1−ζ2

, ξk by ϱ−ζ2k , and ξk by
(
ξkϱk

)ζ2 , we deduce

( m∑
k=1

[(
ξkϱk

)ζ2] 1
ζ2

)ζ2( m∑
k=1

(
ϱ
−ζ2
k

) 1
1−ζ2

)1−ζ2

≥
1

m∑
k=1

(
ξ
−ζ2
k

) 1
1−ζ2

m∑
k=1

m∑
l=1

(
ξ
−ζ2
k

) 1
1−ζ2

(
ξ
−ζ2
l

) 1
1−ζ2 ×

((ξζ2k

) 1
1−ζ2

(
ξkϱk

)ζ2 + (
ξ
ζ2
l

) 1
1−ζ2

(
ξlϱl

)ζ2
2

)ζ2

≥
1

m∑
k=1

(
ξ
−ζ2
k

) 1
1−ζ2

( m∑
k=1

(
ξ
−ζ2
k

) 1
1−ζ2

( 2
ζ2
−1

1
ζ2

)(
ξkϱk

)ζ2

+

2
ζ2

1
ζ2
+ 1

∑
k<l

(
ξ
−ζ2
k

) 1
1−ζ2

(
ξ
−ζ2
l

) 1
1−ζ2(

ξ
ζ2
l

) 1
1−ζ2

(
ξlϱl

)ζ2 − (
ξ
ζ2
k

) 1
1−ζ2

(
ξkϱk

)ζ2 × (((
ξ
ζ2
l

) 1
1−ζ2

(
ξlϱl

)ζ2)(ζ2+1)
−

((
ξ
ζ2
k

) 1
1−ζ2

(
ξkϱk

)ζ2)(ζ2+1)
))

≥

m∑
k=1

ξ
−ζ2
k

(
ξkϱk

)ζ2 . (4.21)

By doing calculation in (4.21), and then taking power 1
ζ2

, we arrive at

( m∑
k=1

ξkϱk

)( m∑
k=1

ξ
ζ1
k

) 1−ζ2
ζ2 ≥

1∑m
k=1 ξ

ζ2
k

m∑
k=1

m∑
l=1

ξ
ζ2
k ξ
ζ2
l

(ξ(ζ2−ζ1)
k ϱ

ζ2
k + ξ

(ζ2−ζ1)
l ϱ

ζ2
l

2

)ζ2
≥

1∑m
k=1 ξ

ζ2
k

( m∑
k=1

ξ
ζ1(2−ζ2)+ζ1
k ϱ

ζ2
k +

2
ζ2 + 1

∑
k<l

ξ
ζ2
k ξ
ζ2
l

ξ
(ζ2−ζ1)
l ϱ

ζ2
l − ξ

(ζ2−ζ1)
k ϱ

ζ2
k

×

((
ξ

(ζ2−ζ1)
l ϱ

ζ2
l

)ζ2+1
−

(
ξ

(ζ2−ζ1)
l ϱ

ζ2
l

)ζ2+1
))

≥
( m∑

k=1

ϱ
ζ2
k

) 1
ζ2 . (4.22)

The following inequality can be achieved by multiplying (4.22) by
(∑m

k=1 ξ
ζ1
k

) ζ2−1
ζ2 :

m∑
k=1

ξkϱk ≥
1∑m

k=1 ξ
ζ2
k

m∑
k=1

m∑
l=1

ξ
ζ2
k ξ
ζ2
l

(ξ(ζ2−ζ1)
k ϱ

ζ2
k + ξ

(ζ2−ζ1)
l ϱ

ζ2
l

2

)ζ2( m∑
k=1

ξ
ζ1
k

) ζ2−1
ζ2

≥
1∑m

k=1 ξ
ζ2
k

( m∑
k=1

ξ
ζ1(2−ζ2)+ζ1
k ϱ

ζ2
k +

2
ζ2 + 1

∑
k<l

ξ
ζ2
k ξ
ζ2
l

ξ
(ζ2−ζ1)
l ϱ

ζ2
l − ξ

(ζ2−ζ1)
k ϱ

ζ2
k
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×

((
ξ

(ζ2−ζ1)
l ϱ

ζ2
l

)ζ2+1
−

(
ξ

(ζ2−ζ1)
l ϱ

ζ2
l

)ζ2+1
))( m∑

k=1

ξ
ζ1
k

) ζ2−1
ζ2

≥

( m∑
k=1

ϱ
ζ2
k

) 1
ζ2 ( m∑

k=1

ξ
ζ1
k

) ζ2−1
ζ2 . (4.23)

Hence, (4.23) proves the required inequality.

5. Applications in information theory

Definition 5.1. Let p = (ξ1, ξ2, · · · , ξm), x = (ϱ1, ϱ2, · · · , ϱm) be probability distributions with strictly
positive components, and Ψ : [δ1, δ2] → R be a convex function satisfying Ψ(1) = 0. The Csiszár
divergence between p and x is then defined as

CΨ(p∥x) =
m∑

k=1

ξkΨ
(ϱk

ξk

)
.

Theorem 5.1. Let p = (ξ1, ξ2, · · · , ξm), x = (ϱ1, ϱ2, · · · , ϱm) be probability distributions with strictly
positive components. Suppose that the function Ψ : [δ1, δ2]→ R is convex and satisfies Ψ(1) = 0. Then

CΨ(p∥x) ≥
1

m∑
k=1
ξk

( m∑
k=1

ξ2
kΨ

(ϱk

ξk

)
+ 2

∑
k<l

ξ2
kξ

2
k

ξkϱl − ξlϱk

∫ ϱl
ξl

ϱk
ξk

Ψ(ϱ)dϱ
)

≥
1

m∑
k=1
ξk

m∑
k=1

m∑
l=1

ξkξlΨ
(
ξkϱl + ξlϱk

2ξkξl

)
≥

m∑
k=1

ξkΨ

( m∑
k=1
ϱk

m∑
k=1
ξk

)
. (5.1)

Proof. By using ϱk =
ϱk
ξk

in (2.1), we deduce (5.1).

Definition 5.2. Let p = (ξ1, ξ2, · · · , ξm), x = (ϱ1, ϱ2, · · · , ϱm) be probability distributions with strictly
positive components. Several important information-theoretic measures between these distributions
are defined as follows:

• Shannon entropy: The Shannon entropy of p is defined as

S (p) = −
m∑

k=1

ξi log ξi.

• Kullback-Leibler divergence: The Kullback-Leibler divergence between p and x is given by

DK(p, x) =
m∑

k=1

ξi log
(
ξi
ϱi

)
.

• Jeffrey’s distance: Jeffrey’s distance is defined as

J(p, x) =
m∑

k=1

(ξi − ϱi) log
(
ξi
ϱi

)
.
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• Hellinger distance: The Hellinger distance between p and x is given by

H(p, x) =
1
√

2

( m∑
k=1

( √
ξi −
√
ϱi

)2
)1/2

.

• Total variation distance: The total variation distance between is defined as

V(p, x) =
1
2

m∑
k=1

|ξi − ϱi|.

• Bhattacharyya coefficient: The Bhattacharyya coefficient between is given by

B(p, x) =
m∑

k=1

√
ξiϱi.

Corollary 5.1. Assume that ξk > 0 for k = 1, 2, . . . ,m with
m∑

k=1
ξk = 1. Then

S (P) ≤
m∑

k=1

ξ2
k log ξk + 2

∑
k<l

ξkξl
ξk − ξl

(
log

( pξlk

ξ
ξk
l

)
+ ξl − ξk

)
≤

m∑
k=1

m∑
l=1

ξkξl log
(
ξk + ξl
2ξkξl

)
≤ log m. (5.2)

Proof. Taking Ψ(ϱ) = − log ϱ, ϱ > 0 and ϱk = 1 (k = 1, 2, . . . ,m) in (2.1), we deduce (5.2).

The next corollary is an application of Theorem 2.1 for the Kullback divergence.

Corollary 5.2. Suppose that ξk, ϱk > 0 for k = 1, 2, . . . ,m with
∑m

k=1 ξk = 1 and
∑m

k=1 ϱk = 1. Then

DK(p, x) ≥
m∑

k=1

ξkϱk log
(ϱk

ξk

)
+

1
2

∑
k<l

1
ξkϱl − ξlϱk

×

(
ξ2

kϱ
2
l

(
log

(ϱl

ξl
− 1

))
− ξ2

l ϱ
2
k

(
log

(ϱk

ξk

)))
≥

1
2

m∑
k=1

m∑
l=1

(
ξlϱk + ξkϱl

)
log

(
ξlϱk + ξkϱl

2ξkξl

)
≥ 0. (5.3)

Proof. Applying inequality (2.1) for Ψ(ϱ) = ϱ log ϱ, ϱ > 0, we acquire (5.4).

The below corollary presents a relation for the Jeffrey’s distance as an application of Theorem 2.1.

Corollary 5.3. Under the assumptions of Corollary 5.2, we have

J(p, x) ≥
m∑

k=1

ξk
(
ϱk − ξk

)
log

(ϱk

ξk

)
+

∑
k<l

1
ξkϱl − ξlϱk

×

(
ξ2

kϱl
(
ϱl − ξl

)(
log

(ϱl

ξl

)
− 1

)
− ξ2

l ϱk
(
ϱk − ξk

)(
log

(ϱk

ξk

)
− 1

))
≥

1
2

m∑
k=1

m∑
l=1

(
ξlϱk + ξkϱl − 2ξkξl

)
log

(
ξlϱk + ξkϱl

2ξkξl

)
≥ 0. (5.4)
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Proof. Taking Ψ(ϱ) = (ϱ − 1) log ϱ, ϱ > 0 in (2.1), we acquire (5.4).

Corollary 5.4 provides an estimate for variational distance as a direct application of Theorem 2.1.

Corollary 5.4. Presume that Corollary 5.2 hypotheses are true. Then

V(p, x) ≥
m∑

k=1

ξk
∣∣∣ϱk − ξk

∣∣∣ + 1
2

∑
k<l

ξkξl
ξkϱl − ξlϱk

×

(
ξk

(
ϱl − ξl

)∣∣∣ϱl − ξl
∣∣∣ − ξl(ϱk − ξk

)∣∣∣ϱk − ξk
∣∣∣)

≥
1
2

m∑
k=1

m∑
l=1

∣∣∣ξlϱk + ξkϱl − 2ξkξl
∣∣∣

≥ 0. (5.5)

Proof. Utilizing Ψ(ϱ) = |ϱ − 1|, ϱ > 0 in (2.1), we acquire (5.5).

The preceding corollary establishes an upper bound for the Hellinger distance as a direct analytical
consequence of Theorem 2.1.

Corollary 5.5. Assume that the conditions of Corollary 5.2 hold. Then

H(p, x) ≥
( m∑

k=1

ξk
(√
ϱk −

√
ξk

)2
+

2
3

∑
k<l

1
ξkϱl − ξlϱk

×

(
ξ2

k

(√
ϱl +

√
ξl
)3√
ϱl − ξ

2
l

(√
ϱk +

√
ξk

)3√
ϱk

))
≥

m∑
k=1

m∑
l=1

( √
ξkϱl + ξlϱk −

√
2ξlξk

)2

≥ 0. (5.6)

Proof. Applying inequality (2.1) with Ψ(ϱ) =
(√
ϱ − 1

)2, for ϱ > 0, yields (5.6).

An application of Theorem 2.1 for the Bhattacharyya coefficient is acquired in the following
corollary.

Corollary 5.6. Assume that all the suppositions of Corollary 5.2 are satisfied. Then

B(p, x) ≤
m∑

k=1

√
p3

kϱk +
4
3

∑
k<l

√
ξkξl

ξkϱl − ξlϱk

(√(
ξkϱl

)3
−

√(
ξlϱk

)3
)

≤

m∑
k=1

m∑
l=1

√
ξkξl

(
ξkϱl + ξlϱk

)
≤ 1. (5.7)

Proof. Using the function Ψ(ϱ) = −
√
ϱ, ϱ > 0 in (2.1), we arrive at (5.7).
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6. Conclusions

In this research work, we have refined Jensen’s inequality using an interesting technique associated
with convexity and the Hermite-Hadamard inequality. Utilizing these refinements, we established new
relationships involving power and quasi-arithmetic mean inequalities. Furthermore, we extended our
main results to obtain improved forms of Hölder inequality through appropriate substitutions within
the obtained refinements. In addition, several applications of the proposed refinements were provided
in the field of information theory, presenting new relations for the Csiszár and Kullback-Leibler
divergences, Shannon entropy, and the Bhattacharyya coefficient. Using this approach, refinements of
the integral version of Jensen’s inequality, the Jensen-Mercer inequality, and other related inequalities
may also be obtained.
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