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1. Introduction

In 1905, Jensen proved the following inequality:
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This inequality has attracted the attention of numerous mathematicians, and extensive research has
been conducted on its generalizations, extensions, and refinements. There are several applications
of this inequality in various directions. Some recent related results on generalized convexity can be
found in [2, 19], while several useful inequalities and their applications are discussed in [14,20]. One
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of the most interesting aspects of research on the Jensen inequality is the pursuit of its refinements.
In 1989, Pecari¢ and Dragomir obtained the refinement of (1.1) containing the means of certain points
of o/’s [15]. Some related results are derived in [7,8]. In [12], the delay-dependent stability of
linear systems with time-varying delays is investigated, with particular emphasis on refining Jensen’s
inequality, which has been widely used in stability analysis via Lyapunov-Krasovskii functionals.
A novel integral inequality, formulated as an infinite series and developed without relying on the
Wirtinger inequality, is proposed to enhance the classical Jensen-based approach. The sharpness
results for the discrete as well as integral Jensen inequality were derived using the Green function
approach, and applied the results for different divergence measures and the Zipf-Mandelbrot law [16].
The refinement derived in [6], based on functionals constructed from indexing sets, offers a clear
and easily understandable proof. As a consequence, the more complex refinement obtained earlier
in [9] can be deduced directly. A further generalization with respect to arbitrary »n indexing sets is
presented in [13]. The use of signed measures and majorization inequalities has been employed to
derive and refine Jensen’s inequality through a novel approach. In particular, a refinement of the
Jensen-Steffensen inequality has also been deduced in [11]. Some more related results are given in [10].
An interesting approach was introduced in [17] for deriving results related to Jensen’s inequality. This
method focuses on establishing an integral identity involving the difference form of Jensen’s inequality.
By applying various classes of convex functions, along with the Holder inequality and the integral
form of Jensen’s inequality, several refined results were obtained. These results were further utilized to
derive applications in classical inequalities and information theory. In 2008, Azar [1] demonstrated the
economic and statistical significance of Jensen’s inequality through its variants in financial economics.
These variants of Jensen’s inequality arise in contexts such as foreign exchange pricing, forward market
efficiency, and expected utility theory. Using simulations, the study confirmed their practical relevance
despite the presence of sampling error. The findings underscore that Jensen’s inequality serves as
a foundational, rather than merely theoretical, tool in financial analysis. Denny [5] highlighted the
significance of Jensen’s inequality by providing a clear graphical interpretation of its effects and
examining its implications across atomic, molecular, organismal, and ecological levels. In 2023, Vivas-
Cortez et al. [18] derived novel discrete and integral versions of Jensen’ s inequality and extended
several classical fractional integral inequalities for their newly introduced class of interval-valued
functions, termed CR-y-convex functions. Their findings were further supported through illustrative
applications and graphical representations. By employing a weighted time scales form of Jensen’s
inequality, Ansari et al. [3] established novel inequalities related to various divergences and distances
within the framework of time scales. Their work significantly advanced the theory by introducing
new results in A-discrete and quantum calculus, while also generalizing several existing inequalities.
Basir et al. [4] explored new forms of weighted majorization inequality by utilizing Jensen’s inequality.
To show the value of their work, they also demonstrated how these results can be applied in areas like
information theory.

A careful study of the existing literature on Jensen’s inequality reveals that deriving new and
meaningful refinements has become a highly challenging task due to the depth and maturity of prior
results. In this article, we successfully present a new refinement of Jensen’s inequality by employing
a novel and logically structured approach. Specifically, we express both sides of the inequality in a
carefully formulated manner that enables the effective application of the Hermite-Hadamard inequality,
leading to an improved version of the classical Jensen inequality. Building upon this refinement, we
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further derive enhanced forms of Holder’s inequality and inequalities involving means. Finally, we
apply the derived results to obtain several applications in the framework of information theory.

2. Refinement

We contribute to the literature by presenting the following refinement of Jensen’s inequality.

Theorem 2.1. Suppose o € [01,02], & = 0 for each k € {1,2,...,m} with F := ), & > 0, and let the
k=1
function ¥ : [0, 6,2] — R be convex. Then
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The inequality (2.1) reversed whenever function ¥ is concave.
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With the function ¥ being convex, the below Hermite-Hadamard inequality is valid:

51 + 6> 1 f‘” ¥(6,) + ¥(52)
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Without compromising the generality, let’s consider that all g, are distinct for k = 1,2,...,m.
Applying (2.3) with ¢, as o, and 6, as g, the inequality obtained is as follows:
+ 1 < Y(or) +¥
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The inequality below is deduced by substituting (2.4) into (2.2) :
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Because of the convexity of function ¥, we can employ the Jensen inequality, which allows us to

establish the following inequality:
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The right-hand side of (2.5) can be expressed as
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Upon amalgamating (2.5)—(2.7), we attain (2.1).

The following result refines the simple form of Jensen’s inequality.

Corollary 2.1. Let the function ¥ :

" 2o

Proof. Substituting &, = 1fork=1,2,...

AIMS Mathematics

<

IA

<

[01,02] = R be convex and o € [61,,]. Then

3

m

1 Qk +Qz
m? £

=1 I=1
1 m
— ¥ 2 Y(o)d
mz(; (o) + ;‘ ,—gkf () (r)
D Wloo.
k=1

I|-

,min (2.1) leads us to derive (2.8).

(2.6)

2.7)

(2.8)

Volume 10, Issue 11, 26058-26076.



26062

3. Applications for the means inequality

This section focuses on the applications of established refinement to power and quasi-arithmetic
means. We present results that provide improved inequalities refining the relationships between these
means. To proceed, we begin with the definition of power means:

Definition 3.1. Letp = (¢1,&2,- -+ , &) andx = (01,02, -+ ,0m) be positive tuples with F := ), &.. The
k=1
power mean of order {, € R is then defined as follows:

1
m 5
(% ) kai') L4 #0,
Myp,x)=5 = 1 (3.1
(fies).  a=o
The following corollary is a direct application of Theorem 2.1, providing a refined relation for the
power means.

Corollary 3.1. Let &, o > Ofork = 1,2,... . mwith F := Y|, & and {1,{, € R such that {, > {,.
Then

(i)
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Proof. (1) In the situation, where {; and ¢, both hold positive values, or in the scenario where
remains positive while ¢, takes negative values, the function W(o) = o2 is convex, while obeying

Is
the condition {; > . Consequently, by utilizing inequality (2.1) with the choices W(o) = oo and
Or = Qiz, we arrive at
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Upon performing some calculations in inequality (3.4), and then taking the exponent as (—, we led to
the following inequality:
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Without a doubt, the inequality (3.5) corresponds to the inequality (3.2).

¢

The case when both ¢ and ¢, are negative with {; > {;, then the function W(o) = Qé demonstrates
concave behavior. Hence, by employing the reverse inequality in (2.1) and following the same
procedure, we derive (3.2).

Z
(i) In this part, we consider the function W(o) = oa. By applying the same procedure as in the first
part, we arrive at (3.3).

We now recall the definition of the quasi-arithmetic mean:

Definition 3.2. Let p = (¢1,&,--- &) and x = (01,02, -+ ,0m) be tuples with positive components
and h be a continuous and strictly monotonic function. The quasi-arithmetic mean associated with h
is then defined as follows:

m

ST > &h(o) (3.6)
=15K k=1

The next result establishes a relation for quasi-arithmetic means as a direct application of
Theorem 2.1.

Mh(p,X) = h_l(

Corollary 3.2. Assuming that the function h is continuous and strictly monotonic such that ¥ o h™!
convex on (0,0), and &, or > 0 fork =1,2,...,mwith F := } &, then
k=1
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Proof. By replacing o by h(o;) and ¥ by ¥ o 2! in inequality (2.1), we deduce
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Instantly, simplifying (3.8), we obtain (3.7).
4. Applications for the Holder inequality

In this section, we present several refinements of Holder’s inequality as applications of the main
results. We begin with the following corollary, which offers a refinement of the classical inequality.

Proposition 4.1. Let &, and o be positive real numbers, where k = 1,2,...,m.
D) If &, 4 > 1 with :ll + é =1, then
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(i) If {1 < 0 and § = 5, then
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Proof. (i) Let us consider the function ¥(p) = o%', where o € (0, ). Then ¥ (0) = £1(£; — Do 72. It
is evident that W (o) > 0 for o > 0 and ¢; > 1. This observation solidifies the assertion regarding the

_a
convex nature of . Hence, apply (2.1) for ¥(0) = 0°!, & = §i2, and o; = o€, ' we arrive at
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Now, taking power as 4“_11 of (4.4) and then doing some calculation, we gain
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Multiplying (4.5) by >/., &7, we receive
S & e 6 a8
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Obviously, (4.6) is the same as that of (4.1).
(i) When 0 < ¢ < 1, then - > 1. Therefore, replacing ¢i by 7, & by =z, & by £, and o, by
(£00)™ in (4.1), we receive
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By simplifying (4.7), and then taking exponent as z-, we deduce
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Instantly multiplying (4.8) by (Z}?zl ,iz) ' we get
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The inequalities stated in (4.9) are the same as those of the inequalities given in (4.2).
Consequently, (4.9) proves (4.2) for the case, when {; € (0, 1).
(iii) Now, we prove the last case. For ; < 0, then certainly, {, = — € (0, 1). Replacing {1, &, ok,

and & by 1 Z @’ Qk 2, and (&or)" respectively in (4.1), we acquire
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By simplifying (4.10), and then taking exponent :i we deduce
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Hence, (4.12) proves the desired inequalities stated in (4.3) for the condition, when {; < 0.

Proposition 4.2. Assume that &, and oy are both positive fork = 1,2,...,m
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Proof 0) The function ¥(o) = Qﬁ exhibits concavity over (0, co) for values of ¢; > 1, because ¥ (x) =
1
(1 1)@‘1 2 <0. Therefore by employing the inequality (2.1) with the function ¥Y(o) = 0%, and

settmg & = k >and o = Qk k , We obtain
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X((fl—(fzgl{l)(llﬂ _ (f}:{ZQil).[1|+l))
S éon 4.17)
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Evidently, the inequality (4.17) is the same as that of (4. 13)

(ii) When ¢, assumes values between O and 1, then 2 will have values greater than 1. Therefore,

apply (4.13) with the replacement of | by - o & by — ( by &, ' and oy by (fkgk){ we reach
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The following inequality can be achieved by multiplying (4.19) by (ZZQ | .g-f) “
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Clearly, (4.20) is coincident to (4. 14)
(iii) When ¢; < 0, then {2 = W111 assume values in (0, 1). Therefore, by applying (4.13) while

replacing ; by + 5 by 5 1_ 7 &k by Qk 2 and & by (&wox)”, we deduce
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> Zf;‘z(fkgk)ﬁ- @.21)
i1

By doing calculation in (4.21), and then taking power - { , we arrive at

m m -5 1 m m ((2 {1) 4“2 +§((2 {1) (2 ‘
(Y)Y &)" = o> aa(t At Y
k=1 k=1 Zk:léi k=1 [=1
1 N 51 2=+ (2 l§2
= o kZ(kZﬂ:fk O * H+1 Z ({2 {1)9152 _ ({2 Zl)Qiz
_ OH+1 _ H+1
X(( ;4“2 {1)Qf2) 2 _( 1(42 (1)Ql{2) 2 ))
m 1
> (Y o). (4.22)
k=1

H-1

027
The following inequality can be achieved by multiplying (4.22) by ( hya .f,fl) 2

((2 Z1) (2 ((2 {1) (2

N : Y 1
;kak Zkl 422251{ ( k 2 ) Z (

k=1 I=1

(2
Z ég {12=0)+4 tfz Z k
Zk 1 éz k Ok é“ +1 ((2 41) 4’2 _ ({2 Q) o

k=1 k<l Oy

\%

(2
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fH-1

x((é:l({z—{l)ggz)gzﬂ _ ( l({z—él)gfz)gﬁl))( i flfl)T

k=1
> (293)5( &))" (4.23)

Hence, (4.23) proves the required inequality.
5. Applications in information theory

Definition 5.1. Letp = (£1,&,--+ ,&n), X = (01,02, ,Om) be probability distributions with strictly
positive components, and ¥ : [01,0,] — R be a convex function satisfying WY(1) = 0. The Csiszdr
divergence between p and x is then defined as

Cu(pli) = Zw ;)

Theorem 5.1. Let p = (£1,&,- - , &), X = (01,02, -+ ,0m) be probability distributions with strictly
positive components. Suppose that the function ¥ : [91,0,] — R is convex and satisfies Y(1) = 0. Then

& )
C > 2 ‘P d,
vol) = (ka * ; &ro1 — 10k (0)de
k:l
m m % Ok
Ev01 + €10k (k | )
> - ¥ &9 < 5.1)
kg . kZ:; =1 ! ( 2§k§l ) Z ¢ kz:l

Proof. By using o; = g—i in (2.1), we deduce (5.1).

Definition 5.2. Letp = (£1,&,--+ ,&n), X = (01,02, ,Om) be probability distributions with strictly
positive components. Several important information-theoretic measures between these distributions
are defined as follows:

e Shannon entropy: The Shannon entropy of p is defined as
S(p)=- ) &logé.
k=1

o Kullback-Leibler divergence: The Kullback-Leibler divergence between p and x is given by

Ditpx) = Y o ).
) Qi

o Jeffrey’s distance: Jeffrey’s distance is defined as
i\
Jp.x) = Z(& o)log|*
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o Hellinger distance: The Hellinger distance between p and x is given by

Hip.x) = \/_(Z(\/— vay)"

o Total variation distance: The total variation distance between is defined as

S 6 - o

k=1

Vp,x) =

N —

e Bhattacharyya coefficient: The Bhattacharyya coefficient between is given by
Bp.x) = ) VEo:
=1

Corollary 5.1. Assume that &, > 0 fork =1,2,...,mwith ), & = 1. Then
k=1

-’51

kalogfwzszi( o) +a-4)

k<l l

SP)

IA

3

m

= szkf’ (2&{-‘1 )

k=1 I=1
< logm. 5.2)

Proof. Taking W(o) = —logo, o >0and g, =1(k=1,2,...,m)in (2.1), we deduce (5.2).

The next corollary is an application of Theorem 2.1 for the Kullback divergence.

Corollary 5.2. Suppose that &, 0, > O fork =1,2,...,mwith 3;_, & = 1 and Y., ox = 1. Then

Dk(p,x) > ka@klog g) lzm

k<l
(6 (log(f )) & Qk(log(%)))
> Zm;g &0k + kaz log (W) > 0. (5.3)

Proof. Applying inequality (2.1) for ¥(o) = pologo, o > 0, we acquire (5.4).
The below corollary presents a relation for the Jeffrey’s distance as an application of Theorem 2.1.

Corollary 5.3. Under the assumptions of Corollary 5.2, we have

Jip,x) > ka(@k — &) log ; Zeor — szk
X(kaz(Qz - f;)(log (g) - 1) ~ &ow(or - fk)( log (§ ) 1))
> % Z Z (szk +&ko1 — 2§k§1) log (&Q;f—k;k@) 2 0. 54
k=1 =1
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Proof. Taking W(o) = (0 — 1)logo, o > 01in (2.1), we acquire (5.4).
Corollary 5.4 provides an estimate for variational distance as a direct application of Theorem 2.1.

Corollary 5.4. Presume that Corollary 5.2 hypotheses are true. Then

B il
Z§k|gk §k| T2 2 Z &ro1 — €10k

k<l

X(fk(@l — &)or - &| - &lox - &)|ox - §k|)

1 m m
2 3 Z Z |10k + &r01 — 28441
0

>

v

Vip,x)

(5.5)

Proof. Utilizing W(o) = |0 — 1|, 0 > 01in (2.1), we acquire (5.5).

The preceding corollary establishes an upper bound for the Hellinger distance as a direct analytical
consequence of Theorem 2.1.

Corollary 5.5. Assume that the conditions of Corollary 5.2 hold. Then

(ng \/__\/f_k 32&91 10k

k<l

H(p,x)

v

x(éi(vai + VE) v - (Ve + &) ai)|

2 Z Z \/ckal + &0k — Zflfk)

k=1 I=1
> 0. (5.6)

Proof. Applying inequality (2.1) with ¥(o) = (o — 1)2, for o > 0, yields (5.6).

An application of Theorem 2.1 for the Bhattacharyya coeflicient is acquired in the following
corollary.

Corollary 5.6. Assume that all the suppositions of Corollary 5.2 are satisfied. Then

\/T 3 Z o1 — fk& (\/ (&)’ - \/ (€100) )

\/ Ei(Evor + E10k)

B(p,x)

M= I V=
M=

IA
—_

(5.7)
Proof. Using the function ¥(0) = — /o, ¢ > 01in (2.1), we arrive at (5.7).
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6. Conclusions

In this research work, we have refined Jensen’s inequality using an interesting technique associated
with convexity and the Hermite-Hadamard inequality. Utilizing these refinements, we established new
relationships involving power and quasi-arithmetic mean inequalities. Furthermore, we extended our
main results to obtain improved forms of Holder inequality through appropriate substitutions within
the obtained refinements. In addition, several applications of the proposed refinements were provided
in the field of information theory, presenting new relations for the Csiszar and Kullback-Leibler
divergences, Shannon entropy, and the Bhattacharyya coefficient. Using this approach, refinements of
the integral version of Jensen’s inequality, the Jensen-Mercer inequality, and other related inequalities
may also be obtained.
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