Unit continuous probability distributions play a fundamental role in modeling variables bounded within the interval $ [0, 1] $, such as proportions and probabilities. In recent decades, there has been a significant increase in the development of new parametric families of these distributions. In this work, we present a comprehensive and up-to-date review of more than one hundred unit continuous distributions, including classical models, such as the beta and Kumaraswamy distributions, along with their various extensions. We examined key statistical properties such as moments and demonstrated the practical effectiveness of twelve selected distributions through applications to nine distinct datasets, thereby highlighting their flexibility in modeling a wide range of data types. To the best of our knowledge, this is the most extensive review focused specifically on unit distributions and is a valuable reference for researchers and practitioners.
Citation: Emmanuel Afuecheta, Idika E. Okorie, Haady Jallow, Saralees Nadarajah. A review of unit continuous probability distributions[J]. AIMS Mathematics, 2025, 10(11): 25939-26057. doi: 10.3934/math.20251146
Unit continuous probability distributions play a fundamental role in modeling variables bounded within the interval $ [0, 1] $, such as proportions and probabilities. In recent decades, there has been a significant increase in the development of new parametric families of these distributions. In this work, we present a comprehensive and up-to-date review of more than one hundred unit continuous distributions, including classical models, such as the beta and Kumaraswamy distributions, along with their various extensions. We examined key statistical properties such as moments and demonstrated the practical effectiveness of twelve selected distributions through applications to nine distinct datasets, thereby highlighting their flexibility in modeling a wide range of data types. To the best of our knowledge, this is the most extensive review focused specifically on unit distributions and is a valuable reference for researchers and practitioners.
| [1] |
A. M. T. A. E. Bar, H. S. Bakouch, S. Chowdhury, A new trigonometric distribution with bounded support and an application, Rev. Union Mat. Argent., 62 (2021), 459–473. https://doi.org/10.33044/revuma.1872 doi: 10.33044/revuma.1872
|
| [2] |
A. M. T. A. E. Bar, W. B. F. D. Silva, A. D. C. Nascimento, An extended log-Lindley-$G$ family: Properties and experiments in repairable data, Mathematics, 9 (2021), 3108. https://doi.org/10.3390/math9233108 doi: 10.3390/math9233108
|
| [3] |
A. M. T. A. E. Bar, M. C. S. Lima, M. Ahsanullah, Some inferences based on a mixture of power function and continuous logarithmic distribution, J. Taibah Univ. Sci., 14 (2020), 1116–1126. https://doi.org/10.1080/16583655.2020.1804140 doi: 10.1080/16583655.2020.1804140
|
| [4] |
M. M. E. A. E. Monsef, Erlang mixture distribution with application on COVID-19 cases in Egypt, Int. J. Biomath., 14 (2021), 2150015. https://doi.org/10.1142/S1793524521500157 doi: 10.1142/S1793524521500157
|
| [5] |
M. M. E. A. E. Monsef, N. M. Sohsah, W. A. Hassanein, Unit Monsef distribution with regression model, Asian J. Prob. St., 15 (2021), 330–340. https://doi.org/10.9734/AJPAS/2021/V15I430384 doi: 10.9734/AJPAS/2021/V15I430384
|
| [6] | A. M. A. Elrahman, Utilizing ordered statistics in lifetime distributions production: A new lifetime distribution and applications, J. Probab. Stat. Sci., 11 (2013), 153–164. |
| [7] |
M. Abdi, A. Asgharzadeh, H. S. Bakouch, Z. Alipour, A new compound gamma and Lindley distribution with application to failure data, Aust. J. Stat., 48 (2019), 54–75. https://doi.org/10.31128/AJGP-03-19-4885 doi: 10.31128/AJGP-03-19-4885
|
| [8] | M. Abramowitz, I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables, Courier Corporation, 55 (1965). |
| [9] |
A. G. Abubakari, A. Luguterah, S. Nasiru, Unit exponentiated Fréchet distribution: Actuarial measures, quantile regression and applications, J. Indian Soc. Prob. St., 23 (2022), 387–424. https://doi.org/10.1007/s41096-022-00129-2 doi: 10.1007/s41096-022-00129-2
|
| [10] |
K. Adamidis, T. Dimitrakopoulou, S. Loukas, On an extension of the exponential-geometric distribution, Stat. Probabil. Lett., 73 (2005), 259–269. https://doi.org/10.1016/j.spl.2005.03.013 doi: 10.1016/j.spl.2005.03.013
|
| [11] |
M. A. U. Haq, Statistical analysis of Haq distribution: Estimation and applications, Pak. J. Stat., 38 (2022), 473–490. https://doi.org/10.1093/jom/ufac035 doi: 10.1093/jom/ufac035
|
| [12] | K. A. A. Kadim, A. A. Boshi, Exponential Pareto distribution, Math. Theory Model., 3 (2013), 135–146. |
| [13] |
A. I. A. Omari, A. R. A. Alanzi, S. S. Alshqaq, The unit two parameters Mirra distribution: Reliability analysis, properties, estimation and applications, Alex. Eng. J., 92 (2024), 238–253. https://doi.org/10.1016/j.aej.2024.02.063 doi: 10.1016/j.aej.2024.02.063
|
| [14] | A. Ali, S. A. Hasnain, M. Ahmad, Modified Burr Ⅲ distribution, properties and applications, Pak. J. Stat., 31 (2015), 697–708. |
| [15] |
N. Alsadat, C. Tanış, L. P. Sapkota, A. Kumar, W. Marzouk, A. M. Gemeay, Inverse unit exponential probability distribution: Classical and Bayesian inference with applications, AIP Adv., 14 (2024), 055108. https://doi.org/10.1063/5.0210828 doi: 10.1063/5.0210828
|
| [16] |
E. Altun, G. M. Cordeiro, The unit-improved second-degree Lindley distribution: Inference and regression modeling, Comput. Stat., 35 (2020), 259–279. https://doi.org/10.1007/s00180-019-00921-y doi: 10.1007/s00180-019-00921-y
|
| [17] |
E. Altun, M. E. Morshedy, M. S. Eliwa, A new regression model for bounded response variable: An alternative to the beta and unit-Lindley regression models, PLoS One, 16 (2021), e0245627. https://doi.org/10.1371/journal.pone.0245627 doi: 10.1371/journal.pone.0245627
|
| [18] | E. Altun, G. G. Hamedani, The log-xgamma distribution with inference and applications, J. Soc. Fr. Stat., 159 (2018), 40–55. |
| [19] |
P. I. Alvarez, H. Varela, I. E. Cortés, O. Venegas, H. W. Gómez, Modified unit-half-normal distribution with applications, Mathematics, 12 (2024), 136. https://doi.org/10.3390/math12010136 doi: 10.3390/math12010136
|
| [20] |
A. Alzaatreh, C. Lee, F. Famoye, A new method for generating families of continuous distributions, Metron, 71 (2013), 63–79. https://doi.org/10.1007/s40300-013-0007-y doi: 10.1007/s40300-013-0007-y
|
| [21] |
M. R. Alzahrani, M. Almohaimeed, Analysis, inference, and application of unit Haq distribution to engineering data, Alex. Eng. J., 117 (2025), 193–204. https://doi.org/10.1016/j.aej.2025.01.050 doi: 10.1016/j.aej.2025.01.050
|
| [22] |
S. I. Ansari, M. H. Samuh, A. Bazyari, Cubic transmuted power function distribution, Gazi U. J. Sci., 32 (2019), 1322–1337. https://doi.org/10.35378/gujs.470682 doi: 10.35378/gujs.470682
|
| [23] |
C. Armero, M. J. Bayarri, Prior assessments for prediction in queues, J. Roy. Stat. Soc. D-Sta., 43 (1994), 139–153. https://doi.org/10.2307/2348939 doi: 10.2307/2348939
|
| [24] | T. Arslan, A new family of unit-distributions: Definition, properties and applications, TWMS J. Appl. Eng. Math., 13 (2023), 782–791. |
| [25] |
S. Ayuyuen, W. Bodhisuwan, A generating family of unit-Garima distribution: Properties, likelihood inference, and application, Pak. J. Stat. Oper. Res., 20 (2024), 69–84. https://doi.org/10.18187/pjsor.v20i1.4307 doi: 10.18187/pjsor.v20i1.4307
|
| [26] |
A. Azzalini, A class of distributions which includes the normal ones, Scand. J. Stat., 12 (1985), 171–178. https://doi.org/10.1163/187633385X00114 doi: 10.1163/187633385X00114
|
| [27] |
H. S. Bakouch, T. Hussain, M. Tošić, V. S. Stojanović, N. Qarmalah, Unit exponential probability distribution: Characterization and applications in environmental and engineering data modeling, Mathematics, 11 (2023), 4207. https://doi.org/10.3390/math11194207 doi: 10.3390/math11194207
|
| [28] |
H. S. Bakouch, A. S. Nik, A. Asgharzadeh, H. S. Salinas, A flexible probability model for proportion data: Unit-half-normal distribution, Commun. Stat.-Case Stud. Data Anal. Appl., 7 (2021), 271–288. https://doi.org/10.1080/23737484.2021.1882355 doi: 10.1080/23737484.2021.1882355
|
| [29] |
D. J. Balding, R. A. Nichols, A method for quantifying differentiation between populations at multi-allelic loci and its implications for investigating identity and paternity, Genetica, 96 (1995), 3–12. https://doi.org/10.1007/BF01441146 doi: 10.1007/BF01441146
|
| [30] |
R. A. R. Bantan, C. Chesneau, F. Jamal, M. Elgarhy, M. H. Tahir, A. Ali, et al., Some new facts about the unit-Rayleigh distribution with applications, Mathematics, 8 (2020), 1954. https://doi.org/10.3390/math8111954 doi: 10.3390/math8111954
|
| [31] |
R. A. R. Bantan, F. Jamal, C. Chesneau, M. Elgarhy, Theory and applications of the unit gamma/Gompertz distribution, Mathematics, 9 (2021), 1850. https://doi.org/10.3390/math9161850 doi: 10.3390/math9161850
|
| [32] |
S. O. Bashiru, M. Kayid, R. M. Sayed, O. S. Balogun, M. M. A. E. Raouf, A. M. Gemeay, Introducing the unit Zeghdoudi distribution as a novel statistical model for analyzing proportional data, J. Radiat. Res. Appl. Sc., 18 (2025), 101204. https://doi.org/10.1016/j.jrras.2024.101204 doi: 10.1016/j.jrras.2024.101204
|
| [33] |
F. A. Bhatti, A. Ali, G. G. Hamedani, M. Ç. Korkmaz, M. Ahmad, The unit generalized log Burr Ⅻ distribution: Properties and application, AIMS Math., 6 (2021), 10222–10252. https://doi.org/10.3934/math.2021592 doi: 10.3934/math.2021592
|
| [34] |
C. Biçer, H. S. Bakouch, H. D. Biçer, G. Alomair, T. Hussain, A. Almohisen, Unit Maxwell-Boltzmann distribution and its application to concentrations pollutant data, Axioms, 13 (2024), 226. https://doi.org/10.3390/axioms13040226 doi: 10.3390/axioms13040226
|
| [35] | H. D. Biçer, C. Biçer, C. Unit Ishita distribution with inference, Res. Rev. Sci. Math., 2022. |
| [36] | A. Biswas, S. Chakraborty, I. Ghosh, A novel method of generating distributions on the unit interval with applications, Commun. Stat.-Theor. M., (2023), https://doi.org/10.1080/03610926.2023.2280506 |
| [37] |
B. Bornkamp, Functional uniform priors for nonlinear modeling, Biometrics, 68 (2012), 893–901. https://doi.org/10.1111/j.1541-0420.2012.01747.x doi: 10.1111/j.1541-0420.2012.01747.x
|
| [38] |
V. G. Cancho, J. L. Bazán, D. K. Dey, A new class of regression model for a bounded response with application in the study of the incidence rate of colorectal cancer, Stat. Methods Med. Res., 29 (2020), 2015–2033. https://doi.org/10.1177/0962280219881470 doi: 10.1177/0962280219881470
|
| [39] |
M. Caramanis, J. Stremel, W. Fleck, S. Daniel, Probabilistic production costing, Int. J. Elec. Power, 5 (1983), 75–86. https://doi.org/10.1016/0142-0615(83)90011-X doi: 10.1016/0142-0615(83)90011-X
|
| [40] |
L. Chen, Z. Xu, D. Huang, Z. Chen, An improved Sobol sensitivity analysis method, J. Phys. Conf. Ser., 2747 (2024), 012025. https://doi.org/10.1088/1742-6596/2747/1/012025 doi: 10.1088/1742-6596/2747/1/012025
|
| [41] |
C. Chesneau, A note on an extreme left skewed unit distribution: Theory, modelling and data fitting, Open St., 2 (2021), 1–23. https://doi.org/10.48188/so.2.6 doi: 10.48188/so.2.6
|
| [42] | C. Chesneau, On a logarithmic weighted power distribution: Theory, modelling and application, J. Math. Sci. Adv. Appl., 67 (2021), 1–59. |
| [43] |
C. Chesneau, Study of a unit power-logarithmic distribution, Open J. Math. Sci., 5 (2021), 218–235. https://doi.org/10.30538/oms2021.0159 doi: 10.30538/oms2021.0159
|
| [44] | C. Chesneau, A collection of new variable-power parametric cumulative distribution function for $(0, 1)$-supported distributions, Res. Commun. Math. Math. Sci., 15 (2023), 89–152. |
| [45] |
C. Chesneau, Introducing a new unit gamma distribution: Properties and applications, Eur. J. St., 5 (2025), 6. https://doi.org/10.28924/ada/stat.5.6 doi: 10.28924/ada/stat.5.6
|
| [46] |
C. Chesneau, L. Tomy, J. Gillariose, On a new distribution based on the arccosine function, Arab. J. Math., 10 (2021), 589–598. https://doi.org/10.1007/s40065-021-00337-x doi: 10.1007/s40065-021-00337-x
|
| [47] |
M. S. C. Aracena, L. B. Blanco, D. E. Olivero, P. H. F. D. Silva, D. C. Nascimento, Extending normality: A case of unit distribution generated from the moments of the standard normal distribution, Axioms, 11 (2022), 666. https://doi.org/10.3390/axioms11120666 doi: 10.3390/axioms11120666
|
| [48] |
P. C. Consul, G. C. Jain, On the log-gamma distribution and its properties, Statistische Hefte, 12 (1971), 100–106. https://doi.org/10.1007/BF02922944 doi: 10.1007/BF02922944
|
| [49] |
K. Cooray, M. M. Ananda, A generalization of the half–normal distribution with applications to lifetime data, Commun. Stat.-Theor., 37 (2008), 1323–1337. https://doi.org/10.1080/03610920701826088 doi: 10.1080/03610920701826088
|
| [50] |
H. M. D. Oliveira, G. A. A. Araújo, Compactly supported one-cyclic wavelets derived from beta distributions, J. Commun. Inf. Sys., 20 (2005), 27–33. https://doi.org/10.48550/arXiv.1502.02166 doi: 10.48550/arXiv.1502.02166
|
| [51] | H. A. David, H. N. Nagaraja, Order statistics, 3 Eds., New Jersey: Wiley, 2004. |
| [52] |
T. Dimitrakopoulou, K. Adamidis, S. Loukas, A lifetime distribution with an upside-down bathtub-shaped hazard function, IEEE T. Reliab., 56 (2007), 308–311. https://doi.org/10.1109/TR.2007.895304 doi: 10.1109/TR.2007.895304
|
| [53] | J. Dombi, T. Jónás, Z. E. Tóth, The epsilon probability distribution and its application in reliability theory, Acta Polytech. Hung., 15 (2018), 197–216. |
| [54] |
J. Dombi, T. Jónás, Z. E. Tóth, G. Arva, The omega probability distribution and itsapplications in reliability theory, Qual. Reliab. Eng. Int., 35 (2019), 600–626. https://doi.org/10.1002/qre.2425 doi: 10.1002/qre.2425
|
| [55] |
D. F. N. Ekemezie, O. J. Obulezi, The Fav-Jerry distribution: Another member in the Lindley class with applications, Earthline J. Math. Sci., 14 (2024), 793–816. https://doi.org/10.34198/ejms.14424.793816 doi: 10.34198/ejms.14424.793816
|
| [56] |
H. E. Elghaly, M. A. Abd Elgawad, B. Tian, A novel extension to the unit Weibull distribution: Properties and inference with applications to medicine, engineering, and radiation, AIMS Math., 10 (2025), 18731–18769. https://doi.org/10.3934/math.2025837 doi: 10.3934/math.2025837
|
| [57] | M. Elshamy, Bivariate extreme value distributions, NASA. Marshall Space Flight Center, 4444 (1992). |
| [58] |
A. Fayomi, A. S. Hassan, E. M. Almetwally, Inference and quantile regression for the unit-exponentiated Lomax distribution, PLoS One, 18 (2023), e0288635. https://doi.org/10.1371/journal.pone.0288635 doi: 10.1371/journal.pone.0288635
|
| [59] |
A. Fayomi, A. S. Hassan, H. Baaqeel, E. M. Almetwally, Bayesian inference and data analysis of the unit-power Burr X distribution, Axioms, 12 (2023), 297. https://doi.org/10.3390/axioms12030297 doi: 10.3390/axioms12030297
|
| [60] |
J. F. Zúñiga, S. N. Soto, V. Leiva, S. Liu, Modeling heavy-tailed bounded data by the trapezoidal beta distribution with applications, REVSTAT-Stat. J., 20 (2022), 387–404. https://doi.org/10.36546/solusi.v20i3.710 doi: 10.36546/solusi.v20i3.710
|
| [61] | M. B. Fonseca, M. G. C. França, A influência da fertilidade do solo e caracterização da fixação biológica de N2 para o crescimento de Dimorphandra wilsonii Rizz, Master thesis, Universidade Federal de Minas Gerais, 2007. |
| [62] |
C. B. G. García, J. G. Pérez, S. C. Rambaud, The generalized biparabolic distribution, Int. J. Uncertain. Fuzz., 17 (2009), 377–396. https://doi.org/10.1142/S0218488509005930 doi: 10.1142/S0218488509005930
|
| [63] |
M. E. Ghitany, D. K. A. Mutairi, N. Balakrishnan, L. J. A. Enezi, Power Lindley distribution and associated inference, Comput. Stat. Data An., 64 (2013), 20–33. https://doi.org/10.1016/j.csda.2013.02.026 doi: 10.1016/j.csda.2013.02.026
|
| [64] |
M. E. Ghitany, J. Mazucheli, A. F. B. Menezes, F. Alqallaf, The unit-inverse Gaussian distribution: A new alternative to two-parameter distributions on the unit interval, Commun. Stat.-Theor. M., 48 (2019), 3423–3438. https://doi.org/10.1080/03610926.2018.1476717 doi: 10.1080/03610926.2018.1476717
|
| [65] |
M. E. Ghitany, V. K. Tuan, N. Balakrishnan, Likelihood estimation for a general class of inverse exponentiated distributions based on complete and progressively censored data, J. Stat. Comput. Sim., 84 (2014), 96–106. https://doi.org/10.1080/00949655.2012.696117 doi: 10.1080/00949655.2012.696117
|
| [66] |
Y. M. Gómez, H. Bolfarine, Likelihood-based inference for the power half-normal distribution, J. Stat. Theory Appl., 14 (2015), 383–398. https://doi.org/10.2991/jsta.2015.14.4.4 doi: 10.2991/jsta.2015.14.4.4
|
| [67] |
Y. M. Gómez, H. Bolfarine, H. W. Gómez, A new extension of the exponential distribution, Rev. Colomb. Estad., 37 (2014), 25–34. https://doi.org/10.15446/rce.v37n1.44355 doi: 10.15446/rce.v37n1.44355
|
| [68] |
E. G. Déniz, M. A. Sordo, E. C. Ojeda, The log-Lindley distribution as an alternative to the beta regression model with applications in insurance, Insur. Math. Econ., 54 (2014), 49–57. https://doi.org/10.1016/j.insmatheco.2013.10.017 doi: 10.1016/j.insmatheco.2013.10.017
|
| [69] |
M. B. Gordy, Computationally convenient distributional assumptions for common-value auctions, Comput. Econ., 12 (1998), 61–78. https://doi.org/10.1023/A:1008645531911 doi: 10.1023/A:1008645531911
|
| [70] | I. S. Gradshteyn, I. M. Ryzhik, Table of integrals, series, and products, 6 Eds., San Diego: Academic Press, 2000. |
| [71] |
A. Grassia, On a family of distributions with argument between $0$ and $1$ obtained by transformation of the gamma and derived compound distribution, Aust. NZ J. Stat., 19 (1977), 108–114. https://doi.org/10.1111/j.1467-842X.1977.tb01277.x doi: 10.1111/j.1467-842X.1977.tb01277.x
|
| [72] |
R. R. Guerra, F. A. P. Ramírez, M. Bourguignon, The unit extended Weibull families of distributions and its applications, J. Appl. Stat., 48 (2021), 3174–3192. https://doi.org/10.1080/02664763.2020.1796936 doi: 10.1080/02664763.2020.1796936
|
| [73] |
S. Gündüz, M. Ç. Korkmaz, A new unit distribution based on the unbounded Johnson distribution rule: The unit Johnson SU distribution, Pak. J. Stat. Oper. Res., 16 (2020), 471–490. https://doi.org/10.18187/pjsor.v16i3.3421 doi: 10.18187/pjsor.v16i3.3421
|
| [74] |
M. Gurvich, A. D. Benedetto, S. Ranade, A new statistical distribution for characterizing the random strength of brittle materials, J. Mater. Sci., 32 (1997), 2559–2564. https://doi.org/10.1023/A:1018594215963 doi: 10.1023/A:1018594215963
|
| [75] |
E. D. Hahn, Mixture densities for project management activity times: A robust approach to pert, Eur. J. Oper. Res., 188 (2008), 450–459. https://doi.org/10.1016/j.ejor.2007.04.032 doi: 10.1016/j.ejor.2007.04.032
|
| [76] |
H. H. Ahmad, E. M. Almetwally, M. Elgarhy, D. A. Ramadan, On unit exponential Pareto distribution for modeling the recovery rate of COVID-19, Processes, 11 (2023), 232. https://doi.org/10.3390/pr11010232 doi: 10.3390/pr11010232
|
| [77] |
M. A. Haq, Hashmi, K. Aidi, P. L. Ramos, F. Louzada, Unit modified Burr-Ⅲ distribution: Estimation, characterizations and validation test, Ann. Data Sci., 10 (2020), 415–440. https://doi.org/10.1007/s40745-020-00298-6 doi: 10.1007/s40745-020-00298-6
|
| [78] |
S. Hashmi, M. A. U. Haq, J. Zafar, M. A. Khaleel, Unit Xgamma distribution: Its properties, estimation and application, Proc. Pak. Acad. Sci. Pak. Acad. Sci. A Phys. Comput. Sci., 59 (2022), 15–28. https://doi.org/10.53560/PPASA(59-1)636 doi: 10.53560/PPASA(59-1)636
|
| [79] |
A. S. Hassan, G. S. S. Abdalla, A. Faal, O. A. Saudi, Novel unit distribution for enhanced modeling capabilities: Healthcare and geological applications, Eng. Rep., 7 (2025), e70277. https://doi.org/10.1002/eng2.70277 doi: 10.1002/eng2.70277
|
| [80] |
A. S. Hassan, R. S. Alharbi, Different estimation methods for the unit inverse exponentiated Weibull distribution, Commun. Stat. Appl. Met., 30 (2023), 191–213. https://doi.org/10.29220/CSAM.2023.30.2.191 doi: 10.29220/CSAM.2023.30.2.191
|
| [81] |
A. S. Hassan, A. Fayomi, A. Algarni, E. M. Almetwally, Bayesian and non-Bayesian inference for unit exponentiated half logistic distribution with data analysis, Appl. Sci., 12 (2022), 11253. https://doi.org/10.3390/app122111253 doi: 10.3390/app122111253
|
| [82] |
Z. Huang, B. Zhang, H. Xu, Evaluating statistical distributions for equivalent conduit flow in suffusion model of cohesionless gap‐graded soils, Eur. J. Soil Sci., 76 (2025), e70048. https://doi.org/10.1111/ejss.70048 doi: 10.1111/ejss.70048
|
| [83] |
Z. Hussain, F. Jamal, A. Saboor, S. Shafiq, A. Khan, S. Perveen, et al., A novel two-parameter unit probability model with properties and applications, Heliyon, 10 (2024), e37242. https://doi.org/10.1016/j.heliyon.2024.e37242 doi: 10.1016/j.heliyon.2024.e37242
|
| [84] |
M. R. Iaco, S. Thonhauser, R. F. Tichy, Distribution functions, extremal limits and optimal transport, Indagat. Math., 26 (2015), 823–841. https://doi.org/10.1016/j.indag.2015.05.003 doi: 10.1016/j.indag.2015.05.003
|
| [85] |
M. K. Jha, Y. M. Tripathi, S. Dey, Multicomponent stress-strength reliability estimation based on unit generalized Rayleigh distribution, Int. J. Qual. Reliab. Ma., 38 (2021), 2048–2079. https://doi.org/10.1108/IJQRM-07-2020-0245 doi: 10.1108/IJQRM-07-2020-0245
|
| [86] |
P. Jodrá, A bounded distribution derived from the shifted Gompertz law, J. King Saud Univ. Sci., 32 (2020), 523–536. https://doi.org/10.1016/j.jksus.2018.08.001 doi: 10.1016/j.jksus.2018.08.001
|
| [87] | P. Jodrá, M. D. J.Gamero, A quantile regression model for bounded responses based on the exponential-geometric distribution, REVSTAT-Stat. J., 18 (2020), 415–436. |
| [88] |
D. Johnson, The triangular distribution as a proxy for the beta distribution in risk analysis, J. Roy. Stat. Soc. D-Stat., 46 (1997), 387–398. https://doi.org/10.1111/1467-9884.00091 doi: 10.1111/1467-9884.00091
|
| [89] |
M. C. Jones, The complementary beta distribution, J. Stat. Plan. Infer., 104 (2002), 329–337. https://doi.org/10.1016/S0378-3758(01)00260-9 doi: 10.1016/S0378-3758(01)00260-9
|
| [90] |
A. Jøsang, A logic for uncertain probabilities, Int. J. Uncertain. Fuzz., 9 (2001), 279–311. https://doi.org/10.1016/S0218-4885(01)00083-1 doi: 10.1016/S0218-4885(01)00083-1
|
| [91] |
M. Jovanovíc, B. Pažun, Z. Langovíc, Ž. Grǔjcíc, Gumbel-Logistic unit distribution with application in telecommunications data modeling, Symmetry, 16 (2024), 1513. https://doi.org/10.3390/sym16111513 doi: 10.3390/sym16111513
|
| [92] | S. B. Kang, J. I. Seo, Estimation in an exponentiated half logistic distribution under progressively type-Ⅱ censoring, Commun. Stat. Appl. Met., 18 (2011), 657–666. |
| [93] | K. Karakaya, M. Ç. Korkmaz, C. Chesneau, G. Hamedani, A new alternative unit-Lindley distribution with increasing failure rate, Sci. Iran., 2022. https://doi.org/10.24200/sci.2022.58409.5712 |
| [94] |
K. Karakaya, S. Sağlam, Unit Fav-Jerry distribution: Properties and applications, Mugla J. Sci. Technol., 11 (2025), 11–17. https://doi.org/10.22531/muglajsci.1600995 doi: 10.22531/muglajsci.1600995
|
| [95] |
K. Karakaya, S. Saglam, Unit gamma-Lindley distribution: Properties, estimation, regression analysis, and practical applications, Gazi U. J. Sci., 38 (2025), 1021–1040. https://doi.org/10.35378/gujs.1549073 doi: 10.35378/gujs.1549073
|
| [96] | H. Karakus, F. Z. Dogru, F. Z. F. G. Akgul, Unit power Lindley distribution: Properties and estimation, Gazi U. J. Sci., 38 (2025), 506–526. |
| [97] |
S. Karuppusamy, V. Balakrishnan, K. Sadasivan, Improved second-degree Lindley distribution and its applications, IOSR J. Math., 13 (2017), 1–10. https://doi.org/10.9790/5728-1303051017 doi: 10.9790/5728-1303051017
|
| [98] |
M. Ç. Korkmaz, A new heavy-tailed distribution defined on the bounded interval: The logit slash distribution and its application, J. Appl. Stat., 47 (2020), 2097–2119. https://doi.org/10.1080/02664763.2019.1704701 doi: 10.1080/02664763.2019.1704701
|
| [99] | M. Ç. Korkmaz, The unit generalized half normal distribution: A new bounded distribution with inference and application, U. Politeh. Buch. Ser. A, 82 (2020), 133–140. |
| [100] |
M. Ç. Korkmaz, E. Altun, M. Alizadeh, M. E. Morshedy, The log exponential-power distribution: Properties, estimations and quantile regression model, Mathematics, 9 (2021), 2634. https://doi.org/10.3390/math9212634 doi: 10.3390/math9212634
|
| [101] |
M. Ç. Korkmaz, E. Altun, C. Chesneau, H. M. Yousof, On the Unit-Chen distribution with associated quantile regression and applications, Math. Slovaca, 72 (2022), 765–786. https://doi.org/10.1515/ms-2022-0052 doi: 10.1515/ms-2022-0052
|
| [102] |
M. Ç. Korkmaz, C. Chesneau, On the unit Burr-Ⅻ distribution with the quantile regression modeling and applications, Comput. Appl. Math., 40 (2021), 29. https://doi.org/10.1007/s40314-021-01418-5 doi: 10.1007/s40314-021-01418-5
|
| [103] | M. Ç. Korkmaz, C. Chesneau, Z. S. Korkmaz, On the arcsecant hyperbolic normal distribution: Properties, quantile regression modeling and applications, Symmetry, 13 (2021), 117. |
| [104] | M. Ç. Korkmaz, C. Chesneau, Z. S. Korkmaz, The unit folded normal distribution: A new unit probability distribution with the estimation procedures, quantile regression modeling and educational attainment applications, J. Reliab. Stat. Stud., 15 (2022), 261–298. |
| [105] |
M. Ç. Korkmaz, C. Chesneau, Z. S. Korkmaz, A new alternative quantile regression model for the bounded response with educational measurements applications of OECD countries, J. Appl. Stat., 50 (2023), 131–154. https://doi.org/10.1080/02664763.2021.1981834 doi: 10.1080/02664763.2021.1981834
|
| [106] |
M. Ç. Korkmaz, Z. S. Korkmaz, The unit log-log distribution: A new unit distribution with alternative quantile regression modeling and educational measurements applications, J. Appl. Stat., 50 (2023), 889–908. https://doi.org/10.1080/02664763.2021.2001442 doi: 10.1080/02664763.2021.2001442
|
| [107] |
S. Kotz, J. R. V. Dorp, Uneven two-sided power distributions with applications in econometric models, Stat. Method. Appl., 13 (2004), 285–313. https://doi.org/10.1007/s10260-004-0099-x doi: 10.1007/s10260-004-0099-x
|
| [108] |
A. Krishna, R. Maya, R., C. Chesneau, M. R. Irshad, The unit Teissier distribution and its applications, Math. Comput. Appl., 27 (2022), 12. https://doi.org/10.3390/mca27010012 doi: 10.3390/mca27010012
|
| [109] |
D. Kumar, M. Kumar, J. P. S. Joorel, Estimation with modified power function distribution based on order statistics with application to evaporation data, Ann. Data Sci., 9 (2022), 723–748. https://doi.org/10.1007/s40745-020-00244-6 doi: 10.1007/s40745-020-00244-6
|
| [110] |
P. Kumaraswamy, A generalized probability density function for double-bounded random processes, J. Hydrol., 46 (1980), 79–88. https://doi.org/10.3186/jjphytopath.46.79 doi: 10.3186/jjphytopath.46.79
|
| [111] |
D. Kundu, M. Z. Raqab, Estimation of $r = p [Y > X]$ for three-parameter generalized Rayleigh distribution, J. Stat. Comput. Sim., 85 (2015), 725–739. https://doi.org/10.1080/00949655.2013.839678 doi: 10.1080/00949655.2013.839678
|
| [112] |
S. Lee, Y. Noh, Y. Chung, Inverted exponentiated Weibull distribution with applications to lifetime data, Commun. Stat. Appl. Met., 24 (2017), 227–240. https://doi.org/10.5351/CSAM.2017.24.3.227 doi: 10.5351/CSAM.2017.24.3.227
|
| [113] | D. L. Libby, M. R. Novick, Multivariate generalized beta distribution with applications to utility assessment, J. Educ. Stat., 7 (1982), 271–294. |
| [114] |
D. G. Malcolm, J. H. Roseboom, C. E. Clark, W. Fazar, Application of a technique for research and development program evaluation, Oper. Res., 7 (1959), 646–669. https://doi.org/10.1287/opre.7.5.646 doi: 10.1287/opre.7.5.646
|
| [115] | A. I. Maniu, V. G. Voda, Generalized Burr-Hatke equation as generator of a homographic failure rate, J. Appl. Quant. Meth., 3 (2008), 215. |
| [116] | J. E. Marengo, D. L. Farnsworth, L. Stefanic, A geometric derivation of the Irwin-Hall distribution, Int. J. Math. Math. Sci., 2017, 1–6. https://doi.org/10.1155/2017/3571419 |
| [117] |
G. M. Flórez, R. B. A. Farias, R. T. Faón, New class of unit-power-skew normal distribution and its associated regression model for bounded responses, Mathematics, 10 (2022), 3035. https://doi.org/10.3390/math10173035 doi: 10.3390/math10173035
|
| [118] |
G. M. Flórez, H. Bolfarine, H. W. Gómez, Doubly censored power-normal regression models with inflation, Test, 24 (2014), 265–286. https://doi.org/10.1007/s11749-014-0406-2 doi: 10.1007/s11749-014-0406-2
|
| [119] |
G. M. Flórez, N. M. Olmos, O. Venegas, Unit-bimodal Birnbaum-Saunders distribution with applications, Commun. Stat.-Simul. C., 53 (2022), 2173–2192. https://doi.org/10.1080/03610918.2022.2069260 doi: 10.1080/03610918.2022.2069260
|
| [120] |
R. Maya, P. Jodrá, M. R. Irshad, A. Krishna, The unit Muth distribution: Statistical properties and applications, Ric. Mat., 73 (2024), 1843–1866. https://doi.org/10.1007/s11587-022-00703-7 doi: 10.1007/s11587-022-00703-7
|
| [121] | J. Mazucheli, B. Alves, The unit-Gumbel quantile regression model for proportion data, 2021. |
| [122] |
J. Mazucheli, B. Alves, A. F. B. Menezes, V. Leiva, An overview on parametric quantile regression models and their computational implementation with applications to biomedical problems including COVID-19 data, Comput. Meth. Prog. Bio., 221 (2022), 106816. https://doi.org/10.1016/j.cmpb.2022.106816 doi: 10.1016/j.cmpb.2022.106816
|
| [123] | J. Mazucheli, S. R. Bapat, A. F. B. Menezes, A new one-parameter unit-Lindley distribution, Chil. J. Stat., 11 (2020), 53–67. |
| [124] |
J. Mazucheli, A. F. B. Menezes, S. Chakraborty, On the one parameter unit-Lindley distribution and its associated regression model for proportion data, J. Appl. Stat., 46 (2019), 700–714. https://doi.org/10.1080/02664763.2018.1511774 doi: 10.1080/02664763.2018.1511774
|
| [125] | J. Mazucheli, A. F. B. Menezes, S. Dey, The unit-Birnbaum-Saunders distribution with applications, Chil. J. Stat., 9 (2018), 47–57. |
| [126] |
J. Mazucheli, A. F. B. Menezes, S. Dey, Unit-Gompertz distribution with applications, Statistica, 79 (2019), 25–43. https://doi.org/10.6092/issn.1973-2201/8497 doi: 10.6092/issn.1973-2201/8497
|
| [127] | J. Mazucheli, A. F. B. Menezes, M. E. Ghitany, The unit-Weibull distribution and associated inference, J. Appl. Probab. Stat., 13 (2018), 1–22. |
| [128] |
A. F. B. Menezes, J. Mazucheli, S. Chakraborty, A collection of parametric modal regression models for bounded data, J. Biopharm. Stat., 31 (2021), 490–506. https://doi.org/10.1080/10543406.2021.1918141 doi: 10.1080/10543406.2021.1918141
|
| [129] | H. Messaadia, H. Zeghdoudi, Zeghdoudi distribution and its applications, Int. J. Comput. Sci. Math., 9 (2018), 58–65. |
| [130] |
G. S. Mudholkar, D. K. Srivastava, Exponentiated Weibull family for analyzing bathtub failure-rate data, IEEE T. Reliab., 42 (1993), 299–302. https://doi.org/10.1109/24.229504 doi: 10.1109/24.229504
|
| [131] |
M. Muhammad, A new lifetime model with a bounded support, Asian Res. J. Math., 7 (2017), 1–11. http://dx.doi.org/10.9734/ARJOM/2017/35099 doi: 10.9734/ARJOM/2017/35099
|
| [132] |
M. Muhammad, A new three-parameter model with support on a bounded domain: Properties and quantile regression model, J. Comput. Math. Data Sci., 6 (2023), 100077. https://doi.org/10.1016/j.jcmds.2023.100077 doi: 10.1016/j.jcmds.2023.100077
|
| [133] | D. N. P. Murthy, M. Xie, R. Jiang, Weibull models, New York: John Wiley and Sons, 2004. |
| [134] |
S. Nadarajah, F. Haghighi, An extension of the exponential distribution, Statistics, 45 (2011), 543–558. https://doi.org/10.1080/02331881003678678 doi: 10.1080/02331881003678678
|
| [135] |
S. Nasiru, A. G. Abubakari, C. Chesneau, New lifetime distribution for modeling data on the unit interval: Properties, applications and quantile regression, Math. Comput. Appl., 27 (2022), 105. https://doi.org/10.3390/mca27060105 doi: 10.3390/mca27060105
|
| [136] |
S. Nasiru, C. Chesneau, S. K. Ocloo, The log-cosine-power unit distribution: A new unit distribution for proportion data analysis, Decision Anal. J., 10 (2024), 100397. https://doi.org/10.1016/j.dajour.2024.100397 doi: 10.1016/j.dajour.2024.100397
|
| [137] |
I. E. Okorie, E. Afuecheta, An alternative to the beta regression model with applications to OECD employment and cancer data, Ann. Data Sci., 11 (2024), 887–908. https://doi.org/10.1007/s40745-022-00460-2 doi: 10.1007/s40745-022-00460-2
|
| [138] |
I. E. Okorie, A. C. Akpanta, J. Ohakwe, D. C. Chikezie, The modified power function distribution, Cogent Math., 4 (2017), 1319592. https://doi.org/10.1080/23311835.2017.1319592 doi: 10.1080/23311835.2017.1319592
|
| [139] |
N. Olmos, G. M. Flórez, H. Bolfarine, Bimodal Birnbaum-Saunders distribution with applications to non negative measurements, Commun. Stat.-Theor. M., 46 (2017), 6240–6257. https://doi.org/10.1080/03610926.2015.1133824 doi: 10.1080/03610926.2015.1133824
|
| [140] | A. Ongaro, C. Orsi, Some results on non-central beta distributions, Statistica, 75 (2015), 85–100. |
| [141] |
C. Orsi, New developments on the non-central chi-squared and beta distributions, Aust. J. Stat., 51 (2022), 35–51. https://doi.org/10.1080/09332480.2022.2145142 doi: 10.1080/09332480.2022.2145142
|
| [142] | I. D. Patel, C. G. Khatri, A lagrangian beta distribution, S. Afr. Stat. J., 12 (1978), 57–64. |
| [143] | M. A. Pathan, M. Garg, J. Agrawal, On a new generalized beta distribution, East West J. Math, 10 (2008), 45–55. |
| [144] |
F. A. P. Ramírez, R. R. Guerra, C. P. Mafalda, The unit ratio-extended Weibull family and the dropout rate in Brazilian undergraduate courses, PLoS One, 16 (2023), e0290885. https://doi.org/10.1371/journal.pone.0290885 doi: 10.1371/journal.pone.0290885
|
| [145] | H. Pham, A vtub-shaped hazard rate function with applications to system safety, Int. J. Reliab. Appl., 3 (2002), 1–16. |
| [146] |
F. Prataviera, G. M. Cordeiro, The unit Omega distribution, properties and its application, Am. J. Math. Manag. Sci., 43 (2024), 109–122. https://doi.org/10.1080/01966324.2024.2310648 doi: 10.1080/01966324.2024.2310648
|
| [147] | A. P. Prudnikov, Y. A. Brychkov, O. I. Marichev, Integrals and series, Amsterdam: Gordon and Breach Science Publishers, 1–3 (1986). |
| [148] |
C. Quesenberry, C. Hales, Concentration bands for uniformity plots, J. Stat. Comput. Sim., 11 (1980), 41–53. https://doi.org/10.1080/00949658008810388 doi: 10.1080/00949658008810388
|
| [149] | R. C. Team, R: A language and environment for statistical computing, Found. Stat. Comput., 2022. |
| [150] |
I. E. Ragab, N. Alsadat, O. S. Balogun, M. Elgarhy, Unit extended exponential distribution with applications, J. Radiat. Res. Appl. Sc., 17 (2024), 101118. https://doi.org/10.1016/j.jrras.2024.101118 doi: 10.1016/j.jrras.2024.101118
|
| [151] |
A. T. Ramadan, A. H. Tolba, B. S. E. Desouky, A unit half-logistic geometric distribution and its application in insurance, Axioms, 11 (2022), 676. https://doi.org/10.3390/axioms11120676 doi: 10.3390/axioms11120676
|
| [152] |
T. F. Ribeiro, F. A. P. Ramírez, R. R. Guerra, G. M. Cordeiro, Another unit Burr Ⅻ quantile regression model based on the different reparameterization applied to dropout in Brazilian undergraduate courses, PLoS One, 17 (2022), e0276695. https://doi.org/10.1371/journal.pone.0276695 doi: 10.1371/journal.pone.0276695
|
| [153] |
L. D. R. Reis, Unit log-logistic distribution and unit log-logistic regression model, J. Indian. Soc. Prob. St., 22 (2021), 375–388. https://doi.org/10.1007/s41096-021-00109-y doi: 10.1007/s41096-021-00109-y
|
| [154] |
L. D. R. Reis, Truncated exponentiated-exponential distribution: A distribution for unit interval, J. Stat. Manag. Syst., 25 (2022), 2061–2072. https://doi.org/10.1080/09720510.2022.2060613 doi: 10.1080/09720510.2022.2060613
|
| [155] |
L. D. R. Reis, The unit log-normal distribution: An alternative for beta and Kumaraswamy distributions, J. Stat. Manag. Syst., 27 (2024), 785–796. https://doi.org/10.47974/JSMS-1018 doi: 10.47974/JSMS-1018
|
| [156] |
J. Rodrigues, J. L. Bazán, A. K. Suzuki, A flexible procedure for formulating probability distributions on the unit interval with applications, Commun. Stat.-Theor. M., 49 (2020), 738–754. https://doi.org/10.1080/03610926.2018.1549254 doi: 10.1080/03610926.2018.1549254
|
| [157] |
M. K. Roy, A. K. Roy, M. M. Ali, Binomial mixtures of some standard distributions, J. Inform. Optim. Sci., 14 (1993), 57–71. https://doi.org/10.1002/oca.4660140105 doi: 10.1002/oca.4660140105
|
| [158] |
S. Saglam, K. Karakaya, Unit Burr-Hatke distribution with a new quantile regression model, J. Sci. Arts, 22 (2022), 663–676. https://doi.org/10.46939/J.Sci.Arts-22.3-a13 doi: 10.46939/J.Sci.Arts-22.3-a13
|
| [159] |
K. I. Santoro, Y. M. Gómez, D. Soto, I. B. Chamorro, Unit-power half-normal distribution including quantile regression with applications to medical data, Axioms, 13 (2024), 599. https://doi.org/10.3390/axioms13090599 doi: 10.3390/axioms13090599
|
| [160] |
L. P. Sapkota, N. Bam, V. Kumar, New bounded unit Weibull model: Applications with quantile regression, PLoS One, 20 (2025), e0323888. https://doi.org/10.1371/journal.pone.0323888 doi: 10.1371/journal.pone.0323888
|
| [161] |
A. M. Sarhan, M. E. Sobh, Unit exponentiated Weibull model with applications, Sci. Afr., 27 (2025), e02606. https://doi.org/10.1016/j.sciaf.2025.e02606 doi: 10.1016/j.sciaf.2025.e02606
|
| [162] | S. Sen, S. K. Ghosh, H. A. Mofleh, The Mirra distribution for modeling time-to-event data sets, In: Strategic management, decision theory, and decision science, Singapore: Springer, 2021, 59–73. https://doi.org/10.1007/978-981-16-1368-5_5 |
| [163] |
S. Sen, S. S. Maiti, N. Chandra, The xgamma distribution: Statistical properties and application, J. Mod. Appl. Stat. Meth., 15 (2016), 774–788. https://doi.org/10.22237/jmasm/1462077420 doi: 10.22237/jmasm/1462077420
|
| [164] |
A. Shafiq, T. N. Sindhu, Z. Hussain, J. Mazucheli, B. Alves, A flexible probability model for proportion data: Unit Gumbel type-Ⅱ distribution, development, properties, different method of estimations and applications, Aust. J. Stat., 52 (2023), 116–140. https://doi.org/10.17713/ajs.v52i2.1407 doi: 10.17713/ajs.v52i2.1407
|
| [165] | I. Shah, B. Iqbal, M. Farhan Akram, S. Ali, S. Dey, Unit Nadarajah and Haghighi distribution: Properties and applications in quality control, Sci. Iran., 2021. |
| [166] | R. Shanker, Garima distribution and its application to model behavioral science data, Biometrics Biostat. Int. J., 4 (2016), 00116. |
| [167] |
R. Shanker, K. K. Shukla, Ishita distribution and its applications, Biometrics Biostat. Int. J., 5 (2017), 1–9. http://dx.doi.org/10.15406/bbij.2017.05.00126 doi: 10.15406/bbij.2017.05.00126
|
| [168] |
R. M. Smith, L. J. Bain, An exponential power life-testing distribution, Commun. Stat.-Theor. M., 4 (1975), 469–481. https://doi.org/10.1080/03610927508827263 doi: 10.1080/03610927508827263
|
| [169] |
T. Spasojevíc, M. Jovanovíc, Laplace-logistic unit distribution with application in dynamic and regression analysis, Mathematics, 12 (2024), 2282. https://doi.org/10.3390/math12142282 doi: 10.3390/math12142282
|
| [170] | H. M. Srivastava, W. Karlsson, Multiple Gaussian hypergeometric series, Chichester: Ellis Horwood, 1985. |
| [171] | H. M. Srivastava, H. L. Manocha, A treatise on generating functions, New York: John Wiley and Sons, 1984. |
| [172] |
E. Stacy, A generalization of the gamma distribution, Ann. Math. Stat., 33 (1962), 1187–1192. https://doi.org/10.1214/aoms/1177704481 doi: 10.1214/aoms/1177704481
|
| [173] |
V. S. Stojanovíc, H. S. Bakouch, G. Alomair, A. F. Daghestani, Ž. Grǔjcíc, A flexible unit distribution based on a half-logistic map with applications in stochastic data modeling, Symmetry, 17 (2025), 278. https://doi.org/10.3390/sym17020278 doi: 10.3390/sym17020278
|
| [174] |
V. S. Stojanovíc, T. J. Jovanovíc, R. Bojǐcíc, B. Pažun, Z. Langovíc, Cauchy-logistic unit distribution: Properties and application in modeling data extremes, Mathematics, 13 (2025), 255. https://doi.org/10.3390/math13020255 doi: 10.3390/math13020255
|
| [175] |
M. S. Suprawhardana, S. Prayoto, Total time on test plot analysis for mechanical components of the RSG-GAS reactor, At. Indones., 25 (1999), 81–90. https://doi.org/10.1007/BF00579689 doi: 10.1007/BF00579689
|
| [176] | M. H. Tahir, M. Alizadeh, M. Mansoor, G. M. Cordeiro, M. Zubair, The Weibull-power function distribution with applications, Hacet. J. Math. Stat., 45 (2016), 245–265. |
| [177] | P. C. Tang, The power function of the analysis of variance test with tables and illustrations of their use, Stat. Res. Mem., 2 (1938), 126–149. |
| [178] | G. Teissier, Recherches sur le vieillissement et sur les lois de la mortalité, Ann. Physiol PCB, 10 (1934), 237–284. |
| [179] |
Z. U. Rehman, C. Tao, H. S. Bakouch, T. Hussain, Q. Shan, A flexible bounded distribution: Information measures and lifetime data analysis, B. Malays. Math. Sci. So., 46 (2023), 115. https://doi.org/10.1007/s40840-023-01507-0 doi: 10.1007/s40840-023-01507-0
|
| [180] | R. M. Usman, M. Ilyas, The power Burr Type X distribution: Properties, regression modeling and applications, Punjab Univ. J. Math., 52 (2020), 27–44. |
| [181] |
J. R. V. Dorp, S. Kotz, A novel extesion of the triangular distribution and its parameter estimation, J. Roy. Stat. Soc. D-Sta., 51 (2002), 63–79. https://doi.org/10.1111/1467-9884.00299 doi: 10.1111/1467-9884.00299
|
| [182] | O. A. Vasicek, Probability of loss on loan portfolio, San Francisco: KMV Corporation, 1987. |
| [183] |
R. Vila, N. Balakrishnan, H. Saulo, P. Zörnig, Unit-log-symmetric models: Characterization, statistical properties and their applications to analyzing an internet access data, Qual. Quant., 58 (2024), 4779–4806. https://doi.org/10.1007/s11135-024-01879-w doi: 10.1007/s11135-024-01879-w
|
| [184] | R. Vila, F. Quintino, A novel unit-asymmetric distribution based on correlated Fréchet random variables, Qual. Quant., 2025. https://doi.org/10.1007/s11135-025-02298-1 |
| [185] |
R. Vila, H. Saulo, F. Quintino, P. Zörnig, A new unit-bimodal distribution based on correlated Birnbaum-Saunders random variables, Comput. Appl. Math., 44 (2025), 83. https://doi.org/10.1007/s40314-024-03045-2 doi: 10.1007/s40314-024-03045-2
|