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Abstract: Unit continuous probability distributions play a fundamental role in modeling variables
bounded within the interval [0, 1], such as proportions and probabilities. In recent decades, there has
been a significant increase in the development of new parametric families of these distributions. In this
work, we present a comprehensive and up-to-date review of more than one hundred unit continuous
distributions, including classical models, such as the beta and Kumaraswamy distributions, along with
their various extensions. We examined key statistical properties such as moments and demonstrated
the practical effectiveness of twelve selected distributions through applications to nine distinct datasets,
thereby highlighting their flexibility in modeling a wide range of data types. To the best of our
knowledge, this is the most extensive review focused specifically on unit distributions and is a valuable
reference for researchers and practitioners.
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1. Introduction

Probability distributions defined on the interval [0, 1] [37] have numerous practical applications
across fields. One fundamental distribution in this domain is the uniform distribution, commonly
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used as a non-informative prior in Bayesian statistics. Due to its properties, it assumes that all
outcomes within the interval are equally probable, which is essential when there is no prior knowledge
about the parameter of interest. Applications in clinical trials frequently leverage this uniformity to
model uncertainty and formulate inferential statistics [37]. For instance, when assessing treatment
effects in randomized controlled trials, researchers can utilize uniform priors to represent their lack
of prior beliefs about the likelihood of particular outcomes. Furthermore, uniform distributions play
a significant role in reliability analysis and lifetime data modeling, providing a foundational base for
the construction of other distributions, such as the beta distribution, which is commonly utilized for
modeling proportions [116].

Another critical application of probability distributions on [0, 1] [37] is evident in optimization and
machine learning. In the realm of sensitivity analysis, the uniform distribution supports algorithms to
explore parameter spaces, enhancing the understanding of system behavior [40]. This is particularly
vital in complex systems where the relationships between variables are non-linear and intricate.
Moreover, the use of the uniform distribution is central in the development of methods for generating
random samples in Monte Carlo simulations, which have diverse applications ranging from financial
modeling to environmental studies [82]. The generation of random numbers uniformly distributed
over [0, 1] [37] is foundational for sampling-based methods, including Bayesian computation and
Latin hypercube sampling, which enable effective exploration of multidimensional input spaces [84].
This breadth of applications underscores the integral role that probability distributions on the
interval [0, 1] [37] play in modern statistical practice.

The beta distribution is defined by two shape parameters that control the skewness, and kurtosis,
making it adaptable to various types of data. Other notable unit distributions include the Kumaraswamy
distribution, which, like the beta distribution, is defined on the [0,1] interval but offers simpler
cumulative distribution function (CDF) and probability density function (PDF) expressions, and the
Dirichlet distribution, a multivariate generalization of the beta distribution used in Bayesian statistics.
In recent years, several generalizations and modifications of these traditional distributions have
been proposed to better model complex data. Some of these distributions include the generalized
five parameter beta distribution in [143], the rectangular beta distribution in [75], the log gamma
distribution in [48], the modified power function distribution in [138], the unit generalized half-normal
distribution in [99], the unit log-Xgamma distribution in [18], and the unit gamma distribution in [71],
among others. Each of these distributions offers unique advantages and greater flexibility in fitting data
with specific characteristics.

Given the growing interest and recent development in unit continuous probability distributions and
their applications, we believe it is timely to provide a comprehensive review of these distributions and
their modifications. We also believe that such a review could be an important reference, promote
broader application of unit probability distributions, and encourage further developments in this
field. Hence, we aim to provide a comprehensive overview of the most widely used unit continuous
probability distributions.

Thus, in this paper, we systematically review the properties, including the PDF, CDF, moments,
and other relevant characteristics of various unit continuous probability distributions. In doing
so, we focus exclusively on the basic unit distributions and deliberately exclude their numerous
generalizations (for example, inflated forms, transmuted versions, power-type modifications, etc.).
Although such extensions are mathematically valid and interesting, each unit distribution can, in
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principle, be generalized in uncountably many ways. Including them would broaden the scope beyond
the stated purpose of this review and make the exposition unnecessarily long and less clear. Our aim
is therefore to provide a clear and coherent review of the foundational unit distributions, leaving aside
those arising from transmutation, inflation, or other modification techniques.

The remainder of this paper is organized as follows: In Section 2, we provide the collection of
these unit distributions and their modifications. In Section 3, we discuss a real data application that
compares several of the reviewed distributions. Finally, the concluding remarks are given in Section 4,
and potential areas for future research are suggested. A collection of special functions used in Section 2
is provided in the appendix.

2. The collection of unit models

2.1. Beta distribution

This distribution is one of the most popular probability distributions in statistical literature with a
wide range of applications in different areas. For example, in Bayesian inference, this distribution is
often employed as a conjugate prior to the following probability distributions: Bernoulli, binomial,
negative binomial, and geometric distributions [29, 50, 51,90, 114]. The invention of this distribution
dates back to 1676 in a letter from Sir Isaac Newton to Henry Oldenbeg. A standard PDF of the beta
distribution is defined by

x(1 - x)p1
B(a.B)

for 0 < x < 1, where @ > 0 and 8 > 0 are the shape parameters. The corresponding CDF is given by

flx) = ; 2.1)

1o )
F(x) = mfow 1 -w)Plaw
By(a,p)

B(a.p)
= IL(a,B).

We note here that if @ and S are integers, the CDF can be evaluated as the binomial sum given by

F(x) = 1—§(a+§_ 1)x"(1 )t

i=0 !
In addition, the mean, variance, and kth moment associated with the beta distribution are

E(X) =

a
a+p

af

Varl¥) = (@+8)°(@+p+1)
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and

E(x) = B(g(l;’)ﬁ)

I+ kI (a+p)

['(a)T(a+B+k)
(@)

(@ +B)

respectively, for k > 1. The PDF can be monotonically increasing, monotonically decreasing, bathtub
shaped, or unimodal. The distribution has zero skewness if @ = f, positive skewness @ < , and
negative skewness if @ > .

The beta distribution is widely used in fields that involve modeling probabilities and proportions
because it is defined on the interval [0, 1] and can take on a variety of shapes depending on its
parameters. In Bayesian statistics, it is a conjugate prior to the binomial and Bernoulli distributions,
enabling for the updating of beliefs about probabilities as new data is observed. In project management,
it is applied in PERT (Program Evaluation and Review Technique) to model the uncertainty in task
completion times. The distribution also finds use in reliability engineering to represent the probability
of system success, in finance for modeling asset return probabilities or risk, and in quality control to
model the proportion of defective items. Additionally, it is employed in machine learning and A/B
testing to estimate success probabilities and in population genetics to describe allele frequencies.

2.2. Arcsine distribution

The arcsine distribution is a notable model in statistics and probability theory and has been studied

for over a century. It a special case of the beta distribution with « = f = % This implies that

if X is distributed according the arcsine distribution, then X ~ B (%, %) The name of this distribution
arises from the fact that the inverse of sin or hyperbolic sine function is a component of the CDF of
this model. There are numerous applications for the arcsine distribution across disciplines, including
actuarial sciences, Brownian motion, fiducial inference, statistical linguistics, stochastic processes,
thermal calibration systems. The PDF and CDF of the standard arcsine distribution are

1
fx) = —F/——,
) m+/x(1-x)
and
F(x) = %arcsin(\/}),

respectively, for 0 < x < 1. In addition, the kth moment is

E@ﬂ:%BQ+%%)

for k > 1. In particular, the mean and variance are

E(X) =3,
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and

1
Var (X) = =,

8
respectively. The PDF is symmetric around 0. The skewness is 0, and excess kurtosis is —%.
The arcsine distribution is applied in fields where probabilities are concentrated near the extremes
of an interval than around the mean. It is commonly used in physics to model random processes such
as the fraction of time a particle spends on one side of a barrier or the proportion of time a Brownian
particle remains positive. In finance, it can describe the distribution of time an asset’s price stays
above or below a reference level. Additionally, it appears in reliability analysis, signal processing,
and queuing theory, particularly in scenarios involving extreme events, persistence times, or boundary-
crossing phenomena, where outcomes near the endpoints are more probable than those near the center.

2.3. Type I noncentral beta distribution

A type I noncentral beta distribution is a distribution that arises from the ratio X = SST’ where S
is distributed according to noncentral y> with 2a degrees of freedom and a positive noncentrality
parameter 6, and T is distributed according to the central y? distribution with 28 degrees of freedom.
This model is a generalization of the beta distribution and this extension is advantageous in many ways.
For example, unlike the standard beta distribution, it properly describes portions of the data that have
values close to zero and one. The PDF and CDF of X, represented as a Poisson mixture in [177], are

o T (o +B+i) x ol (1 - x)f 1y
f () ; T(a+1) r(5)
= ST (@)
= I3 ;) T (a+i) uix, (2.2)
and
F(x) =Y wils(a+ip), (2.3)
i=0

respectively, where O < x < 1, 8 > 0 and « > 0 are positive shape parameters, and

(8 ew(-9)

i — . ’

i!

represents the probability mass function (PMF) of the Poisson distribution with g as the parameter.
Furthermore, the mean and variance associated with (2.2) and (2.3) are

E(X) = e ( 5)"" & a+ti
=CeXpl|—= P ITiae—
P\T2) Lidita 1B+

and

(o]

B ) o (@+i)(@+i+1) )
var(X) _GXP(__);ﬁ(a+ﬁ+i)(a+ﬁ+i+ iy~ EX]

2
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respectively. These can be more elegantly expressed in terms of the hypergeometric identities as

aexp(-5)

0
E(X) = a1 p 2F2(a+ La+Ba,a+B+ 1;—),

2

and

Var(X) = (Z(i ;) Zef; (31)) B (ot 20+ ot pt2l)- [EX)P.

In addition, the kth moment about zero associated with (2.2) is

E(Xk) — %exp(—g) 2F2(a/—|—k,0z—|—,8;a/,a—|-,8+k;g),
fork > 1.

The type I noncentral beta distribution is applied in statistical and engineering contexts where
modeling ratios of dependent or non-independent quantities is required. It is commonly used in
reliability analysis, quality control, and signal processing, particularly in cases involving noncentral F
or ¢ statistics, where nonzero means or effects are present. In Bayesian statistics, it is a prior or
posterior for proportions when prior information suggests a deviation from a purely central distribution.
Additionally, it appears in econometrics and biometrics for modeling proportions or rates that are
influenced by underlying noncentrality parameters, enabling more flexibility than the standard beta
distribution in capturing skewness and asymmetry caused by external factors or prior effects.

2.4. Type Il noncentral beta distribution

A type II noncentral beta distribution is a distribution that arises from the ratio X = where S

S
S+7°
is distributed according to the central y? with 2« degrees of freedom, and T is distributed according
to the noncentral y? distribution with 23 degrees of freedom and a positive noncentrality parameter 6.

Using the Poisson mixture representation in Tang [177], the CDF of X can be expressed as

(o]

F(x) = > uily(a, B+ ), (2.4)

i=0
for 0 < x < 1, where @ > 0 and 8 > 0 are shape parameters, and
i
_(3) e (9)
B i! '

Then, the PDF of (1 — X) corresponding to (2.4) takes the same form as (2.2) with the shape parameters,
or the degrees of freedom reversed. The kth moment about zero associated is

E(x*) = %exp(—g) a (a+ﬁ;a+ﬁ+k;g).
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In particular, the mean and variance are

a o) o
E(X)= a—{—ﬂexp(_E) 1Fq (a—l—ﬁ;a-l-ﬁ-i- 1;5),
and
_ (@) 8 . 6 2
Var (X) == mexp(—z) ]F] (a —|—ﬁ,0/—|—ﬂ—|—2, E)— [E(X)] ,
respectively.

The type II noncentral beta distribution is applied in several advanced statistical and engineering
contexts where modeling ratios of random variables with noncentrality is required. It is particularly
useful in multivariate statistical analysis, such as in the distributions of eigenvalues of certain random
matrices and in hypothesis testing, including the distribution of test statistics in multivariate analysis of
variance (MANOVA), and generalized likelihood ratio tests. In signal processing and communications,
it arises in modeling the signal-to-noise ratio under noncentral chi-square assumptions, relevant
for radar, wireless communication, and reliability analysis. Additionally, it is applied in Bayesian
inference for prior and posterior modeling when dealing with ratios of noncentral chi-square variables,
and in quality control and reliability engineering, where it can describe performance ratios or failure
probabilities under noncentral conditions. Its flexibility in handling noncentrality makes it valuable
wherever asymmetry or shifted distributions of ratios are present.

2.5. Doubly noncentral beta distribution

Suppose S ~noncentral-)(%za) with noncentrality parameter 61, and T ~noncentral-)(%2ﬁ) with
noncentrality parameter o2, then
S
S+ T

is said to have the doubly noncentral beta distribution with shape parameters «, 3, and noncenrality
parameters 01,02. Using the Poisson mixture representation, we can write the PDF of the doubly
noncentral beta distribution as

0 XL (] = Bl
= Vi _ —, 2.5
0= 2 S =

for 0 < x < 1, where @ > 0 and 8 > 0 are shape parameters. Using the perturbation representation in
Ongaro and Orsi [140], we can rewrite Eq (2.5) as

01+ 6 01 o
f(x) = Beta(x; @, ). exp( 1+ 2)\112 (a/ +B,a,0; Elx, ?2(1 - x)) . (2.6)
The corresponding CDF is given by
Fx) =) ) uvile(a+iB+ ).,
i=0 j=0
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for 0 < x < 1, where

(%) ew(-%) (3) exp(-%)

U = ;
i!

and
Beta(x; o, 8) =

The kth moment corresponding to (2.6) is

« DN N B
E(X) = ((n*))i p(E)Zé IR (” B ?)’

for k > 1, where 6" = 81 + 02 and n* = a + B. Specifically, the mean and variance are [141]

a (. S W ST
E(X) = %exp(—g) 1F1 (77 n + 1;3)+m 1F1 (77 + LIin +2;E)]’
and
Var (X) = (a)> exp (—6—*) 1F1 (77*;77* +2; 6—*) + ﬂ 1F1 (77* + 1;n" +3; f)
(), 2 2)  alr+2) 2
A (61)\2 .
+—(a()772 2;*(i)2)2 1F (n* + 2"+ 4 %) - [E(X)]?,

respectively.

The doubly noncentral beta distribution is applied in fields where ratios of noncentral chi-square
variables naturally arise, particularly in statistics, engineering, and reliability analysis. It is commonly
used in the study of the distribution of the F statistic in the presence of noncentrality parameters,
making it relevant for power analysis and hypothesis testing under non-null conditions. In reliability
engineering, it models the proportion of life consumed or stress experienced when system components
follow noncentral chi-square distributions. Additionally, it appears in Bayesian analysis as a prior
or posterior distribution for parameters constrained between O and 1, especially when incorporating
noncentrality effects, and in quality control, signal processing, and risk assessment where variability
and asymmetry need to be captured more accurately than the standard beta distribution enables.

2.6. Libby and Novick’s generalized beta distribution

Libby and Novick [113] generalized three parameter beta distribution is specified by the PDF
and CDF

/laxa—l (1 _ x)ﬁ—]
B(a,B) [1 - (1= )5

flx) = 2.7)
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and

F(x)=1_u (a,B),

14+Ax—x

respectively, for 0 < x < 1, where @ > 0,8 > 0 are shape parameters, and 4 > 0 is a scale parameter.
It is important to mention that (2.7) reduces to (2.1) when A4 = 1. In addition, the kth moment of the
generalized three parameter beta distribution is

AT (e+pB)T (a+k)
I'(a)T (a+B+k)

E(x*) = oFi(@+ka+Ba+B+k1-21).

The kth moment can be rewritten by utilising features of the Gauss hypergeometric function as

B I'(a+B)T (a+k)
E(x) = AT (a)T (@ +B+k

1
)zFl(a—l—k,k;a'—l—ﬁ—i—k;l—Z ,

if 1> 1 and

oF1 (B ksa+B+k1-2),

_ T(a+pB)T (a+k)
E(x) = AT (a)T (a+ B +k)

if A < 1. In particular, the mean and variance are

_2T(a+B)T(a+1)
E(X) = [(@) (a+B+1)

2F (a+ L,a+Ba+B+1;1-2),

and

AT (a+p)T (a+2)
Var(X) = T T @ 18 +2)

2F (0 +2,0+Bia+B+21-2) - [E(X)]?,

respectively. Libby and Novick’s [113] generalized beta distribution is applied in fields requiring
flexible probability models due to its ability to capture a broad range of distributional shapes, including
skewness, and kurtosis variations. It is commonly used in Bayesian statistics as a prior distribution,
particularly in modeling proportions, rates, and reliability data. In survival analysis and reliability
engineering, it provides a versatile model for lifetimes and failure times, accommodating increasing
and decreasing hazard rates. In economics and finance, it has been applied to model income
distributions, risk assessment, and asset returns, while in environmental sciences and hydrology,
it is useful for modeling rainfall, flood frequencies, and other naturally bounded phenomena. Its
adaptability to diverse data patterns makes it a powerful tool in theoretical research and applied
statistical modeling.

2.7. Gauss hypergeometric distribution

A random variable X is said to have the Gauss hypergeometric distribution suggested by Armero
and Bayarri [23] if the PDF is given by

x(1 - x)p1

) =

(2.8)
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for0 < x < 1, where @ > 0,8 > 0, —c0 < y < oo are shape parameters, and z > —1 is a scale parameter.
C is the proportionality constant given by

1

c= B(a.B) oF (v, a,a+B;—2).
If y = 0 or z = 0, then (2.8) will deplete to the standard beta distribution. The CDF corresponding
to (2.8) is

X ta 1—t¢ £-1
f f(2) f ( ) ————d&t.
0 (1+zt)”

The kth moment of X is

E(x") = Blatkp)ofi(vathatfthk-2)
B(a,pB) FL (v, aia + B —2) )

In particular, the mean and variance are

B(a+,B)2F1 (y,a+ka+B+1;-2)
B(a.p) 2F1 (v, a0+ B;—2)

b

E(X) =

and

B(a+2,8)2F1 (v,a+ka+pB+2;-2)
B(a.p) 2F1 (v, 00+ B; —2)

respectively. The PDF can be bathtub shaped, unimodal, decreasing-increasing-decreasing, or
monotonically increasing. The Gauss hypergeometric distribution is applied mostly in Bayesian
reliability and survival analysis, particularly for modeling failure times and repairable systems where
prior information is incorporated in a flexible way. It is useful in predictive inference for survival data,
Bayesian testing of exponentiality, and in constructing objective priors for hazard rates in reliability
studies. The distribution’s tractability and connection with the beta and negative binomial families
make it valuable for lifetime modeling, system reliability assessment, and medical survival studies,
especially in contexts requiring a balance between informative priors and noninformative (objective)
Bayesian approaches.

Var (X) = - [E(X)P%,

2.8. Confluent hypergeometric distribution
A random variable X is said to have the confluent hypergeometric distribution proposed by
Gordy [69] if its PDF is given by

f(x) = Cx* (1= x)" " exp (—cx),

for 0 < x < 1, where a > 0,b > 0 are shape parameters, and ¢ > 0 is a scale parameter. C is the
proportionality constant given by

1

— = B(a,b) Fy (a;a+b;—c).
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The kth moment of X is

E(Xk>_ B(k+a’b) lFl (k—i—a,k—i—a—i—b,—c)
N B(a,b) 1F1 (a;a+ b;—c) '

In particular, the mean and variance are

a 1Fi(l+al+a+b;—c)
a-+b 1F1 (a;a+ b;—c)

E(X) =

b

and

ala+1) 1Fi(2+a;2+a+ b;—c)
(a+b)(a+b+1) (Fi(asa+b;—c)

Var (X) = - [EX)P,

respectively.  The PDF can be bathtub shaped, unimodal, increasing-decreasing-increasing,
or decreasing-increasing-decreasing. The confluent hypergeometric distribution has application
areas mostly in problems where overdispersion, or clustering arises beyond what the classical
hypergeometric, or binomial models can capture. It has been used in statistical modeling of rare events,
reliability studies, genetics, epidemiology, and ecology, particularly when dealing with sampling
without replacement under conditions that involve unequal selection probabilities, or population
heterogeneity. In reliability and survival analysis, the confluent hypergeometric distribution is useful
for modeling lifetimes with varying failure rates; in genetics and ecology, it captures the distribution
of alleles, or species counts in heterogeneous environments; and in epidemiology, it helps describe
disease incidence where clustering occurs. Its flexibility makes it valuable for situations where classical
discrete distributions fail to adequately represent the data structure.

2.9. Lagrangian beta distribution

A random variable X is said to have the Lagrangian beta distribution if its PDF and CDF are

r—1 k
flx) = kZO - —fﬂk(n —;ﬁ )a(a/x)k(l — qx)"T AR (2.9)

and

r—1
+ Bk nt Bk
F(x) = 1_1;71—1]—1,6%(” k'B )a(a/x)k(l — ax)"HARk

respectively, for 0 < x < 1, where n, r are positive integers, @ > 0 is a scale parameter, and 8 > 0 is
a shape parameter. It is not difficult to see that (2.9) is a linear sum of the standard beta PDFs, which
arise as the inter-arrival distribution in a binomial process and has been studied in detail by Patel and
Khatri [142]. It encompasses some other distributions; for example, if r = 1 and n — oo, then for any
value of 3, (2.9) reduces to the standard exponential with the PDF

fxn,a,B,1) = dexp (—9x),
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where 9 = na. In the same vein, if 8 = 1, (2.9) reduces to

flxnalr) = B(: 7 (ax) (1 —ax)" .
The mean and variance are
r—1
E(X) =12 !
@ &4 (n+ k) (n+pk+1)
and
2 2 S k(n-p) -2 s
Var(X) = —E(X) + ;;) CE IRy ey E(X)]?,

respectively. The Lagrangian beta distribution is useful in reliability engineering (for modeling
component lifetimes and failure probabilities), survival analysis (to represent time-to-event data with
bounded support), and environmental and hydrological studies (such as rainfall proportions, river flow
shares, or pollutant concentration ratios). It is also applied in finance and risk management, where asset
returns, or risk measures are naturally constrained within an interval, and in biostatistics and population
genetics, for modeling proportions or rates like gene frequencies and disease prevalence. Additionally,
its role in Bayesian statistics as a prior distribution for parameters restricted to [0, 1] further broadens
its utility in complex inference problems.

2.10. Binomial-beta mixture distribution
The binomial-beta mixture distribution is found in [157]. Its PDF is

B
n a f_l

10 =2, (Z)Pk(l - p)"—kx7+k_1(1 — %)

B(§+k5)

(2.10)

for 0 < x < 1, where n is a positive integer and @ > 0,5 > 0 are shape parameters. The rth moment
corresponding to (2.10) is

n

Ky _ N\ iy \n—i 2 T
E(X)_;)(i)p(l ?) T(%2 +k+i)T(+i)

for k > 1. The mean and variance are

= + B+ 2k
and
N kg ek @+ 2K)(@+2k+2) 2
respectively.
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2.11. Complementary beta distribution

The complementary beta distribution is in Jones [89]. Its PDF and CDF are specified by

flx) = B(a.f) (2.11)

[ - s

and

F(x) = I'(a.B),

respectively, for 0 < x < 1, where @ > 0 and § > 0 are shape parameters, which are symmetrically
related by

f(x.a.p) = f(1-xp.a).

I;!(a, B) represents the inverse of the incomplete beta function ratio. We note that (2.11) encompasses
some other notable distributions such as the power function distribution when § = 1 with parameter é;

the standard beta distribution when @ = 1 with parameter }3; the uniform distribution whena = 8 = 1.

Also, it is not difficult to see that when @ = 8 = % and @ = B =2, (2.11) reduces to

f(x) = 3 sin(r. x),

and

f(x)

1 arcsin(2x — 1)
imm[ 3 ]

respectively. The mean and variance corresponding to the complementary beta distribution are
E(x) =+,
a—+p

and

2B (20,28 +1)

e B (ad) sFy (a4 B, 1,200+ 1,2(a +8) + 1;1) - [E(X)]?,

Var (X) =

respectively. The PDF is unimodal with mode at x = F~! (ai;l_ 2) ifa < 1,8 < 1and U shaped with

antimode at x = F~' (;%55)if @ > 1,8 >. If @ < 1 and B > 1 the PDF is J shaped, and if a > 1

and b < 1, the PDF is reverse J shaped.

2.12. Triangular distribution

Triangular distribution is regarded as a proxy to the beta distribution in the statistical literature [88].
As the name implies, the PDF is shaped like a triangle. A random variable X is said to have the
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triangular distribution if its PDF and CDF are specified as

M for a<x<c
B-a)(c-a) S
2 _ 2.12
f(x) = s or x=c, (2.12)
2(8-x)
(ﬁ—a/)(,B—c)’ for c<x<p,

and

for a<x<ec,

B-a)(c-a)

F(x) = (B-x)? (2.13)
1- m, for c<X <ﬁ,
1, for pB<uyx,

respectively, where @ > 0, and 8 > 0 are scale parameters. In general, this distribution is governed by
three parameters: The minimum parameter «, the maximum parameter 3, and the peak parameter c.
By changing these parameters, we can obtain a variety of unit triangular distributions. For example,

2.12.1. Casel
Ifa=0,6=1and c=1(2.12) and (2.13) reduces to

f(x) =2x,
F(.X) — x2’ (214)
for 0 < x < 1. For this case, the mean and variance corresponding to (2.14) are
2
EX) = =,
(X) = 3
Var(x) = -
ar = —.
18
2.12.2. Casell
If §;,i = 1,2 are independent uniform random variables, then the absolute difference
X=I51-52l,
has a triangular distribution with @ = 0,8 = 1 and ¢ = 0. The PDF and CDF of X become
f(x) =2-2x,
F(x) = 2x—x°, 2.15)
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for 0 < x < 1. For this case, the mean and variance corresponding to (2.15) are

2.12.3. Case III

If §;,i = 1,2 are independent uniform random variables on [0, 1], then the distribution of the mean

81+ 82

X ;
2

has a triangular distribution witha = 0,8 = 1 and ¢ = % The PDF and CDF of X are

1

4x, 0<x<s3,
flx) = (2.16)
4(1-x), 3<x<1,
and
2%, 0<x<3,
F(x) =
267 - (2x-1)%, t<x<l,

respectively. For this case, the mean and variance corresponding to (2.16) are

1
1
Var(X) = ﬂ

The triangular distribution is widely applied in situations where data is limited but reasonable
estimates of minimum, maximum, and most likely values are available. It is commonly used in project
management (for example, PERT and Monte Carlo simulations) for modeling uncertain activity times
and costs, in risk analysis for estimating outcomes with sparse data, and in inventory and demand
forecasting when only rough estimates of ranges and a likely demand point are known. Additionally, it
is applied in reliability engineering, quality control, and decision analysis, where it provides a simple
yet flexible way to approximate probability distributions when empirical data is scarce, or incomplete.

2.13. The uniform distribution

If @ < 8, arandom variable X is said to follow a continuous uniform distribution on the bound (a, ﬁ)
if and only if the PDF of X is
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and the corresponding CDF is

X—a

B-a’

for 0 < x < 1, where B > « are scale parameters. The first moment, kth moment, and the variance of
the general form of the uniform distribution are

F(x) =

,82—02

PO = 25—y

and

Var(X) = %,

respectively, where @ and 8 are the parameters. If @ = 0 and § = 1 the associated unit version of
the model arises. This is also called the standard uniform distribution, i.e., X ~ u[O, 1]. An intriguing
property of the standard uniform distribution is that 1 —u = v has a standard uniform distribution
if u does. Among others, this characteristic can be used to create antithetic variates. This property
is known as the inversion approach, which enables the generation of random numbers for any other
continuous distribution using the continuous standard uniform distribution. Due to the simplicity of the
functional form of the standard uniform distribution, it is easy to determine and compute the associated
probabilities. As a result, this distribution has many applications and connections to other prominent
distributions. For example,

¢ if X~ U(0,1), thenY = X"~ B(:,1) = U(0,1) e Bla=1,8=1),

o if X ~ U(0,1), then Y = —log(X) ~ exp(1), or in general ¥ = —1~!log(X) ~ exp(1) with rate
parameter A,

e if X~ U(0,1), then Y = —2log(X) ~)(% with 2 degrees of freedom,

e if X;,i = 1,---,n are independent samples from n different U (0, 1) populations, then

n
P, = Z ~21log (X:) ~ X3,

and is called the Pearson statistic in statistical inference.

The uniform distribution is widely applied in situations where all outcomes within a certain range
are equally likely, making it useful for modeling randomness in bounded intervals. In simulation
and Monte Carlo methods, it is often used to generate random numbers as a basis for more complex
probability distributions. In quality control and reliability testing, it helps model measurement errors,
or uncertainty when no outcome is favored over another within specified limits. It is also applied in
computer science for randomized algorithms, gaming, and cryptography where fair selection within
a range is required. Additionally, in operations research and decision-making, it is used to model
uncertain but bounded parameters such as demand, lead times, or project durations when only the
range of possible values is known but no further information is available.
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2.14. The standard two-sided power distribution

Van Dorp and Kotz [181] proposed an extension of the triangular distribution popularly known as
the standard two sided power (STSP) distribution. Its PDF and CDF are

n—1

n(f) , 0<x<0,

0
flx) = 2.17)

l_xn—l

n , 6<x<1,
1-6

and
xn
0(—) , 0<x<0,
0

1—(1—9)(1_x)n, g<x<l
1-6 -

respectively, where 0 < 6 < 1 is a cutoff point and n > 0 is a shape parameter. We note that n does
not need be an integer. It is important to highlight that the standard two sided power reduces to the
uniform [0, 1] when n = 1 and simplifies to the triangular distribution on the interval [0, 1] for n = 2.
Also, if 8 = 1, then (2.17) reduces to the power function distribution. Furthermore, the kK moment of a
standard two sided power distribution is

ngk-‘rl k [k n .
E(X*) = —1) 1-6)*1,
() =2+ 2 o
for k > 1. The mean and variance are
(n— 1)0+1
EX)=—S7—

and
n-2(n-1)6(1-40)
(n4+2)(n+1)32

respectively. It is evident that the mean is a weighted average of the lower bound O and the upper
bound 1 with the location parameter 8, where 7 is a single factor acting in the weights determination.
In reference [181], Figures 1-3 showed that the PDF can be uniform, triangular, U shaped, positively
skewed, negatively skewed, or J shaped. The two-sided power distribution is particularly useful in
applications where data exhibit asymmetry, bounded support, and varying tail behaviors that cannot
be well captured by standard symmetric distributions. Its major application areas include reliability
engineering and risk analysis, where failure times, or risk measures often show skewness; finance
and insurance, for modeling asset returns and claim sizes that are bounded yet skewed; environmental
and hydrological studies, where variables such as rainfall, wind speeds, or pollutant concentrations
display asymmetric bounded distributions; and project management/PERT analysis, as it generalizes
the triangular and uniform distributions to better represent expert—elicited uncertain activity times.
Overall, this distribution is applied wherever flexible modeling of bounded, skewed, and heavy/light-
tailed data is required.

Var(X) =

b

AIMS Mathematics Volume 10, Issue 11, 25939-26057.



25956

2.15. Uneven two-sided power distribution

For an uneven two-sided power random variable [107], the PDF and CDF are specified by

n1—1
p%(g) , 0<x<9@,
f(x) = - (2.18)
1-p m (1-x , 0<x<1,
1-6\1-6
and
0, x<0,
ny
p(g) , 0<x<@,
F(x) = et
1—(1—p)(1 9) , 6<x<1,
1, x>1,

for n; > 0,n3 > 0 shape parameters, and 0 < # < 1 a cutoff point, where p is a mixing probability
defined by

abnj _ Bans
abns + (1 —9)1/11 n 9(an3 —I’ll) —i—l’ll.

Equation (2.18) reduces to (2.17) for @« = 1. In addition, the kth moment of (2.18) is given by

nzi(ﬁ)(—l)i%

b

n10k
E(x*)=p +(1-p)

n+k i=0
for k > 1. In particular, the mean and variance are
nio n3f+1
E = 1- ,
(X) n1+1+( p)n3+1
and
ny (ng+1)6° 2421360 +n3 (n3+1) 6% 2
Var (X) = p +(1-p) - [E(X)]",

(n1+2) (m1+1) (n3+2) (n3+1)

respectively. This distribution has been used to model monthly USA Certificate Deposit rates.

2.16. A new generalized beta distribution

A five parameter beta distribution in [143] has the PDF

f(x) = Cx® 11 = x)P (1 = ox) ™ exp(—nx), (2.19)
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for0 < x < 1,a>0,8>0,-0c0 < p < oo shape parameters, and 0 < o < 1,—c0 < 5 < oo scale
parameters, where

c ! = B(a,p)¥1(a,p,a + B;0,-n).

The corresponding CDF is
- teto| (@) (1=8):(p); —
F(x) = Cx"F ;' [(a 1) ; ’7;x, ox,-nx |,
where F 115(1)?(1)}8[~ . ] denotes the generalized Lauricella function, see (Srivastava and Manocha [171,

p. 65]). The kth moment of (2.19) is
E(Xk) =CB(a+rp)Y¥ (a+r,p,r+a+p,0,-n),

for k > 1. The generalization given by (2.19) encompasses several other distributions. For example,
e if n =0, (2.19) reduces to
f(x) = Ca™H (1 =271 (1 = ox) P exp(—nx),
forO < x<1,a>0,>0,-00 < p < oo shape parameters, and 0 < o < 1 a scale parameter,

where C~! = B(a,p) 2F (a,p;a + B o).
e If p=0,0r o= 0(2.19) reduces to

flx) = sza_l(l — x)ﬁ_l exp(-nx),
for0 < x < 1, @« > 0,8 > 0 shape parameters, and —co < 1 < oo a scale parameter, where

Cgl = B(a,B) 1F1 (a;a+ B;—n).
o If B =1(2.19) becomes

F(x) = 3227 (1 - ) exp(-np),
for0 < x < 1, @ > 0,—0 < p < oo shape parameters, and 0 < o < 1,—00 < < oo scale
parameters, where C3‘1 = é Y (a,p,a+ 1;0,-7).
o If3=1andn =0, (2.19) becomes
f(x) = Cax® (1 = ox) 77,

forO < x < 1,a > 0,-00 < p < oo shape parameters, and 0 < o < 1 a scale parameter, where
CZI = c]_yZFl (a,p;a + 1;0).

2.17. Power function distribution

The standard power function distribution has its PDF and CDF specified by
flx) = pad,
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and

respectively, for 0 < x < 1, where > 0 is the shape parameter. The power function distribution
has been widely employed to model different data sets arising from real life scenarios, such as income
distribution data, lifetime data, and failure processes. Given the simplicity of this model, it has also
been generalized in many ways (see [22,109] and references therein). The reliability (survival) function
and the hazard rate function are

B!

R(x) =1-x and h(x)zl_xﬁ.

The kth moment of the standard power function distribution is given by

B
E(X*) = :
( ) B+k
for k > 1. Consequently,
B
E(X)=—,
() p+1
and
Var(X) A

T Br2)B+ 12

It is important to mention that there are other versions of the power function distribution in the
literature. For example,

(1-v)?

for 0 < x < 1and 0 < v < 1. The mean of this version is v, and the corresponding variance is - 5=

This version of the power function distribution is a special case of the beta distribution for @ = 1= and
1

B=11Ifyv= % the uniform case arises, and the PDF decreases if 0 < v < 5, 0r increases if % <y<l.
The researchers in [176] give other versions of the power function distributions. The power function
distribution is mostly applied in fields where data exhibit heavy-tailed, or scale-invariant behavior,
making it useful for modeling phenomena where large values occur with non-negligible probability. In
economics and finance, it is employed to model wealth distributions, income levels, and stock market
fluctuations, while in reliability engineering and survival analysis, it is used to describe lifetimes of
components and failure rates under certain stress-strength models. It also applied in hydrology and
environmental sciences for modeling extreme events such as flood peaks, or pollutant concentrations,
and in physics, biology, and social sciences for systems that follow scaling laws, such as population
sizes, word frequencies, and city growth. Its flexibility in representing skewed distributions makes it
valuable for risk assessment, resource allocation, and decision-making under uncertainty.
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2.18. Unit Gompertz distribution

Suppose Y is a Gompertz random variable with scale parameters @ and 8. Let X = exp(-Y). The
researchers in [126] showed that the PDF of X is

£(x) = apxFV exp|-a (x P - 1)), (2.20)
for 0 < x < 1, where @ > 0 and 8 > 0 are scale and shape parameters, respectively. The corresponding
CDF is given by

F(x) =exp [—a (x_ﬁ - 1)] :
The kth moment of (2.20) is

E(x*) = b exp(a)T (1 - ga)

k

where the moments exists only when 7

< 1. In particular, the mean and variance are

E(X) = o exp(a)T(l - é,a/),

and
Var(X) = of exp (2«) F(l —g,a/) - [E(X)),

respectively. Figure 1 in [126] showed that the PDF can be increasing, unimodal, reversed J-shaped,
or positively right skewed. This distribution has been applied to model maximum flood level for
Susquehanna River in Pennsylvania and measurements of tensile strength of polyester fibers.

2.19. The unit folded normal distribution

Suppose Y is a normal random variable with mean u and standard deviation 0. Let X = |tanh(Y ) |
The researchers in [104] showed that X has the PDF

1 arctanhx + u arctanhx — u
5 + ol ——||>
o(1-x?) o

for 0 < x < 1, —oo < u < oo a location parameter, and o > 0 a scale parameter. The corresponding
CDF is

flx) =

F(x) = cp(

where arctanhx represents the inverse function of tanhx. The kth moment is

arctanhx + ;1) P (arctanhx - ,u) 1

g (o

k oo .
—k\(—i :
E(XF) = ()( )—Z’ex 20+ Du|M_u (2(i+1)o) +exp |2lu| Mx (=2lo)},
(x*) ;ZO )2 {exp [226 4+ D ML (=2(i + D)) + exp 2] M (~21er) |
for k > 1, where M,(t) = E [exp(tU)I{U > a}] ,t,a € R is the truncated moment generating function.
In reference [104], Figure 1 showed that the PDF possesses a large panel of forms, including increasing,
decreasing, bell reversed bathtub, and almost constant shapes. This distribution has been applied to
model Better Life Indices data and educational attainment data.
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2.20. Unit modified Burr 11l distribution

Suppose Y is a modified Burr III random variable with shape parameters «, 8, and scale parameter
v[14]. Let X = —X_ The researchers in [77] showed that X has the PDF

1+Y
1-xV !
14y ,
X

for 0 < x < 1, where @ > 0, and 8 > 0 are shape parameters, and y > 0 is a scale parameter. The
corresponding CDF is

F(x) = [1 +y(rxx)_ﬁ].

The associated kth moment is
o0 ) ) g + o
B(0) =ap Y -0 (7 | B =g+ g0+ 1),
i=0

In particular, the mean and variance are

£ =ap ) (-0 Jp(-pli 86 1).
i=0

and

@

Var () = a8 Y- (-1 ) (7 1 |B2-pli+ 180+ 1) - OO
i=0

respectively. In reference [77], Figure 1 showed that the PDF has many different shapes such as
bathtub shape, left-skewed (negative skewness), right-skewed (positive skewness). This distribution
has been applied to model core samples from petroleum reservoirs and times to infection of kidney
dialysis patients.

2.21. Unit log-logistic distribution

Suppose Y is a log-logistic random variable with shape parameter ¢, and scale parameter a. Let
X = exp(-Y). The researchers in [153] showed that the PDF and CDF of X are
-2

ﬂ@:i+me++t3%¥],

xa?

and
-1

szp+«a%wl,

respectively, for 0 < x < 1, where @ > 0 is a scale parameter, and ¢ > 0 is a shape parameter. In
reference [153], Figure 1 showed that the PDF can be monotonically decreasing, unimodal, or bimodal.
This distribution has been applied to model proportions of income that is spent on food.
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2.22. Unit Weibull distribution

Suppose Y is a Weibull random variable with scale parameter @, and shape parameter 5. Let X =
exp(—Y). The researchers in [127] showed that the PDF and CDF of X are

F(x) = <o (~log 1) exp -a(~log x)],
and
F(x) =exp [—a(— log x)ﬂ] ,

respectively, for 0 < x < 1, where @ > 0 is a scale parameter, and § > 0 is a shape parameter.
The particular case for @« = S = 1 is the standard uniform distribution, U (0, 1). The particular case
for § = 1 is the power function distribution. The particular case for § = 2 is the unit Rayleigh
distribution. The kth moment of X is

E(x¥) = iﬂr(gJﬂ).

=0 nlah
When 8 = 1, the kth moment is
(04
E(X")= —.
( ) k+a
The mean and variance in this case are
o
E(X) =
( ) 1+ a
and
Var (X) = s—— - [E(X)]?
ar = — ,
2+

respectively. In reference [127], Figure 1 showed that the PDF can be monotonically increasing,
monotonically decreasing, bathtub shaped, or unimodal. In reference [127], Figure 3 showed that
skewness can be negative for 8 # 1. This distribution has been applied to model maximum flood levels
for Susquehanna River in Pennsylvania and core samples from petroleum reservoirs.

2.23. Unit Birnbaum-Saunders distribution

Let Y be a Birnbaum-Saunders random variable, then by considering the transformation X =
exp(—Y), the unit Birnbaum-Saunders distribution in [125] with the PDF is given by

o BN B | (logx B
f(x)—zmﬂm[( logx) —I—( logx) ]exp[zaz( 5 +10gx+2)]’

for 0 < x < 1, where a > 0 is a scale parameter, and 8 > 0 is a shape parameter. The corresponding

CDF is given by
1 1
1/ 1 2 2
Fx) = 1-@| - (-08x) _(L_E_)]
o B log x
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for O < x < 1. The associated kth moment of X is

E(x) = 2ka?B + \2ka?B+ 1+ 1 exp (_ V2ka?B+ 1 - 1)

4ka®B + 1 a?

for k > 1. In particular, the mean and variance are

2 _
E(X) = 2028+ 2028+ 1+1 exp[_ 2228+ 1 1],

426+ 1 a?

and

2 _
Var (X) = 4028+ \4a?B+ 1+ 1 exp[_ Va2 + 1 1]_ EP,

8aB + 1 a?

respectively. In reference [125], Figure 1 reveals that the PDF can be decreasing, or unimodal and,
then bathtub shaped. This distribution has been applied to model monthly water capacity data from the
Shasta reservoir in California, USA and total milk production in the first cow births.

2.24. Log-shifted Gompertz distribution

Let Y be a random variable having a shifted Gompertz (SG) distribution with scale parameter «,
and shape parameter 8 > 0. By considering the transformation X = exp(-Y), Jodré [86] obtained the
log-shifted Gompertz (LSG) distribution with the PDF given by

Fx) =B[1+a(1- )| ¥ exp(-arf), (2.21)

for 0 < x < 1, where @ > 0 is a scale parameter, and S > 0 is a shape parameter. The associated CDF
is given by

F(x)=1- (1 —xﬁ)exp(—axﬂ).

It is not difficult to see that Eq (2.21) reduces to the standard power function distribution for @ = 0,
B > 0 and the uniform distribution for @ = 0, 8 = 1. The kth moment of X is

E(X) = exp(-a) + o~ (F*1) (a - g)y(g + l,a/).

In particular, the mean and variance are

E (X) = exp(—a) +a~ (1) (a - é)y(é 1, a/),

and

B

respectively. Jodra [86, Figure 1] showed that the PDF can be monotonically increasing, monotonically
decreasing, or unimodal. This distribution has been applied to model annual percentage of
antimicrobial resistant isolates in Portugal and percentages of French speakers in 88 countries.

Var (X) = exp(-a) + o~ (1) (a - é)y(% +1, a) - [EX)),
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2.25. Ur Rehman et al.’s unit Fréchet log-logistic distribution

The unit Fréchet log-logistic distribution is a special case of Fréchet log-logistic distribution as
found in [179]. The Fréchet log-logistic distribution has its PDF and CDF specified by

=2 (2o {-pre(2)] )

and

F(x) = 1—exp {— [ﬁlog(c—;)]_g},

respectively, for 0 < x < @, where § > 0 is a scale parameter, and 6§ > 0 is a shape parameter.
For @ = 1, the unit Fréchet log-logistic distribution arises with the PDF given by

o o
The corresponding CDF
F(x) = 1—exp {— [/3 1og(§)]_g}.

£()= 3 (1)

The associated kth moment is

In particular, the mean and variance are

and

(-2

) r(i- é)- E(X)],

Var (X) =

00
i=0

respectively. In reference [179], Figures 1 and 2 showed that the PDF can take symmetrical, right
skewed, left skewed, L shape, or U shape curves. In reference [179], Figure 4 showed that the
distribution can be negatively skewed, positively skewed, or symmetric. Furthermore, the distribution
can be leptokurtic, mesokurtic, or platykurtic. This distribution has been applied to model lengths of
power failures and death times of patients with cancer of the tongue.
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2.26. Unit Gumbel distribution

1
Suppose Y is a standard Gumbel random variable. Let X = [1 + exp(—Y)] @. Arslan [24] showed
that X has the PDF

F(x) = ax @D exp [ (@ = 1)],
for 0 < x < 1, where @ > 0 is a shape parameter. The corresponding CDF is
F(x) =exp[-(x*-1)].
The kth moment of the unit Gumbel distribution is given by
E(x") = exp(1)Ex (1).
In particular, the mean and variance are

E(X) = exp(1)E. (1),

1
a

and

2
m]
respectively. Arslan [24, Figure 1] showed that the PDF can take unimodal shapes. Arslan [24, Table 1
and Figure 2] also showed that the distribution is skewed to the right if @ < 1.0295, skewed to the left

if @ > 1.0295, and symmetric if @« = 1.0295. This distribution has been applied to model Better Life
Indices data and educational attainment data.

Var (X) = exp(1)Ex (1) - exp(2) [E

1
a

2.27. The log-Bilal distribution

Suppose Y is a Bilal random variable with scale parameter 6 [6]. Let X = exp(—Y). The researchers
in [17] showed that X has the PDF

1

6

flx) = Ex%_l (1 —xﬁ),

for 0 < x < 1, where 8 > 0 is a scale parameter. The corresponding CDF is
F(x) = 3y7 - 2y7.
The kth moment of X is
6
E(X") = :
(x') (k6 + 2) (k60 + 3)

In particular, the mean and variance are

6
0+2)(6+3)

E(X) =

and
6 36
Var (X) = - )
(X) (20+2)(204+3) (0+2)%(0+3)2
respectively. In reference [17], Figure 1 showed that the PDF can be right skewed, left skewed, or
nearly symmetric. This distribution has been applied to model Better Life Indices data and educational
attainment data.
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2.28. Unit half-logistic geometric distribution

The researchers in [151] proposed a unit half-logistic geometric distribution by using the
transformation X = exp(—Y) on the half logistic-geometric distribution. The unit distribution arising
from this has the PDF

2B
2 9
B+ (2-8)x)
for 0 < x < 1, where 8 > 0 is a scale parameter. The corresponding CDF is

Lo Bl-x)
B+ (2-B)x

f(x) =

F(x) =
The kth moment of X is

n_ 2 : B-2
E(X)_ . 2F1(2,k+1,k+2, : )

-2
E(X) = —1F) (2,2;3;%),

and

2 p-2 2
Var (X) - @ 2F] (2,3,4, T) - [E(X)] .
respectively. In reference [151], Theorem 1 showed that the PDF is a decreasing function if 0 < 8 < 2,
an increasing function if § > 2, and a constant if S = 2. In reference [151], Figure 5 showed that the
mean is always increasing for 8 but the variance is increasing if 0 < 8 < 2 and decreasing otherwise.
In reference [151], Figure 6 showed that skewness is positive if 0 < 8 < 2 and negative otherwise, and
the kurtosis is positive if 0 < 0.1 and negative otherwise. This distribution has been applied to the
model cost of a firm’s cost management effectiveness.

2.29. The logit slash distribution

Suppose Y is a slash random variable with shape parameter a, scale parameter b, and location

parameter c. Let X = li);i(p}&). Korkmaz [98] showed that X has the PDF

B a 1 ; log 1% - ¢
109 i Jy ol

for 0 < x < 1, where a > 0 is a shape parameter, b > 0 is a scale parameter, and —co < ¢ < oo is a
location parameter. The corresponding CDF is

1 log 2 —¢
F(x) =a f ta-lcp(tgl;x)dt.
0 b
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The kth raw moment of X is

1 [ oo ol B

In particular, the mean and variance are

\/C;—ﬂfol ”‘II: [Jrexp(—c—bTW)]_exp(—W;)dwdz,
\/_f - 1f [+exp(—c—b—w)] exp(—%z)dwdt—[E(X)]z,

respectively. Korkmaz [98, Figure 1] showed that the PDF can be U shaped, bimodal shaped, unimodal
shaped, N shaped, decreasing, or increasing. Korkmaz [98, Figure 5] also showed the following.
For ¢ = 0, skewness is equal to zero. When a increases, the positive (respectively, negative) skewness
is seen for negative (respectively, positive) c. Skewness decreases for fixed a and b, when ¢ increases.
The negative (respectively, positive) skewness decreases for fixed ¢ > 0 (respectively, ¢ < 0) and b,
while a increases. When ¢ < 0, kurtosis decreases. Otherwise, kurtosis increases. When a increases,
kurtosis decreases for fixed ¢. When b increases, skewness first decreases, then increases for fixed a
and ¢. When a increases, skewness first increases, then decreases for fixed b and ¢. When b increases,
kurtosis first increases, then decreases for fixed a and c. When a increases, kurtosis first decreases,
then increases for fixed b and c. This distribution has been applied to model Better Life Indices data.

E(X) =

and

Var

2.30. A new one parameter distribution [36]

Suppose Y is a Lindley random variable and Z is a gamma random variable with shape parameter 8
independent of Y. Let X denote the limitof Y | 1 -6 < Y+ Z < 14 6 as ¢ approaches zero. The
researchers in [36] showed that X has the PDF

B(1+B)
2+p
for 0 < x < 1, where 8 > 0 is a shape parameter. The corresponding CDF

(1-x)P(2+8+ x8)
2+ ’

f(x) = (1+x)(1-x),

F(x)=1-

The kth moment is given by

B(xt) - (B+2k+2)T(k+1)T(B+2)  B+2k+2
- (B+2)T(B+k+2) (Bt 2) P

In particular, the mean and variance are

E(x) = BT4

(B+2)%
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and
_B+6
B+2)"})

respectively. In reference [36], Figure 6 showed that the PDF can be monotonically increasing,
monotonically decreasing, or unimodal. In reference [36], Figure 11 showed that the distribution is
skewed toward the left for small 8 and to the right for moderate to larger values of 8. In reference [36],
Figure 11 showed that the distribution is platykurtic for moderate 8 and highly peaked for other values.
This distribution has been applied to the model ratio of the actual electricity output to the maximum
possible output and proportions of damaged tissues in a patient’s blood.

- [EX)).

Var (X) =

2.31. Unit Lindley distribution [93]

Let Y denote a Lindley random variable. The researchers in [93] proposed a new unit Lindley
distribution following the transformation X = tanh(Y). Its PDF and CDF are

BZ
B+1)(1-x2)

flx) = [1 4 arctanh(x)] exp [-Barctanh(x)],

and
B Barctanh(x)
F(x) — 1 — [1 + W

respectively, for 0 < x < 1, where 8 > 0 is a scale parameter. An alternative form of the CDF can be
obtained by applying the logarithmic expression of arctanh(x) as

] exp [Barctanh(x)],

Fo=1-[1 55 l°g(1:f)](113)§’

where 0 < x < 1 and 8 > 0. The kth moment is

E(X) _1+ﬁZZ()( ) A z)]?'

B+2(i+

In particular, the mean and variance are

B oo (i), sl B2+
E() = 1+ﬁ22(1)( & B+2(i+ D)

and

Var =

( )( ) 1[;6:(2( 1)]1) - [ECOF,

respectively. In reference [93], Figure 2 showed that the PDF is increasing if 0 < g <, U shaped
if 1 <8 <2.207, inverse N shaped if 2.207 < 8 < 2.264, and decreasing if 8 > 2.264. This distribution
has been applied to model Better Life Indices data.

+’8 =0 /=0
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2.32. A new lifetime model with a bounded support

Muhammad [131] proposed a new lifetime probability distribution. The general form of exponential
functions provides the basis for their new distribution. Its PDF and CDF are

£(x) = Blog2x*  exp (¥ log2). (2.22)
and
F(x) = exp (xﬁ log 2) -1,

respectively, for 0 < x < 1, where 8 > 0 is a shape parameter. The PDF given by (2.22) can be shown
as a series of the type

f(X) ZIBZ(i!)_](log 2)i+1x3(i+1)_1
i=0
The kth moment is
A o (log2)!
E(X ) —ﬁ; I

However, if 8,k € IN and a = /3+/§—1 € N, then

k )l —a+1
X _ZZ log2 ya—i=ljt

Muhammad [131, Figure 1] showed that the PDF can be increasing, or bathtub shaped.
Muhammad [131, Figure 3] also demonstrated that the skewness decreases as 8 increases while the
kurtosis is decreasing, then increasing (bathtub) as S increases. This distribution has been applied to
model anxiety performance data.

2.33. A new trigonometric distribution with bounded support [1]

The researchers in [1] proposed a trigonometric distribution. The proposed distribution is generated

following the transformation X = arcsin (%Y ), where the random variable Y is said to follow a
truncated exponential distribution (0, 1) with the PDF

hy) = BERAY)

1 —exp(-B)’

for 0 <y < 1. Then, the PDF and CDF of the new trigonometric distribution are

i (T (F)

= cos|— |exp|—-Bsin|—=]|,
f(x) 2[1—exp(-B)] 2 )P i 2

and

PO = g {1 e [psin()])
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respectively, for O < x < 1, where 5 > 0 is a scale parameter. The kth moment is

2k - 1 . :
E(X) = Zgak,i[m [T(k+2i+1)-T(k+2i+1,8)],
i=0

o [1 —exp(-B)] &

where, for any fixed r, ¢, = b}, and

Prk = (kbo)_l n(r + 1) - k] bn(ﬁr,k—w

S
M-
i
2t

The mean and variance of X are

E(X) = l—exp—,B Zwl,ﬁzlﬂ (2i+2) -T(2i +2.8)].

and

_ 4 oy i —T(2i - 2
Var (8) = e 2 b 1+ 3)~T 2+ 3.8 - [E(OF

respectively. In reference [1], Figure 1 showed that the PDF can be monotonically decreasing. This
distribution has been applied to model firms’ risk management cost-effectiveness, defined as the total
property and casualty premiums and uninsured losses as a percentage of the total asset.

2.34. Unit Johnson SU distribution Giindiiz and Korkmaz [73]

A random variable X is said to have the unbounded Johnson distribution system if its PDF is

o o
fy) = ——¢ (,u + osinh 1(y)),

V1+)2
for —co < pu < o0, ¢ > 0 and sinh™!(w) = log(w + V1 +w?),w € R denotes the inverse of the

hyperbolic sine function. Thus, following the transformation X = 1iXI>)<(p () ok Giindiiz and Korkmaz [73]

proposed a new unit distribution with the PDF and CDF

flx) =

x(1-x) \/1 + [log (lix)]

2(;5(;1 + osinh™! (log I al )),
- X

and

F(x) = CID(,u + osinh™! (log 7 al )),
- X

respectively, for 0 < x < 1, where o > 0 is a scale parameter, and —co < y < oo is a location parameter.
The kth moment is given by

E(x¥) = 1 Zk; ()foo{l+exp[sinh(Z?T'u)]}_iexp(—%z)dz.
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In particular, the mean and variance are

S ol S

E (X) —1——f 1 4 exp

and

Var<x>=1+Li<—1>f2. {1t expsinh (2| exp -5 )z~ (ECOF
\/ﬂ il ) o 2

respectively. Giindiiz and Korkmaz [73, Figure 1] showed that the PDF can be W shaped, U shaped,
unimodal shaped, N shaped, inverse N shaped, decreasing, or increasing. Giindiiz and Korkmaz [73,
Figure 3] showed that the distribution can be left skewed, right skewed, and symmetrical. For u = 0,
the skewness of distribution is equal to zero. For fixed i, when o increases, the skewness goes to zero,
and the kurtosis goes to 3. This distribution has been applied to model burr measurements on iron
sheets and recovery rates of COVID-19 in Turkey.

2.35. Chesneau’s unit power-log distribution

Chesneau’s [42] unit power-log distribution is specified by the PDF and CDF

1 ¥ -1

flx) = log(1+ ) log(x)’

and

F(x) = {Bi [(1+B)log(x)] —Li(x)},

1
log(1 + )

respectively, for 0 < x < 1, where § > 0 is a shape parameter. The kth moment of the unit power-log
distribution is given by

1
E(xt) = m1og(1 n lLik)
In particular, the mean and variance are
EX) = it tog (1+5).
and
Var(X) = ———log (1 + é) __ [log (1 + /—3)]2 ,
log(1+p) 3/ (log(1+p8))? 2

respectively.
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2.36. Log-extended exponential-geometric distribution

Following the transformation (X = exp(—Y)) of the extended exponential-geometric distribution
in [10], Jodra and Jiménez-Gamero [87] proposed a log-extended exponential-geometric distribution.

The PDF of the proposed distribution is
a(l +B)x*!
f(x) = ————,
(1+pBx2)

for 0 < x < 1, where @ > 0O is a shape parameter, and S > —1 is a scale parameter. The corresponding
CDF is given by
1 (04
F(x) = a+p) .
1+ pBx@

The kth moment is

The mean and variance are

and

respectively. Convergence of the Lerch transcendent function is achieved for any real number v > 0,
provided z and A are any complex numbers with either |71 < 1, or |z77 = 1 and 4 > 1.
Jodra and Jiménez-Gamero [87, Figure 1] showed that the PDF can be monotonically increasing,
monotonically decreasing, or unimodal. This distribution has been applied to model cost effectiveness
to management’s philosophy of controlling a company’s exposure to various property and casualty
losses after adjusting for company effects such as size and industry type.

2.37. Log-Lindley distribution

Suppose Y is a Lindley random variable. Let X = exp(—Y). The researchers in [68] showed that X
has the PDF

2

1+ a0

f(x) (1-1log x)x(’_l,

for 0 < x < 1, where A4 > 0 is a scale parameter, and o > 0 is a shape parameter. The corresponding
CDF is

x7 [1 4+ o0(2-1logx)]
1+ Ao '

F(x) =
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The kth moment is
1+2 k
E(xt) = o 1+a(oc+k
1+ (oc+k)?

Specifically, the mean and variance are

E(X) o 1+A(1+40)

T 1t (1+0)?

b

and

Var(X) =

1+ Ao 2+0)? (I +o)

respectively. In reference [68], Figure 1 showed that the PDF is U shaped for o < 1. Also, the larger
is the value of A, the thicker is the tail of the PDF. This distribution has been applied to model cost
effectiveness to management’s philosophy of controlling a company’s exposure to various property and
casualty losses, after adjusting for company effects such as size and industry type.

( o )2{(1+/10')[1—|—/l(2+0')] 0'2[1—1—/1(1—1—0')]2}

2.38. A new three-parameter distribution with bounded domain

Muhammad [132] proposed a new three parameter distribution with bounded support through some
algebraic manipulation of the inverse of the exponential-Pareto distribution. The PDF and CDF of the
proposed three parameter distribution with bounded support are

f(x) = afﬁx_l [1 —,810g (x)]—(a'Jrl) ’
and
F(x) = [1-Blog (x)] ™,

respectively, for 0 < x < 1, where 8 > 0 is a scale parameter, and @ > 0 is a shape parameter. The kthe

moment is
o+l
X k\ 2 k k
E(X):a— expl—=|W_et1 _o|=]-
B 2B 72 \B

In particular, the mean and variance are
E (X) = —1 i P —1 W + —1
€X a a ’
ﬁ Zﬁ _Tl’_7 ﬁ

a+1
2 1 2

var(x) = (3] " ew(g) ez s ) 00T,

respectively. Muhammad [132, Figure 1] showed that the PDF can be monotonically increasing,
monotonically decreasing, or bathtub shaped. Muhammad [132, Figure 3] showed that skewness
decreases as a and S increase, while the kurtosis decreases, then increases as 8 and « increase. This
distribution has been applied to model lifetimes of devices and quarterly capital expenditures and
appropriations for USA manufacturing firms.

and
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2.39. Korkmaz and Chesneau’s unit Burr XII distribution

Suppose Y is a Burr XII random variable with shape parameters a, 8. Let X = exp(—Y). Korkmaz
and Chesneau [102] showed that X has the PDF

—a—1

£(x) = apa (~log )l 1+ (~log )| "

for 0 < x < 1, where @ > 0 and 8 > 0 are shape parameters. The corresponding CDF is
F(x) = [1 + (—logx)ﬁ]_a.

Korkmaz and Chesneau [102, Figure 1] showed that the PDF can be U shaped, increasing, decreasing,
inverse N shaped, or unimodal. This distribution has been applied to model recovery rate of CD34+
cells after peripheral blood stem cell transplants.

2.40. Unit Burr XII distribution [152]

The researchers in [152] proposed another unit Burr XII distribution by reparameterizing of the
quantile function associated with Korkmaz and Chesneau [102]’s unit Burr XII distribution. Its PDF
and CDF are

log v 1

—c -1 ,-1
log7™“log"™ x (1 + loge x!)alimes )

xlog (1 +log€q1)

f(x) =

and

logt

F(x) — (1 + lOgC x—l)log(lﬂogcq_l) ,
respectively, for 0 < x < 1, where ¢ > 0 is a shape parameter, 0 < 7 < 1 is a scale parameter, g =

Ox(7), Ox(1) = exp [— (7_5 - l)z], and d is one of the shape parameters of Gy(y; ¢, d), as defined

in [152]. In reference [152], Figure 1 showed that the PDF can be decreasing, increasing, reverse J
shaped, U shaped, reverse tilde shaped (decreasing, increasing, and, then decreasing), non skewed,
or skewed left. This distribution has been applied to model dropout rates in Brazilian undergraduate
courses.

2.41. A new distribution based on the arccosine function [46]

A new unit distribution based on the arccosine function in [46] has its PDF and CDF specified by
f(x) = ax* arccos (x?),
and
F(x) = x"arccos (x*) + 1 — V1 — x%¢,
respectively, for O < x < 1, where @ > 0 is a shape parameter. The kth moment is
a? /nl (% + 1)
E (Xk) - 2 k 1)’
(@+4)°T (L +1)
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for k > 1. In particular, the mean and variance are

a? \/Er(ﬁ + 1)

EX) = (@+ 120 (L + 1)

and

VAT (g +1) >
Var(X) = n 1)2r(é n %) - [E(X)]",

respectively. In reference [46], Figure 1 showed that the PDF can be decreasing, or left skewed. In
reference [46], Table 1 showed that, when a > 1, the variance decreases as « increases, and when a <
1, the variance increases as « increases. This distribution has been applied to model times to infection
of kidney dialysis patients in months and failure times of an air conditioning system of an airplane.

2.42. Unit Chen distribution [101]

Suppose Y is a Chen random variable. The researchers in [101] employed the inverted
transformation X = exp(—Y) to propose a unit Chen distribution. Its PDF and CDF are

,

flx) = 7[3 (—log x)P ! exp [(—log x)ﬁ] exp [a{l —exp [(—log x)ﬁ]}],
and

F(x) =exp [a{l — exp [(—logx)ﬁ]}] ,

respectively, for 0 < x < 1, where @ > 0 is a scale parameter, and S > 0 is a shape parameter. The kth

moment of X is
! log £\|7
E(Xk) = f exp {—k [log(l - £)] }dt.
0 a

In particular, the mean and variance are

E(X) = fol exp {— [log(l - %)F}m,
Var (X) = fol exp {—2 [log(l - %)F}m_ EXOR.

respectively. In reference Korkmaz et al. 2022, Figure 1 showed that the PDF can be U shaped,
unimodal, or right skewed. In reference [101], Figure 2 showed that the mean increases as a increases
regardless of 8, while for @« < 0.4, the mean increases with g, but for @ > 0.4, the mean decreases
with 5. This distribution has been applied to model failure times of mechanical components and
recovery rate of CD34+ cells after peripheral blood stem cell transplants.

and

AIMS Mathematics Volume 10, Issue 11, 25939-26057.



25975

2.43. One parameter unit Lindley distribution [124]

The researchers in [124] proposed a one parameter unit Lindley distribution using the
transformation X = 1+ +Y, where Y follows a one parameter Lindley distribution. The PDF and CDF of
this new random variable are

and

F(x)=1- [1 - Mgﬁ]exp(— 1,6’_xx)’

respectively, for 0 < x < 1, where 8 > 0 is a scale parameter. The kth moment of X is

2 1
E(Xk)zl'i—ﬂj; *(1-1)” 3exp(—l"%)dt

In particular, the mean and variance are

and

Var (X) = 755 [P exp B)Ei(8) -5+ 1]~ [EX)P,
respectively. In reference [124], Figure 1 showed that the PDF is unimodal when 8 < 3 and
monotonically decreasing otherwise. In reference [124], Figure 2 showed that the mean decreases
and skewness increases with the increase in 8, whereas the kurtosis initially decreases, then increases
with 8. This distribution has been applied to model access of people in households with inadequate
water supply and sewage in cities of Brazil.

The researchers in [123] proposed another version of the one parameter unit Lindley distribution
using the transformation X = ;7. For this version, the PDF and CDF are

+Y
62 1-x
F(x) = x3(1+6’)exp( o )
and
0 1-
F(x)zﬁexp(—@ xx),

respectively, for 0 < x < 1, where 8 > 0 is a scale parameter. For this version, the kth moment of X is

1
_ -t
E(Xk):92(1+0)f0 * 3exp(—97)dt.
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In particular, the mean and variance are

and

6% exp(0)Ei(6)
146

-[EX)],

Var (X) =
respectively. In reference [123], Figure 1 showed that the PDF is unimodal for all values of g.
This distribution has been applied to model cost effectiveness with the management philosophy

of controlling a company’s exposure to various property losses and accidents, taking into account
company characteristics such as size and type of industry.

2.44. Unit Nadarajah-Haghighi distribution [165]

Suppose Y is a Nadarajah-Haghighi random variable with shape parameter a and scale parameter
A [134]. Let X = exp(-Y). The researchers in [165] showed that X has the PDF

A _
= == (1-Alogx)* " exp[l - (1 - Alogx)?],
x

f(x)

for 0 < x < 1, where @ > 0 is a shape parameter, and 4 > 0 is a scale parameter. The corresponding
CDF is

F(x) =exp|[l —(1-2logx)“].

The kth moment of X is

E(Xk) = aﬂi(—ﬂ)i(a; 1) fl *(log ) exp [1 — (1 - Alogt)®] dt.

0

In particular, the mean and variance are
S i@ — 1 ! i a
E(X)=ad ) (- (logt) exp[1 - (1 - Alogt)?] dt,
‘ l 0
i=1
and
e . _ 1 1 )
Var (X) = a/lZ(—/l)’(a/ , )f t(logt) exp[1 - (1 - Alogt)?]dt - [E(X)]?,
: l 0
i=1

respectively. In reference [165], Figure 1 showed that the PDF can be decreasing, or increasing.
This distribution has been applied to model daily rainfall at a location in Florida and anxiety
performance data.
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2.45. Truncated exponentiated-exponential distribution

The truncated exponentiated-exponential distribution in Ribeiro-Reis [154] has the PDF
A _
f(x) = S5 exp(=x) [1 = exp(-1x)]" ",

for 0 < x < 1, where A > 0 is a scale parameter, a > 0 is a shape parameter, and K = [1 —exp(-1)]”.
The corresponding CDF is

1
F(x) = X [1—exp(—Ax)]".
The kth moment is

Ao 1) (a-1
E(Xk):?;W( ; )y(k+1,/1+k/l).

In particular, the mean and variance are

da(a—-1) —  (=1)!
E(X) ="—— ; o M)z)/(Z,/l + k),
and
Var (X) = G _21[)((“ ~2) ; (ﬂ(:;)ﬂ(a A+kA) - [E(X))?,
respectively.

2.46. Continuous Bernoulli distribution

The continuous Bernoulli distribution has the PDF

C(B)B (1-B)1"*, xe(0,1),

f(x) =
0, x¢(0,1),
where 0 < 8 < 1 is a scale parameter and C () is defined by
2, B=1.
CB) =

2tanh™! (1 - 28)
1-28
where tanh~! (x) = % log (11%;‘) is the inverse hyperbolic tangent. The corresponding CDF is
0,

, Be(0,1)\{3),

x<0,
X, B=3 and xe€(0,1),

B(1-p) " +p-1
28-1

, Be(0,1)\{3}, and x€(0,1),

1 x> 1.
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The mean and variance of a continuous Bernoulli random variable are
1

> B=3.
E(X) =
F_, Be (0.D\(})
28-1  2tanh~1(1-28) G
and
1 1
12° F=2
Var(X) =
(1-B)B 1

1

(1-28)% " [2tanh~'(1-28)]* Ae(0.0\G)
respectively. This distribution is especially useful in machine learning and computer vision. A
prominent application is in variational autoencoders (VAEs) for modeling normalized pixel intensities,
where standard Bernoulli, or Gaussian assumptions fail to capture the true data distribution. It
is also relevant in probabilistic modeling of proportions, uncertainty quantification, and Bayesian
inference for bounded data. More broadly, it provides a mathematically consistent way to handle
continuous relaxations of binary variables, which supports tasks like differentiable optimization,
stochastic gradient estimation, and generative modeling where gradients are crucial.

2.47. Altun and Cordeiro’s unit improved second-degree Lindley distribution

Suppose Y is an improved second-degree Lindley random variable [97]. Let X = % Altun and
Cordeiro [16] showed that the PDF of X is

B(1-x)72 x \? xA
= L) e ()
() /l2+2/l+2( 1oy FPUTT

for 0 < x < 1, where A4 > 0 is a scale parameter. The corresponding CDF of X is
2_x° 2
P! (1fx)2+2(1 +4) & ( A )
exp|— .
242242 1-x

F(x)=1-{1+

The kth moment of X is

2 ! t 2 tA
B = o [ (14 enp (-
(x) z2+2z+2f0 (=07 (1 1) e
The mean and variance are
A+2
E(X) = ;,
A24+21+2

and
B 2 (142)°
respectively. Altun and Cordeiro [16, Figure 1] showed that the PDF can be extremely left skewed,
or right skewed. This distribution has been applied to model monthly water capacity from the Shasta
reservoir in California, USA.

Var(X)
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2.48. Krishna et al.’s unit Teissier distribution

Suppose Y is a Teissier random variable with scale parameter 8 [178]. Let X = exp(-Y). The
researchers in [108] showed that X has the PDF and CDF

f(x) :,B(x_ﬁ - l)x_(ﬁﬂ) exp (—x_'B + 1),
and
F(x) = xPexp (—x‘ﬁ + 1) ,

respectively, for 0 < x < 1, where 8 > 0 is a shape parameter. The kth moment is
k k
E(X*) = e[r(—— +2, 1)—r(—— +1, 1)]
B B
In particular, the mean and variance are
E (X) [r( Ly 1) r( Ly 1)]
=e€ - s - - s s
B B
and
2 2 2
Var (X) =e|T _B+2’1 -T _,E+1’1 -[E(X)]",

respectively. In reference [108], Figure 1 showed that the PDF can be monotonically decreasing, or
unimodal. This distribution has been applied to model maximum flood levels for the Susquehanna
River in Pennsylvania and times between failures of secondary reactor pumps.

2.49. Unit inverse Gaussian distribution [64]

Suppose Y is an inverse Gaussian random variable with scale parameter A, u. Following the
transformation X = exp(—Y), the researchers in [64] proposed a unit inverse Gaussian distribution. Its
PDF and CDF are

A 1
flx) = Zx(— logx)% exp[2ﬂ

q) A —logx_1 +exp 2_/1 ol A —logx+1
—log x u J7i —log x U

respectively, for 0 < x < 1, where 4 > 0 and u > 0 are scale parameters. The kth moment of X is

pi 2
—[1—\/1+%]
u A
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b

E(Xk) = exp
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for k > 1. The mean and variance are

E (X) :exp[g(l— 1—|—2L2)

9

A

Var (X) = exp [g (1 -4/1+ 4%2)] ~- [E(X)]?,

respectively. In reference [64], Figure 1 showed that the PDF can be unimodal, decreasing, or
decreasing-increasing-decreasing shape. In reference [64], Figure 3 showed that the skewness can
be negative. This distribution has been applied to model Municipal Human Development Indices data.

and

2.50. Unit generalized log Burr XII distribution [33]
By using both the Pearson differential equation,

m

E a;y"
dlogf(y) = =0 m,n>0
dy b b b

Zn: biy"
i=0

and variable transformation x = exp(—y), [33] proposed the unit generalized log Burr XII distribution
with the PDF

—(a+1)

_ 2ap( logx (26-1) log x 2
-2 [

for 0 < x < 1, where @ > 0, and 8 > 0 are shape parameters, and 4 > 0O is a scale parameter. The
corresponding CDF is

F(x) = [1 _‘_(_loix)%]—a‘

Remarkably, the link between the gamma and exponential random variables may also be used to
construct the unit generalized log Burr XII distribution. That is, if ¥; exp(1) and Y, ~ gamma(a, 1)
are independent random variables, then

Vi — log X ZﬁY
1 — /l 25

and we can see that

)
A=
Y,
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follows the unit generalized log Burr XII distribution. The kth moment of X is

E(X*) = ai (_Zﬂ)i (1 +% —i)

i=0

In particular, the mean and variance are

and

respectively. In reference [33], Figure 1 showed that the PDF can be decreasing, unimodal, U shaped,
or N shaped. This distribution has been applied to model monthly water capacity at the Shasta reservoir,
California, USA and proportions of total milk production in the first cow births.

2.51. Unit generalized half-normal distribution [99]

Suppose Y ia a generalized half-normal random variable with shape parameter 8 and scale parameter
@ [49]. Let X = exp(-Y). Korkmaz [99] showed that X has the PDF

o \/%x i (_loga(x) )ﬁ eXp{_% [_% rﬂ},

for 0 < x < 1, where @ > 0 is a scale parameter, and 8 > 0 is a shape parameter. The corresponding

CDF is
Flx) = 2@(_ (_log,;(x) )ﬁ].

1=

The kth moment of X is

S

In particular, the mean and variance are

ié 2ﬁ z+,8

Var (X) = % - \/27 l+'8 X)]z»

respectively.  Korkmaz [99, Flgure 1] showed that the PDF can be decreasing, increasing,
unimodal, U shaped, or N shaped. This distribution has been applied to model failure times of
mechanical components.

and
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2.52. A modified power function distribution [138]
The modified power function distribution in [138] has the PDF

2

Fx) =ys(1=x)" 1= (1=y)(1-x)°| ",

for 0 < x < 1, where 6 > 0 is a shape parameter, and y > 0 is a scale parameter. The corresponding
CDF is

y(1-x)°
1= (1-y)(1-x)°

The kth moment of the modified power function is

F(x)=1-

)/52 ‘B(k+1,6(i+1)),

for k > 1. In particular, the mean and variance are

E(0) =30 30+ 1)(1-) B3+ 1),
i=0
and
Var (X __yaﬁi YIB(3,6(i+1) - [EQF,

respectively. In reference [138], Figure 1 showed that the PDF can be constant monotonically
increasing, monotonically decreasing, unimodal, or bathtub shaped. In reference [138], Figure 2
showed that skewness is a decreasing function of y for fixed ¢ and kurtosis is bathtub shaped with
respect to y for fixed 6. This distribution has been applied to model anxiety performance data and
evaporation data.

2.53. Altun and Hamedani [18]’s unit distribution

Suppose Y is a Lindley random variable with parameter 3. Let X = exp(-Y). Altun and
Hamedani [18] showed that X has the PDF

) = £ [l—i-'Blog()]xB_l,

1+5
for 0 < x < 1, where 8 > 0 is a shape parameter. The corresponding CDF is
2 log(x)?
F(x)=x@B+1)! [1 + 8- Blog(x) + ﬁ#] .

The kth moment is

BB+ (2k+1)| B+ K2
F) = G
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In particular, the mean and variance are

BB +3)B+1
EX)= B+ 1)(B+k)3’
and
2 (2 5 k2
Var(X):ﬁ (/3 - )ﬁ+ —[E(X)]Z’

B+ 1)(B+2)3

respectively. Altun and Hamedani [18, Figure 1] showed that the PDF can be increasing, decreasing,
or increasing-decreasing-increasing. Altun and Hamedani [18, Figure 3] also showed that skewness,
and kurtosis can correspond to the distribution being symmetric, left skewed, or right skewed. This
distribution has been applied to model for estimating unit capacity factors.

2.54. A log exponential-power distribution [100]

Suppose Y is an exponential power random variable with scale parameter @ and shape parameter 5
Let X = exp(—Y). The researchers in [100] showed that X has the PDF

flx) = ? exp [a(—log x)'B] (—log x)ﬁ_l exp{l — exp [a(—log x)'g]} ,

for 0 < x < 1, where @ > 0 is a scale parameter, and 8 > 0 is a shape parameter. The corresponding
CDF is

F(x) = exp {1 — exp [a(— log x)ﬁ]} :

The associated kth moment is

(Xk)— 1 +exp(1) 4+ exp(1 ZZ ' kﬁ]T(ﬁ] 1).

i=1 j=0 =J

In particular, the mean and variance are

E(X) = 1+exp(1) + exp(1 ZZ u]v D 5 g,

i=1j=0
and
Var (x) = 1+ exp(1) +exp(1) Z l,], LT (84 1) - [ECOT.
i=1j=0

respectively. In reference [100], Figure 1 showed that the PDF can be U shaped, increasing, decreasing,
or unimodal. This distribution has been applied to model flood levels for the Susquehanna River,
Pennsylvania and Better Life Indices.
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2.55. Log-gamma distribution
Let Y denote a Stacy random variable [172]. Making the transformation (%)p = —vlogX, % =,
Consul and Jain [48] proposed the log gamma distribution with the PDF

v~ (= logx)"!

I'(r) ’
for 0 < x < 1, where v, r > 1 are shape parameters. The corresponding CDF is
YV V=1 lo r—1
F(x):fvx (= log %) dx.
0 I'(r)
The mean and variance of the log-gamma distribution are

b0~

v+1

f(x) =

and

v r v o\2r
Var(xX) = (25) = (== -
v+2 v+ 1
which indicate that the variance falls off as v rises for a given value of r. Consul and Jain [48] showed
that skewness first decreases with the increase in the value of r and, then begins to increase. This
distribution is particularly useful in survival analysis and reliability engineering for modeling failure
times and lifetimes of systems since it can capture long-tail behaviors better than simpler models. In
finance and insurance, it is applied to model claim sizes, risk measures, and asset returns that exhibit
asymmetry and heavy tails. The distribution also appears in Bayesian statistics, especially as priors,
or in transformations of gamma-distributed parameters, and in environmental studies for modeling
extreme events such as rainfall, or flood data. Additionally, its flexibility in handling skewness makes
it relevant in medical statistics and biology for representing positively skewed measurements such as
reaction times, incubation periods, and growth processes.

2.56. An arcsecant hyperbolic normal distribution [103]

If Y is a Gaussian random variable X = sechY is a hyperbolic secant random variable [103]. So,

sechy = fexp(_y) = efpe(le;()ﬁ)rl € (0,1) for y € R. The PDF and CDF of X are
1 arcsechx 4 u arcsechx — u
ox V1 - x2 o

and

Fx) = 2_q)(arcsechx+,u)_q)(arcsechx—,u)’

g g

respectively, 0 < x < 1, where —co < u < oo is a location parameter, u > 0 is a scale parameter, and
arcsechz = log [% (1 + V1 - zz)] > 0, 0 < z < 1 is the inverse hyperbolic secant function. The kth
moment of X is

1 b X! arcsechx + u arcsechx — u
E(Xx¥) = — —|dx,
03 Jy (= e
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for k > 1. In reference [103], Figure 1 showed that the PDF can be J shaped, reversed J shaped, U
shaped, or bell shaped. In reference [103], Figure 2 showed that skewness can be negative and positive,
and the kurtosis can be either very small, or very large. This distribution has been applied to model
failure times of mechanical components and Better Life Indices.

2.57. A bounded truncated Cauchy power exponential distribution [135]

A random variable X is said to have the bounded truncated Cauchy power distribution [135] if its
PDF is

4aAxt1 (1 - x’l)a
a1+ (1 —xt)2e]’

flx) =
for 0 < x < 1, where @ > 0 and A > 0 are shape parameters. The corresponding CDF is
F(lx)=1- 4 arctan [(1 - x’l)a] .
V4

The kth moment is

_da

T

( +1, a(l+2i)).

“M%

In particular, the mean and variance are
E(X) = 4“5“(—1)1'3 l+1 a(l +2i)
. A b b
and
da — ) . 2
Var(X) = — > (-1)'B S+ La(1+20) |- [EQ)P.

respectively. In reference [135], Figure 1 showed that the PDF can be symmetric, bathtub shaped, left
skewed, or right skewed. In reference [135], Figure 2 showed that skewness approaches zero as a
and A increase. In reference [135], Figure 3 showed that the distribution displays a platykurtic shape
when « and A are equal. This distribution has been applied to model body fat percentages measured in
five regions: Android, arms, gynoids, legs, and trunk.

2.58. Kumaraswamy distribution

The generalized double-bounded distribution in Kumaraswamy [110] has the PDF
Fx) = apx® (1= 277,
for 0 < x < 1, where @ > 0 and 8 > 0 are shape parameters. The corresponding CDF is
F(x)=1-(1-x%)F.
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The kth moment is
k
E(x*) :,BB(l + —,,3).
10

In particular, the mean and variance are

and
Var (X) :,BB(I + zﬁ) - [E(X))%,

respectively. The PDF can be monotonically increasing, monotonically decreasing, bathtub shaped, or
unimodal. This distribution is particularly useful in reliability analysis, survival studies, and hydrology,
where lifetimes, failure rates, or proportions naturally fall within the unit interval. In environmental
sciences, it is applied to model rainfall proportions, pollutant concentrations, and other normalized
measurements. In finance and economics, the distribution is employed for modeling rates of return,
credit risk, and income proportions. Additionally, it is applied in engineering for quality control and
software reliability, in medical sciences for dose-response and recovery proportions, and in Bayesian
statistics as a prior for parameters constrained to [0, 1], making it a versatile tool across diverse
scientific and applied domains.

2.59. Unit Vasicek distribution
The unit Vasicek distribution in Vasicek [182] has the PDF

2
1-b 1 VI -7 (x) - D!
1) = L exp E[qfl(x)—( 3; “‘)” ,
forO < x < 1,where 0 <a < 1and0 < b > 1 are scale parameters. The associated CDF is

Flx) = q)[\ll—bCI)_l(x) —CID_I(a))’

Vb
for 0 < x < 1. The mean and variance are

E(X) =a,
and
Var(X) = &, (q)_l (a), 7! (a);b) ~a,

respectively, where ®;(-,-;0) denotes the bivariate standard normal CDF with b as the correlation
parameter. This distribution is widely used by banks, regulators, and financial institutions to estimate
portfolio default rates, loss distributions, and economic capital requirements, as it captures the
correlation between defaults in large loan portfolios. Beyond credit risk, it is applied in stress testing,
risk-based pricing of loans, and regulatory frameworks such as Basel II/III, where it underpins the
Internal Ratings-Based (IRB) approach for calculating capital adequacy. Its ability to model correlated
default events makes it especially relevant for assessing systemic risk, portfolio diversification effects,
and the stability of the financial system.
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2.60. Unit extended Weibull families of distributions [72]

Let Y denote an extended Weibull random variable [74]. By employing the transformations X =
exp(=Y) and X = 1 —exp(-Y), The researchers in [72] proposed two new unit general families
of distributions: Unit extended Weibull (UEW) and complemented unit extended Weibull (CUEW)
distributions. Their PDFs and CDFs are

F(x) = Th (~log(x): §) exp [t (~log(x):£)]

and
F(x) = exp[-aH (-log(x):£)] .
as well as
F(x) = f(1=x) = T (~log(1 - x): £) exp [~aH (~log(1 - x):£)]
and

F(x)=1-F(1-x) =1—-exp[-aH (-log(1l —x);£)],

where 0 < x < I, @ > 0 is a scale parameter, H (-;&) is a non-negative monotonically increasing
function, and £ (-; &) denotes the derivative of H (-;£). The kth moment of unit extended Weibull
distribution is

E (X*) = E [exp(—kY)] = My(-k),

for k > 1, where

My(r) = fo " exp(ty) £ (y)dy.

denotes the moment generating function of Y. The kth moment of the complemented unit extended
Weibull (CUEW) distribution is

E(X*) = E{[1-exp(-Y :Zj() 1) My (-j).

Based on these general classes, or families of distributions, the researchers in [72] also gave instances
of unit distributions that emerge as unique models. These include

e The unit Gompertz distribution with the PDF and CDF given by
fuce(x) = ,810g21 -(ﬁ+1)21 ﬂ’ﬁ’
and

xP-1
Fuco(x) =217,

respectively, for 0 < x < 1, where 8 > 0 is a shape parameter, and 0 < u < 1 is a scale parameter.
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e The unit Lomax distribution with the PDF and CDF given by

log?2

log2 [log(l .y log,u)]_l (1 — B 'log x)_m_l )

Bx

fur(x) =

and
log2

———kr -1
Fyp(x) = (1 —,3_1 log x) log(1-p"log)

respectively, for 0 < x < 1, where § > 0,0 < u < 1 are scale parameters.
e The complementary unit Gompertz distribution with the PDF and CDF given by

Blog(2) (g1 L]
foveo(x) = 2B (1 gy 150557,
(I-p)F-1
and
(1-x)=B-1
Feugo(x) = 1-21-0-07F,

respectively, for 0 < x < 1, where 8 > 0 is a shape parameter, and O < u < 1 is a scale parameter.
e The complementary unit Lomax distribution with the PDF and CDF given by

log(2)
B(1-x)

|1-p"10g(1 —x)]_“)g[l_ﬁ_ll‘)g“‘””_] :

feur(x)

flog[1 -8 " log(1 - )]}

and

w2
FCUL(X) =1- [1 —,3_1 log(l — x)] log[1-~Tlog(1-)] ,
respectively, for 0 < x <1, where 8> 0,0 < u < 1 are scale parameters.

These distributions have been applied to model proportions of people aged 15 years old, or more who
can read, or write a simple note.

2.61. A mixture power function and logarithmic distribution [3]

The unit distribution based on mixture of power function and continuous logarithmic distribution
termed “power logarithmic” (PL) distribution in [3] has the PDF

a 2
fla) = 2t

= tsras |8 —dlog(x)], (2.23)

for0 < x < 1, where @ > 0,5 > 0,0 > 0O are scale parameters. The corresponding CDF is

s+ (o +1) [ olog()])

Flx) = B+o+ap
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It is possible to define the PDF provided by (2.23) as a two-component mixture as

f(x) = pfp(x) + (1= p)fr(x),

where f,(x) = (@ + 1)x* for 0 < x < 1 is the PDF of the power function distribution, f7(x) =

(@ + 1)2x%log (%) for 0 < x < 1 is the PDF of logarithmic distribution and p = %. The

moment generating function and the kth moment of the power logarithmic distribution are

M(r) = (@+1) v (I+k+a)+s
CBHotaB Lk (1+k+a)?

and

’

E(Xk)— (@+1)?> (1+k+a)s+6
CBFotap (1+k+a)?

respectively. In particular, the mean and variance are

(@+ 1) (@+2)B+6
(@+2) (@+ 1)+

E(X) =

and

Var(X)

(e +1)? [(@+3)B+6 (@t D?[(e+2)B+0]
S B+s+aB| (a+3)2 (@+2)*B+5+aB) |’

respectively. In reference [3], Figure 2 showed that PDF can be unimodal, increasing, or decreasing. In
reference [3], Table 2 showed that for fixed 8 and ¢, skewness decreases as « increases, while kurtosis
first decreases and, then increases as a increases. Skewness, and kurtosis decrease when  increases
for fixed @ and 6. Also, for fixed a and 3, skewness increases as 0 increases while the kurtosis increases
when ¢ increases. This distribution has been applied to model proportion of income spent on food in a
city and proportions of total milk production in the first cow births.

2.62. Chesneau’s logarithmic weighted power distribution

The logarithmic weighted power distribution in [42] has its PDF and CDF specified by
f(x) = ax® 1 [1 = 1= Aalog(x)],
and
F(x) = x"[1 - Aalog(x)],

respectively, for 0 < x < 1, where 0 < A < 1 is a scale parameter, and @ > 0 is a shape parameter. The
kth moment is

E(x) = (k+a)2 k(1=2) + o] .
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In particular, the mean and variance are

EX) = (00 +al,
and
« o>
Var(X) = BtaR 2(1-2) +a] - m(l -+ a)?,
respectively.

2.63. Grassia’s transformed gamma distribution

Grassia [71] proposed distributions based on the gamma random variable by using the logarithmic
transformation X = exp(—Y) and the complementary version X = 1 —exp(-Y), where Y is a gamma
random variable with shape parameter @ and scale parameter 5. The probability distribution arising
from this transformation has the PDF

flx) = %xﬂ—l [log(}c)r—l : (2.24)

for 0 < x < 1, where @ > 0,8 > 0 are shape parameters. The PDF of the complementary version of

this distribution is
-1
, B \B-1 1\
= 1- 1
70 =y =2 o (75|

for 0 < x’ < 1. Furthermore, the mean, variance, and the kth moment of (2.24) are

-

won = i

and

£0)= (5]

respectively. Grassia [71] gave a full description of the behavior of the PDF: If @« < 1 and 8 < 1, then
the PDF has a U shape, is asymptotic at both x = 0 and x = 1 and has a minimum at x = exp (—%);
if @ < 1 and 8 = 1, then the PDF has a distorted J shape tangential to x = 0 at the origin and then
a proper J shape becoming asymptotic to x = 1; if @ < 1 and g > 1, then the PDF a proper J shape
starting at 0 and then increasing steeply to become asymptotic at x = 1; if @ = 1 and 8 < 1, then
the PDF has an inverted J shape and is asymptotic at x = 0; if @ = 1 and 8 = 1, then the PDF is
a rectangular shaped; if @ = 1 and § > 1, then the PDF starts from the origin and then intercepts
x = 1, taking a finite value; if @ > 1 and 8 < 1, then the PDF has a distorted reversed J shape and is
asymptotic at x = 0; if @ > 1 and 8 > 1, then the PDF starts from 0, increases to reach a maximum at

X = exp (—%) and then decreases.
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2.64. Hahn’s rectangular beta distribution

Let Y denote a beta random variable with shape parameters & > 0 and 8 > 0. The rectangular beta
distribution in Hahn [75] can be specified by the PDF

f(x) =0+ (1-0)fy(x;.B),

for 0 < x < 1, where 0 < 8 < 1 is a mixture parameter. From the rectangular beta distribution, we
obtain the uniform and beta distributions by setting 6 = 1 and 6 = 0, respectively. The mean and
variance associated with the rectangular beta distribution are

E(x)=§+(1—e)aiﬁ,
and
af 0
Var(X) = (1—9){1—9[1+(a+ﬁ)]}+ﬁ(4—39),

(@+B)* (a+p+1)

respectively. Hahn [75, Figure 2] showed that the variance has a minimum of % when 6 = 1 and
thereafter increases as a function of 6. They also showed that the mean becomes more moderated as
uncertainty grows and 6 declines. As 6 tends to 0, the mean tends toward % given the lack of certainty.
This distribution has been applied to model a real-world electronic module development project.

2.65. A trapezoidal beta distribution [60]

Let Y denote a beta random variable with shape parameters @ > 0 and 8 > 0. The trapezoidal beta
distribution in [60] can be specified by the PDF

a+b
f(x)=a+ (b—a)x+ (1 - )fy(x; a,B), (2.25)
for0 < x < 1,where 0 < a,b <2,0 <a-+ b <2 are scale parameters. An alternative parameterization
of the trapezoidal beta distribution can be obtained by taking into consideration three different beta
distributions. For this, the PDF in (2.25) can be modified as

f(x) = wifi(x)+wrfo(x) +ws3f3(x)

a b a+b
= —(2-2x)+=(2x)+[1- fr(x;a.B),
2 2 2
where fi(x) = fr(x;1,2) = 2-2x, fa(x) = fr(x;2,1) = 2x and f3(x) = fy(x; @, B). Furthermore
w; = %, wy = g, w3 = (1- #) are the mixture weights adjusted so that w; 4+ wy + w3 = 1, this
implies that < w1, wy, w3 < 1. The associated kth moment of the trapezoidal beta distribution is
k-1 .
a b—a a+b a-+i
E(X*) = 1- — .
( ) k—|—1+k—l—2+( 2 )Ha+ﬁ+i]
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In particular, the mean and variance of the trapezoidal beta distribution are

:a—i—2b+ 1_a—l—b @ ,
6 2 Ja+p

E(X)

and

Var(X) = 3“+9b—(a+2b)2+( o )(1_a+b)

36 a—+p 2
[ a+1 _a(2—a—b)_a+2b]
a+pB+1  2(a+p) 3 )

respectively. The parameters a and b can be intuitively interpreted as lifting the left and right tails,
respectively. This distribution has been applied to model average scores of a university selection test
for school establishments in the Metropolitan Region of Chile.

2.66. Unit ratio-extended Weibull family of distributions [144]

Following the transformation X = HLY’ where Y is a random variable based on the extended
Weibull class of distributions, the researchers in [144] proposed the unit ratio extended Weibull class
of distributions, The PDF and CDF of X are

X

F) = (1= h( =) exp

1-—x

—a/H( 1 fx; .f)] , (2.26)

and

F(x) = 1-exp [—aH (l—xx g)] , 2.27)
respectively, for 0 < x < 1, where @ > 0 is a scale parameter, H (x;£) is a non-negative function
that increases monotonically and is dependent on the parameter vector &, and h (x;€) = H' (x;€).
Based on (2.26) and (2.27), the researchers in [144] proposed five special cases of this distribution.
They included the unit ratio-Gompertz distribution, the unit ratio-Burr XII distribution, the unit ratio-
Lomax distribution, the unit ratio-Weibull distribution, and the unit ratio-Rayleigh distribution. The
mathematical expressions for these special cases are well documented in [144]. This distribution has
been applied to model educational attainment data.

2.67. A log-cosine-power unit distribution [136]
The log-cosine-power distribution in [136] has the PDF

_ Al a
flx) = og [cos(/l)]x tan (Ax%), (2.28)

for 0 < x < 1, where @ > 0 is a shape parameter, and 0 < A < 7 is a scale parameter. The associated
CDFis

F(x) = mlog [cos (Ax?)].
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To aid for the derivation of the statistical properties of the PDF, the authors expanded (2.28) as

00 j 122](22]_1)32 00
_ X 1 J a\2j-1 2aj-1
1) = o Teos ] »E ()7 = ) wpel,

Jj=1 J=1

for x € (—g, %), where B, are Bernoulli numbers,

o0 172 (~2 )
(s Z )i~ 2/(21 1)32],

J=1

and

(S
i3
log cos( =

Thus, the kth moment is

212&]+k

In particular, the mean and variance are

ZZQ]—Fl

and

2
E(X
Var (X 2204]—1—2 0%

respectively. In reference [136], Figure 1 showed that the PDF can be J shaped, reversed J shaped, or
bathtub shaped. In reference [136], Figure 2 showed that the distribution can be left skewed, or right
skewed. This distribution has been applied to model proportion of uninsured English speaking adults

in the USA and failure times of Kevlar49/epoxy strands data.

2.68. Unit exponentiated Lomax distribution [58]

Suppose Y is an exponentiated Lomax random variable with shape parameters 6, n, and scale

parameter A. Let X = exp(—Y). The researchers in [58] showed that X has the PDF and CDF

/1(577

@) =22 (1= Dog(x) ™ {1 = [1 - Alog()] )"

and

F(x)=1-{1-[1-2alog(x)]°}".
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respectively, for 0 < x < 1, where 6,7 > 0 are shape parameters, and 4 > 0O is a scale parameter. The
kth moment is

W N DT (-1 ol .
L ]=

In particular, the mean and variance are

> (-1)Hen(n-1 o .
o\ i B(1+j,6(i+1)-j),

and

— (=1)T2J6n(n-1
var(0 = 32 IO N 1441 - ) - e
= Jjlas i

i,j=0
respectively. In reference [58], Figure 1 showed that the PDF can be symmetric, U shaped, right
skewed, J shaped, or normal tapered. Skewness values in [58, Table 1] showed that the distribution
can be left skewed, or right skewed. Kurtosis values in [58, Table 1] showed that the distribution
leptokurtic, or platykurtic. This distribution has been applied to model data with responses of naive
mock jurors, proportion of income spent on food in a city in the USA, and mortality rate of COVID-19.

2.69. Unit Johnson-t distribution [122]

-1
Suppose Y is a Student’s  random variable with v degrees of freedom. Let X = [1 + exp (—%)] .
The researchers in [122] showed that X has the PDF and CDF

0 ‘—’B(l v) 1
V2 3573 ) —\/2—1
) = — g latolr)

and

P) = 3 {1+ sinla + 0101 |1~ iy (33|

respectively, for 0 < x < 1, where v > 0 denotes the degree of freedom, —c0o < @ < o0, 8 > 0 are
scale parameters, [(x) = log (l—fx) and m(z) = —=- This distribution has been applied to model body
fat percentage of individuals assisted in a public hospital in Brazil and recovery rates of COVID-19 in
the USA.

2.70. Unit half-normal distribution

Suppose Y is a half-normal random variable with scale parameter a. Let X = HLY

in [28] showed that X has the PDF and CDF

The researchers

flx) = (1 3x)2¢(a(1x— X))’
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and

F(x) :2q)(a(1x—x))_1’

respectively, for 0 < x < 1, where a > 0 is a scale parameter. The associated kth moment is

E(x*)=dE [(1+X—:z)k]

for k > 1, where Z denotes a half-normal random variable. In particular, the mean and variance are

o0 -l 2]

and
X2

Var (X) = a’E [m

|- o

respectively. In reference [28], Figure 1 showed that the PDF can be unimodal, or asymmetric (left
and right skewed). This distribution has been applied to model a database extracted from an image of
Foulum (Denmark).

2.71. A power Johnson SB distribution [38]
The power Johnson SB distribution in [38] has the PDF and CDF

dQ(x)
dx

9

£(x) = m (v + 60(x): ) & (y + 50(x)) \
and

F(x) = [®(y+60(x))]",

respectively, for 0 < x < 1, where m(x) = azCID(x), —00 <7y < 00,0 > 0 are scale parameters, @ > 0 is
a shape parameter, and Q(x) = G~!(x) represents the convenient quantile of a valid CDF G(-). The
kth moment is

for k > 1, where
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and
2

Var (X) =)’ (?)Vifsz_i#z—i - [E(X))%,

i=0

respectively. In reference [38], Figure 1 showed that PDF can be left skewed, right skewed, or
unimodal. This distribution has been applied to model colorectal cancer incidence and mortality rates
by race/ethnicity in the USA.

2.72. An arcsecant hyperbolic Weibull distribution [105]

Following the transformation X = sech(Y), where Y is a Weibull random variable with shape
parameter « and scale parameter 6, The researchers in [105] proposed the arcsecant hyperbolic Weibull
distribution with the PDF and CDF given by

- af ) 0—1 . 0
f(x) = ——= [arcsinh(x)] exp{—a/ [arcsinh(x)] },
x V1 —x2
and
F(x) = exp{—af [arcsinh(x)]g} ,

respectively, for 0 < x < 1, where @ > 0 is a scale parameter, # > 0 is a shape parameter, and
arcsinh(x) = log [(1 + —‘lx_xz)] € (0, 00). The associated kth moment is

E(x¥) = i 2k(__k) (—j1!)f (k + 2i)fa—ér(£ + 1).

In particular, the mean and variance are

s =2 2[5

i,j=0

)’a 6F( | + l),
and
Var (X) = 4 i (_.2)(_72!)j(1 +i) 'a—%}r(g + 1)— [E(X)),

respectively. In reference [105], Figures 1 and 2 showed that the PDF can be U shaped, increasing,
decreasing, unimodal, or N shaped. In reference [105], Table 1 showed that skewness can be negative,
or positive. This distribution has been applied to model educational attainment data.

2.73. Unit Rayleigh distribution [30]

Suppose Y is a Rayleigh random variable with scale parameter 8. Let X = exp(-Y). The
researchers in [30] showed that X has the PDF and CDF

7(3) = L tog(x) exp {8 10z ().
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and

F(x) = exp (-8 [log(x)]*},

respectively, for 0 < x < 1, where 8 > 0 is a scale parameter. The kth moment is

kz)kx/ﬁ

E(x*) = 1—exp(4ﬁ N erfc(%).

In particular, the mean and variance are

E(X)=1 —exp(@) N erfc(ﬁ),

and

ol el o
Var (X) =1 exp( ) 52 erfc 7B [E(X)]",

respectively. In reference [30], Figure 1 showed that the PDF can be decreasing, increasing, increasing-
decreasing, skewed abruptly to the right, moderate right skewed, or decreasing-increasing. Skewness
values in [30, Table 1] suggest that the distribution can be negatively, or positively skewed. Kurtosis
values in [30, Table 1] are lower than 3, nearly equal to 3, or greater than 3. This distribution has
been applied to model times to infection of kidney dialysis patients in months, failure times of the air
conditioning system of an airplane and maximum flood levels of a particular river in Pennsylvania.

2.74. Mazucheli and Alves [121]’s unit Gumbel distribution

Suppose Y is a Gumbel random variable and let X = Mazucheli and Alves [121] showed

that X has the PDF and CDF

1= g e -oma( ) oot )]

1+ex (-Y)"

and

F(x) = exp [—exp(—a) (1 - ")9],

respectively, for 0 < x < 1, where 8 > 0 is a shape parameter, and —oco < @ < oo is a scale parameter.

2.75. Unit Gumbel type-1I distribution [164]

Suppose Y is a Gumbel type-II random variable with shape parameter u and scale parameter v. Let

X=17 +Y The researchers in [164] showed that X has the PDF and CDF

R

1—x
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and

F(o) = exp| (=),

1-—x

respectively, for 0 < x < 1, where u > 0 is a shape parameter, and v > 0 is a scale parameter. The kth
moment of the unit Gumbel type-II distribution is

provided that § > —1. In particular, the mean and variance are

and

var(x) = Y (-1’ +)M E)P,

i=0

provided that }l > —1. Inreference [164], Figure 1 showed that the PDF can be right skewed, reversed J
shaped, symmetrical, or U formed. In reference [164], Table 1 showed that, for fixed u, mean, variance,
skewness, and kurtosis decrease with increasing v. This distribution has been applied to model core
specimens from cross-sections of petroleum wells and flood level observations for the Susquehanna
River at Harrisburg, Pennsylvania.

2.76. A composite quantile probability distribution [156]
The composite quantile probability distributions proposed by [156] have the PDFs

i(x) = s [ 1og()] exp {5 - log(2))°) £
and
folx) = r[())jy) [~ log(1 = 0]~ exp - [~ log(1 - 1)’} -,

for 0 < x < 1, where 8 > 0,8 > 0 scale parameters, and @ > 0,¢ > 0 are shape parameters. It is
important to note that if ¢ = 1, then fi(-) and f>(-) reduce to transformed gamma distributions in
Grassia [71]. This suggests that composite quantile probability distributions encompass the Grassia’s
distribution as special cases. The associated kth moments of these distributions are

E(X) = i (_kﬁ_a) I(a+ )

e AL I'(a)
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and

w (-ig7? -
IR i) ke bl

i=0

respectively. The associated means and variances of these distributions are

E)=) ik LA R > (_2’?—5) AR

pr AL I'(a)
and
pa+j

05§ v - 5 LG ey

i=0 =

respectively. This distribution has been applied to model proportion of poverty in Peru.

2.77. Unit Maxwell-Boltzmann distribution [34]

Suppose Y is a Maxwell-Boltzmann random variable with scale parameter 6. Let X = exp(-Y).
The researchers in [34] showed that X has the PDF and CDF

2 10g? exp[ e (z) )]

63 x

b

f(x) =

and

log? (%)erf( il ] flog e [_ ngzegi)]
10g(x) 0 ’

respectively, for 0 < x < 1, where 8 > 0 is a scale parameter. The associated kth moment is

E(Xk)—exp(ezzk )(szz—i—l)erfc(f/]%) \/gek.

In particular, the mean and variance are
6>\ » 6 2
E (X) = exXp (E) (9 + l)erfc (%)— \/;9,

Var (X) = exp (26%) (467 + 1) erfc ( V26) - 2 7%9 - [E(X)],

F(x)=1-

and

respectively. In reference [34], Figures 1 and 2 showed that the PDF can be unimodal. This distribution
has been applied to model concentration of air pollutant CO in Alberta, Canada, air quality monitoring
of the annual average concentration of a pollutant and concentration of sulfate in Calgary, Canada.
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2.78. A generalized biparabolic distribution [62]
The standardized generalized biparabolic distribution proposed by [62] has the PDF

2m m
(f) —2(5) , it0<x<o,
6 0
£(x) = C(m)- X (2.29)
1—x\" 1-x\" .
-2 , if<x<1,
1-6 1-6
where m > 0 is a shape parameter, 0 < 6 < 1 is a cutoff point, and C(m) = % The
corresponding CDF is
X 2m+1 X m—+1
C(m)H(g) _20) : if0<x<,
2m+1 m+1
F(x) =
1—y\2m+1 1—y\nt1
1—}—C(m)(9—1)(m) ) , ife<x<l.
2m—+1 m+1

By denormalizing the PDF (2.29) using the change of variable approach discussed by [62], the
unstandardized version of biparabolic distribution known as the generalized biparabolic distribution

has the PDF
xX—a 2m XxX—da m . /
(9’_(1) _2(9'—(1)  Hasx=0,
f(x) =C(m)
b x 2m b—x\"
(b—ef) _2(b—0’)’ Hoeast
2m+-1) (m+1
where C(m) = E_IZ?W'

2.79. Okorie and Afuecheta’s unit upper truncated Weibull distribution

Following the transformation X = g, where Y is an upper truncated Weibull random variable, the
unit upper truncated Weibull distribution in Okorie and Afuecheta [137] has the PDF

flx) = #’s(_ﬂ)xﬂ_l exp (—/lxg),

for 0 < x < 1, where 4 > 0 is a scale parameter, and 5 > 0 is a shape parameter. The CDF associated is

1 —exp (—xlxﬁ)
Fx) = 1—exp(-1)
The kth moment is
E(xH) = v(5+1.4) ’

7 [1 - exp(-2)]
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for k > 1. In particular, the mean and variance are

1.9

E(X) = 1
1 - exp(-A)

9

and

7(% + 1,/1) [1-exp(-2)] —y(é + 1,/1)2
7 1 - exp(=A)]*

respectively. Okorie and Afuecheta [137, Figure 1] showed that the PDF can be monotonic increasing,
monotonic decreasing, or unimodal. Okorie and Afuecheta [137, Figure 2] showed that the distribution
can be symmetric, or asymmetric while its tail can be only platykurtic. This distribution has been
applied to model Better Life Indices data and recovery rate of CD34+ cells after peripheral blood stem
cell transplants.

Var(X) =

b

™I

2.80. Chesneau’s variable-power parametric distributions

Using the idea of variable-power parametric (VPP) functions, the researchers in [44] proposed a set
of eight unique CDFs. These include

e VPP CDF of the first kind with the functional form denoted as

for 0 < x < 1, where a > 0 and b > —1 are shape parameters.
e VPP CDF of the second kind with the functional form denoted as

F(x) _ xa+bx+cxlog(x)

9

forO<x<1,wherea > I{c #0}—b,b <0,a >0and 0 < ¢ <1 are shape parameters.
e VPP CDF of the third kind with the functional form denoted as

F(x) = (1-x)1" —(1-x),

forO < x <1, where 0 <a < 1andb > 1 are shape parameters.
e VPP CDF of the fourth kind with the functional form denoted as

F(x) = é{[l +ax—i—bxlog(x)]x—xx},

forO < x < 1, where a <0 and a > 1 — b are scale parameters.
e VPP CDF of the fifth kind with the functional form denoted as

a+ blog(x) + cxlog(x) de

X

b

PO = (1401

forO < x < 1,wherea >0, b > 0, ¢ <0 are scale parameters such thata—b—-c # 0andd > 0 is
a shape parameter.
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e VPP CDF of the sixth kind with the functional form denoted as

1
b1 1 1=
Fl) =1+ a-+ og(x)x+ cxlog(x) ’

for0 < x <1, wherea >0, b > 0, ¢ <0 are scale parameters such thata—b—-c # 0andd > O is
a shape parameter.
e VPP CDF of the seventh kind with the functional form denoted as

o)

F(x)=x ,

for 0 < x < 1, where @ > 0 and b > 0 are shape parameters.
e VPP CDF of the eight kind with the functional form denoted as

X
[~ log(x)]””

for 0 < x < 1, where a > —1 and b > 0 are shape parameters such that 1 +-a + b # 0.

F(x) =1-(1-x)

2.81. Bakouch et al.’s unit exponential distribution

Aa
By employing the epsilon function &, ,(x) = (%) *, —a < x < a as documented in [53], the

researchers in [27] proposed unit exponential distribution with the PDF and CDF as

flx) = =, (llf;)ﬁ Fl(x). (2.30)
and
l—exp{a[l —(ll—fj)ﬂ}} forO<x<1,
F(x) =
1, forx =1,
respectively, where « is a scale parameter, 8 is a shape parameter, and F(x) = 1 — F(x). The kth

moment associated with (2.30) is

E(x") = ZkaﬁeXp kji( )( 1))(—1)ia#r(—%ﬂ).

i=0 j=0

The mean and variance are

E(x) 207 exp(a) i (—(k+ U)ﬂflr(—ﬂ,a),
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and

Var (X) = 4“%"" ZZ() "““r(—M,a)—[E(X)]Z,

i=0 j=0 ’8

respectively. In reference [27], Figure 2 showed that the PDF can be monotonically decreasing,
or unimodal. This distribution has been applied to model soil moisture content and permanent
wilting points.

2.82. Unit Zeghdoudi distribution [32]

Suppose Y is a Zeghdoudi random variable with scale parameter a [129]. Let X = H_LY The
researchers in [32] showed that X has the PDF and CDF

f( ) = lexp( 1a/_xx)[1 + Ex;fz_;(zl__z;;)z],

and

CY3X

PO = e+ e (-775)

respectively, for 0 < x < 1, where @ > 0 is a scale parameter. The associated kth moment is

()= S T

= i Na+2)af+j-1

In particular, the mean and variance are

R Y () R

= j J@+2)a+j-1

and

Var (X =§ () LU+ gp,

(@+2)a?+j-1

respectively. In reference [32], Figures 1 and 2 showed that the distribution can exhibit positive
skewness, negative skewness, and unimodal characteristics. In reference [32], Table 1 showed that,
as a grows, skewness climbs steadily and slowly, exhibiting a little asymmetry towards larger values.
Kurtosis shows consistent tail behavior with modest range-wide expansion, remaining quite steady.
This distribution has been applied to model COVID-19 related recovery in Spain, amount of water
the California Shasta Reservoir could hold each month, and insecticidal and biochemical effects of
Jatropha oil on cotton leaf worm.
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2.83. Korkmaz and Korkmaz’s unit distribution

Let Y denote a log-log random variable in Pham [145]. Let X = exp(—Y). The researchers in [106]
showed that the PDF and CDF of X are

F(x) = alogbx™" —log x)*~'p{~189) exp [1- b(—logx)”]’
and
F(x) =1-exp [1 - b(—logX)“] ,

respectively, for 0 < x < 1, where a > 0 is a shape parameter, and » > 1 is a scale parameter.
In reference [106], Figure 1 showed that the PDF can be skewed, bathtub shaped, inverse N
shaped, decreasing, increasing, or unimodal. This distribution has been applied to model educational
attainment data.

2.84. A unit distribution [79]

Let Y denote an inverse exponentiated Pareto random variable in [65]. Let X = 14+Y The
researchers in [79] showed that the PDF and CDF of X are

£(x) = ab(1=x)" 1= (1=

and

F(x)=[1-(1-2)"]",

respectively, for 0 < x < 1, where a > 0 and b > 0 are both shape parameters. The kth moment of X is

E(x¥) —abz (“‘1) (k+ 1,b(i+1)).

In particular, the mean and variance are

and

2
Var(x) = ab Y (-0 (*] o Gubti+ 1) - (B0,
i=0

respectively. In reference [79], Figure 1 showed that the PDF can be reversed J shaped, left skewed,
right skewed, or unimodal. In reference [79], Table 1 showed that variance decreases when al increases
and b is kept constant. In reference [79], Figure 3 showed that skewness ranges from about -2 to 1,
showing a wide variety of options. Furthermore, kurtosis can have both small and large values, enabling
the distribution to display all three kurtosis types: Leptokurtic, mesokurtic, and platykurtic. This
distribution has been applied to model COVID-19 death rates were recorded in England and rock
samples taken from a petroleum reservoir.
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2.85. A unit distribution [91]
Let Y denote a zero-centered Gumbel random variable with scale parameter b. Let X =
log (Y=@—1) for a > 0. The researchers in [91] showed that the PDF and CDF of X are
xab
(1-x)"

abxb=!
flx) = m exp [—

b

and

xab
F(x) = l—exp[—m],

respectively, for 0 < x < 1, where a > 0 is a shape parameter, and b > 0 is a scale parameter. In
reference [91], Theorem 1 showed that the PDF can be monotonically decreasing, bathtub shaped,
unimodal on the left, or unimodal on the right. This distribution has been applied to model percentage
of service usage time of end users.

2.86. A unit distribution [169]

Let Y denote a zero-centered Laplace random variable with scale parameter b. Let X =
log (Y~¢ = 1) for a > 0. The researchers in [169] showed that the PDF and CDF of X are

abx—1 , N
2(1_—)65,)17“’ ifx<?2 a,
flx) =
b(1-x4)0!
i Sl (2 ab+1) L ifx>274,
X
and
xb ) _1
2(1—x“)b’ o=z
F(x) =
1 —x2)?
1—(2—17), if x> 274,
x(l

respectively, for 0 < x < 1, where a > 0 is a shape parameter, and b > 0 is a scale parameter. The kth
moment of X is

b k k
E(X*) = [Bl (— -l—b,—b) + B, (b, = —b)].
2 2\a 2 a
In particular, the mean and variance are

E(X) = ng% (l o, —b)—I—B% (b, : —b)],

a
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and
VarLX)::g[B%(§—+b,—b)%-B%(b,%-—b)‘—[E(Xﬂz,

respectively. In reference [169], Theorem 1 showed that the PDF is decreasing if a(1 4+ 2b) < 1
and b > 1, increasing if a(1 —2b) > 1 and ab > 1; left tailed and right vanishing if a(1 + 2b) > 1,
ab < 1 and b > 1; right tailed and left vanishing if a(1 —2b) < 1, ab > 1 and b < 1; both sides tailed
if ab < 1 and b < 1; and both sides vanishing if ab > 1 and » > 1. This distribution has been applied
to model broadband usage in rural counties in the United States, historical data on the melting rate of
the South Greenland ice sheet and log-returns of daily changes in natural gas prices.

2.87. A unit distribution [31]

Let Y denote a gamma/Gompertz random variable with shape parameter a, and scale parameters b,
c. Let X = —log Y. The researchers in [31] showed that the PDF and CDF of X are

abcaxab—l
f(x> - a+1’
1+ (c— 1))
and
ca
F =
() [c=1+ xb]"

respectively, for 0 < x < 1, where a > 0 is a shape parameter, and b > 0, ¢ > 0 are scale parameters.
The kth moment of X is

b ot ta+ Kot i ife#1
s _; - ; - s 1 )
k—|—ab21a a ba b C C

E(X*) =
ab

_@ ife=1.
k+ab’ e

In particular, the mean and variance are

bt 1 1
ane 2F1(a+1,a+—;a+—+1;1—c), ife#1,

1+ ab b b
E(X) =
ab
, ifc =1,
1+ab e
and
abc? 2 2 2.
2+ab2F1(a+1,a—|—E,a—|—E—|—1,l—c)—[E(X)] , ifc#1,
Var (X) =
ab ) )
- |E(X fc=1
2+ab [ ( )] 2 1Irc 2
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respectively. In reference [31], Proposition 1 showed that the PDF is increasing if ab > 1, “cb_—_ll <0,
and % > b+ 1; decreasing if ab < 1, % < 0 and % > b + 1; increasing-decreasing if ab > 1
and 0 < acb_—_ll < b+ 1; decreasing-increasing if ab < 1 and 0 < “Cb_—_ll < b+ 1. Inreference [31], Table 1
showed that the distribution can be left and right skewed. Furthermore, kurtosis values can be lower,

nearly equal, or greater than 3. This distribution has been applied to model individuals having HIV +.

2.88. A unit distribution [47]
The researchers in [47] introduced a unit distribution with the PDF and CDF specified by

fx) = E(logx)z(p(logx)’

ax a a

and

1 21 1
F(x):2®(0gx)— 0gx¢(ogx)’
a a a

respectively, for 0 < x < 1, where a > 0 is a scale parameter. The kth moment of X is

E(x*) = = |akg(ak) + ®(-ak) - 2akg(ak) + a’k* - a* kP (ak)| .

In particular, the mean and variance are

a2

)1+ @) -0 - av(a)]

E(X) = 2exp(

and
Var(X) = 2exp (24%) (1 + a®) @(-2a) - 2a(2a)| - [E(X)]*,

respectively. The parameter a controls the skewness, and kurtosis of the distribution. This distribution
has been applied to model dynamics of the Chilean inflation in the post-military dictatorship period
and relative humidity of the air in a northern Chilean city.

2.89. Unit power-logarithmic distribution

The researchers in [43] introduced a unit power-logarithmic distribution with the PDF and CDF
specified by

axlogx +1—x4

fx) = ax(log x)?2
and
1 1-
F(x):l—a ogx+1—x“
alog x
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respectively, for O < x < 1, where a > 0 is a scale parameter. The kth moment of X is

E(Xk):1—§10g(1+%).

In particular, the mean and variance are

1
E(X)=1--log(1+a),
a
and

Var(X) = 1 - %mg(l +5)-EXP,
respectively. In reference [43], Figure 2 showed that the PDF is decreasing for the small values of a,
or U shaped. In reference [43], Figure 7 showed that skewness is a strictly decreasing function with
respect to a and can be negative, or positive, meaning that the distribution can be left, or right skewed,
respectively. Also, kurtosis is a non-monotonic function with a V shape. It can be inferior, equal, or
superior to 3, meaning that the distribution may be platykurtic, mesokurtic, or leptokurtic, respectively.

2.90. Unit Muth distribution

Let Y denote a Muth random variable with shape parameter a and scale parameter b. Let X =
exp(—Y). The researchers in [120] showed that the PDF and CDF of X are

£0) = epr(é) (x°F —a)xt 1 exp (_%x— )

)

respectively, for 0 < x < 1, where a > 0 is a scale parameter. The kth moment of X is

E(XY) =1-bka " exp(l)T(l —%,—).

a a a

SIS

and

1\ _a 1 _
F(x) = exp | hexp(——x

S

In particular, the mean and variance are

and

Var(X) = 1 -2ba exp(l)r(1 _2 1) _E(X)],
a a a
respectively. In reference [120], Proposition 2.1 showed that the PDF is unimodal if 0 < a < 1
and b > 0. In reference [120], Figure 2 showed that mean is a decreasing function of » and variance
is unimodal with respect to » when a is fixed. In reference [120], Figure 3 showed that skewness is
an increasing function of b and kurtosis is bathtub shaped with respect to b when a is fixed. This
distribution has been applied to model SC 16 and P3 algorithms for estimating unit capacity factors
and times between failures of secondary reactor pumps.
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2.91. Cauchy-logistic unit distribution

Let Y denote a Cauchy random variable with scale parameter b. Let X = log (Y™ —1). The
researchers in [174] showed that the PDF and CDF of X are

ab

1) = nx (1 —x%) [b2 +log? (x4 - 1)]’
and
F(x) = % - % arctan [%],

respectively, for 0 < x < 1, where a > 0 is a shape parameter. The kth moment of X is

E() =3+ o) (_Sf ) [ERORSICIE

where

wib) = Ci(ib) sin(ib) + cos(ib) [% _ Si(ib)].

In particular, the mean and variance are

and

Var(X) =

2
J[030) =i )] - [ECOP
respectively. This distribution has been applied to model percentage of use of certain types of
antibiotics before and during the SarS CoV virus pandemic and percentage of time spent using the

service by end users and is part of the training data set relating to network and telecommunication
traffic in India.

2.92. Unit Xgamma distribution

Let Y denote an Xgamma random variable with scale parameter b [163]. Let X = . The

T+Y
researchers in [78] showed that the PDF and CDF of X are

f(x):1ljrb(1_—1x)2[1+g(%)2]e’(p(_blfx)’

and

1 X b2 x \2 x
Flo =1- 1+bl1+b+b1—x+?(1—x) ]eXp(_bl—x)’
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respectively, for O < x < 1, where b > 0 is a scale parameter. The kth moment of X is

ex > . 3 ox o0
5(xt) = 1200 ;<—1>i(f)b’r<1 ~ib) + lz(l—i(l[j));( )i ("f l)b’r(z—i,b)_

In particular, the mean and variance are
( ) - i’ b) ’
and

E(X) = ’“’*X_P(”)i(_ni(i)bir(l by Lol
ex - . 3 ex > .
Var (X) = blTp(:) Z(—l)i(z_)b’r(l —i,b) + b—p(b) Z(_l)i(é)blr(z— i,b) - [E(X)]Z’

NMg

14+b & 1—|—b
i=0
i=0 ! 2(1+0) & !

respectively. In reference [78], Figure 1 showed that the PDF can be monotonically decreasing, or
unimodal. In reference [78], Table 1 showed that the distribution can be negatively skewed for b < 1, or
positively skewed for b > 1. Furthermore, the distribution is leptokurtic b < 0.5, or b > 5, mesokurtic
for b = 5, and 1 is platykurtic for 0.5 < b < 5. This distribution has been applied to model water
capacity month-wise from the Shasta reservoir in California.

2.93. Unit exponential Pareto distribution

Let Y denote an exponential Pareto random variable with shape parameter a and scale parameters
b,c[12]. Let X = % The researchers in [76] showed that the PDF and CDF of X are

10 =% [b(lx— x)r_1 o {_C[b(lx— %) ]}

F(x) = 1—exp{-c[b(1x_x)r},

respectively, for 0 < x < 1, where a > 0 is a shape parameter, and b > 0, ¢ > 0 are scale parameters.

The kth moment of X is
k ca k—2\ca ]
E(X) b2 ( i )bz+zr(1_5)

In particular, the mean and variance are

and

and

2 o 4 42 .
ca —4\c i 2
vart) = 55 33T (1- ) - te0or,
1=

respectively. In reference [76], Figure 1 showed that the PDF can be decreasing, upside down with
unimodal, skewed to the left, or symmetric. This distribution has been applied to model recovery rate
of COVID-19 in Turkey, proportions of total milk production in the first cow births and failure times
of components.
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2.94. Chesneau’s unit gamma distribution

Let Y denote a gamma random variable with shape parameter a and scale parameter b. Let X = lJlr—Y
The researchers in [45] showed that the PDF and CDF of X are

f(x) _ ba;)((z)(b) x—a—] (1 _ x)b—l exp (_g) ,

and

F(x) :l—r(la)y(a,i—z—b),

respectively, for 0 < x < 1, where a > 0 is a shape parameter, and b > 0 is a scale parameter. The kth
moment of X is

kK ex > fa—1\ .
E(x") = %;(—1)’( _ l)bT (a—i—kb).

1

In particular, the mean and variance are
bexp(b) — da—1\ .
E(X) = ——— -1) b'T (a—i-1,b),
0 =272 0 ("] =i
i=0
and
b? exp(h) — fa—1\; : 2
Var(X) = ——= > (-D){" . JpT (a-i-2,6) - [E(X)]?,
I'(a) & i

respectively. In reference [45], Figure 2 showed that the PDF can exhibit a variety of unimodal shapes,
including left skewed, nearly symmetric and right skewed unimodal. In reference [45], Table 1 showed

that skewness can be negative, or positive. Furthermore, kurtosis can be lower, or greater than 3. This
distribution has been applied to model proportions of income spent on food.

2.95. Unit gamma distribution [59]

Let Y denote a power Burr X random variable with shape parameters b, ¢ and scale parameter
a [180]. Let X = exp(—Y). The researchers in [59] showed that the PDF and CDF of X are

c—1

f(x) = 2a®bex™ (~log x) 207! [1 —exp {— [a(— log x)b]2}] ;
and
F(x)=1- [1 —exp {— [a(— log x)b]2}]c,

respectively, for 0 < x < 1, where b > 0, ¢ > 0 are shape parameters, and a > 0 is a scale parameter.
The kth moment of X is

> —1)itiK ifc—1 ]
) e 5 ()
ol (j+ 1)1t 2b

AIMS Mathematics Volume 10, Issue 11, 25939-26057.



26012

In particular, the mean and variance are
- —1)it ifc—1 ]
EX)=c ) Lia‘ﬁ(c _ )r(l + i),
oil(j+ 1)t
and

Var(X) = ci,j:O %a—é(c; 1)r(1 + i) - [EX)).

respectively. In reference [58], Figure 1 showed that the PDF can be symmetric, U shaped, right
skewed, J shaped, or normal tapered. In reference [58], Figure 3 showed that skewness, and kurtosis
increase as b and c increase. Furthermore, as a increases, skewness decreases and kurtosis increases.
This distribution has been applied to model proportions of income spent on food, COVID-19 data, and
data with responses of naive mock jurors.

2.96. Unit Ishita distribution

Let Y denote an Ishita random variable with shape parameter a [167]. Let X = exp(-Y). The
researchers in [35] showed that the PDF and CDF of X are

a’xe! [a + log? x]
a’+2

flx) =

’

and

x4 [a3 + a?log? x — 2alog x + 2]
F()C) — 3 ’
a’+2

respectively, for 0 < x < 1, where a > 0 is a shape parameter. The kth moment of X is

a’ [a(a+k)2+2]
E( k): (@ +2) (at+ k)3

In particular, the mean and variance are

a’ [a(a+ 1)2+ 2]
@2 (@t 17

E(X) =

and

a’ [a(a +2)2 + 2]
(@ +2)(a+2)*

Var(X) = [E(X))*,

respectively. In reference [35], Figure 1 showed that the PDF can be monotonically increasing,
monotonically decreasing, or unimodal.
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2.97. Unit extended exponential distribution

Let Y denote an extended exponential random variable with shape parameter a and scale parameter
b [67]. Let X = exp(—Y). The researchers in [150] showed that the PDF and CDF of X are

_a*(1-blogx)x*!

fl) = a-+b ’
and
ablog x
F =|1- a
(%) ( a-+b )x,

respectively, for 0 < x < 1, where a > 0 is a shape parameter, and b > 0 is a scale parameter. The kth
moment of X is

o a(k+a+b)
EX) = @i

In particular, the mean and variance are

@ (l+a+b)
EX = rm @
and
Var(x) = S 2D g2,

(a+b)(at2)

respectively. In reference [150], Figure 3 showed that the PDF can be decreasing, left skewed, right
skewed, or unimodal. This distribution has been applied to model tensile strength observations of
polyester fibers and computing times of P3 algorithms.

2.98. Unit distribution based on a half-logistic map distribution

-1
Let Y denote a quasi Lindley random variable. Let X by proportional to [log(l -Y 2)] . The
researchers in [173] showed that the PDF and CDF of X are

2ax

1) = (1 2 [b-alog(1-2)].

and

(1-x2)"[p+1-alog(1 -]
b+1 ’

F(x)=1-
respectively, for 0 < x < 1, where a > 0 is a shape parameter, and b > 0 is a scale parameter. The kth
moment of X is
T4+ 1)T(a+1)|[b+ay(s+at1)-ay(a)

(b+ 1) (5 +a+1) '

E(x*) =

AIMS Mathematics Volume 10, Issue 11, 25939-26057.



26014

In particular, the mean and variance are

Val(a+1) [b +ay (% + a) - az//(a)]

EX) = 2(b+ 1T (3 +a)

9

and

T(a+1)(b+2- ) 5
b+ DI (a+2) EO)

respectively. In reference [173], Theorem 1 showed that the PDF is unimodal if @ > 1 and is
monotonically increasing if 0 < a < 1. In reference [173], Theorem 3 showed that the distribution

can be positively asymmetric if either b > &£(a) and a; < a < ap, or b > 0 and a > ay, where a; is

L : » 2a3"1og( 3 N .
an asymptotic point and a; is a positive zero of £(a) = (12-3“——g4(;)' The distribution can be negatively

asymmetric if either a < aj, or 0 < b < & (a) and a; < a < ap. This distribution has been applied
to model ratings of organizations involved in organizing polls, antibiotic usage before and during the
COVID-19 pandemic, and percentages of time spent by end-users using telecommunications services.

Var(X) =

2.99. Unit Mirra distribution

Let Y denote a Mirra random variable [162]. Let X = IJ%Y The researchers in [13] showed that the
PDF and CDF of X are
b3[(a—|—2)x2—|—a—2ax] b(1 - x)
flx) = 2x* (a + b?) exP [_ x ] ’
and

F(x):{1+ ab [1—x+b(1—x)2]}exp[_b(l—x)],

a+b2| x 2x2 X

respectively, for 0 < x < 1, where both @ > 0 and b > 0 are scale parameters. The kth moment of X is

E (Xk) _ b*{a+ exp(b) [(a + 2)51(5;8}:)]?;;(219 +k—2)E_1(D)] }.

In particular, the mean and variance are

b*{a +exp(b) [(a+2)bE|(b) —a(2b—1)Ey(b)]}

E(X) = 2 (a+b?) ’
and
Var(X) = Plactonlt) [(Z L?bb%(b) 2ROD gy,

respectively. In reference [13], Figures 2 and 3 showed that the PDF can be positively skewed,
increasing, or increasing-decreasing. This distribution has been applied to model times of kidney
dialysis patients to infection measured in months and trade share values.
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2.100. Unit exponentiated half logistic distribution

Let Y denote an exponentiated half logistic random variable [92]. Let X = exp(-Y). The
researchers in [81] showed that the PDF and CDF of X are

2abx?! (l—xa )b_l
(14 x> \IH2)

f(x) =

and

1—x2\°
1+xa]°

F(x)=1 —(
respectively, for 0 < x < 1, where both @ > 0 and b > 0 are shape parameters. The kth moment of X is
b k
E(x¥) _ZbZ ( +l) ( +i+1,b).

In particular, the mean and variance are

E(X)=2b i(—l)”(b N i)B(é +i+ l,b),

1

i=0
and
Var(X)szZ(—l)(bj_l) (a+l+1 b) [E(X)]*,

respectively. In reference [81], Figure 1 showed that the PDF can be right skewed, left skewed,
reverse J shaped, U shaped, or asymmetric. In reference [81], Table 1 showed that when a increases for
a fixed b, the first four moments, variance, and skewness decrease, while kurtosis increases. When b
increases for a fixed a, the first four moments and kurtosis decrease, while variance, and skewness
increase. This distribution has been applied to model trade share values, measurements of polyester
fibers’ tensile strength, daily new deaths, daily cumulative cases, and daily cumulative deaths.

2.101. Unit exponentiated Fréchet distribution

Let Y denote an exponentiated Fréchet random variable with shape parameters a, b and scale
parameter c. Let X = 17 . The researchers in [9] showed that the PDF and CDF of X are

}a—l

+Y

s =S (5] s (5 ool (5
ro=-fonf (2
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respectively, for 0 < x < 1, where both @ > 0 and b > 0 are shape parameters. The kth moment of X is
o (a—1\(-k\ (=1)ic™/ _(j
E(X=a) (a . )( .)%F(l—ﬂ).
= RN (RS D LA

In particular, the mean and variance are
o (a—1\(-1\ (=1)ic™/ _/j
F(x) = e ),
w=a X () 6
and
o (a—1\(-2\ (=1)ic/ _/j
Var(X)=a (“. )( .)%r(iJrl)—[E(X)]z,
i=0 1 ] (i—f-l)EJr] b

respectively. In reference [9], Figure 1 showed that the PDF can be increasing, decreasing, left
skewed, right skewed, or approximately symmetric. In reference [9], Table 1 showed that skewness
can be positive, or negative. This distribution has been applied to model insurance loss data and
risk management.

2.102. Modified unit half-normal distribution

Suppose Y is a half-normal random variable with scale parameter a. Let X = 1i_Y The researchers
in [19] showed that X has the PDF and CDF

f(x>=i¢(1‘x),

and

F(x):2CI>(x_1),

ax

respectively, for 0 < x < 1, where a > 0 is a scale parameter. The associated kth moment is

Xk \/’ f exp
+at

In particular, the mean and variance are
\/’ o0 exp -5
E(X) = f ;
BEY
00 exp -5 5
Var (X \/7 - E(X
I - (e

respectively. In reference [19], Proposition 2 showed that the PDF is unimodal at x = %az_l. This

distribution has been applied to model shape perimeter of rocks from an oil reservoir and proportions
formed by COVID information taken from a Chilean database.

and

-
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2.103. Unit Hagq distribution

Let Y denote a Haq random variable with scale parameter a [11]. Let X = exp(—Y). Alzahrani and
Almohaimeed [21] showed that the PDF and CDF of X are

a’ alog® x 1
——— (2 a-=
1) = (g e )
and
1 2 a®log? x
F(x):m[(l-i—a) —alogx—i—T x“,

respectively, for 0 < x < 1, where a > 0 is a scale parameter. The kth moment of X is

a’ [a + (2 —|—a)(k+a)2]
EX) = — iy ar

In particular, the mean and variance are

and

a? [a +(2+ a)3]

(1+a)2(2+a)3 - E(X)]27

Var(X) =

respectively. Alzahrani and Almohaimeed [21, Figure 1] showed that the PDF can be monotonically
increasing, or monotonically decreasing. Alzahrani and Almohaimeed [21, Table 1] showed that mean
increases and variance decreases with respect to a. This distribution has been applied to model distinct
algorithms, P3 and SC16, used for estimating unit capacity factors.

2.104. Unit Burr-Hatke distribution

Let Y denote a Burr-Hatke random variable with scale parameter a [115]. Let X = exp(-Y).
Saglam and Karakaya [158] showed that the PDF and CDF of X are

711 —a(logx—1)]
(1 —logx)?

f(x) =

and

xa

F(x)

- log x’
respectively, for 0 < x < 1, where a > 0 is a scale parameter. The kth moment of X is

E(X*) = 1-kexp(a+k)Ei(a+k).
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In particular, the mean and variance are
E(X)=1-kexp(a+1)Ei(a+1),
and
Var(X) = 1 —kexp(a+2)Ei(a +2) - [E(X)]*,

respectively. Saglam and Karakaya [158, Figure 1] showed that the PDF can be monotonically
increasing, or bathtub shaped. Saglam and Karakaya [158, Table 1] showed that mean increases as a
increases. Furthermore, variance, skewness, and kurtosis decrease as a increases. The distribution is
skewed to the right for small a and skewed to the left for large a.

2.105. Unit Garima distribution

Let Y denote a Garima random variable with scale parameter a [166]. Let X = exp(—Y). Ayuyuen
and Bodhisuwan [25] showed that the PDF and CDF of X are

) = 28 exp|-a1 1)),

(2+a)x’ X

sl ol

respectively, for 0 < x < 1, where a > 0 is a scale parameter. This distribution has been applied to
model failure times of Kevlar 49/epoxy strands test and measurements on petroleum rock samples.

and

2.106. Unit power skew normal distribution

Let Y denote a power skew normal random variable [118] with the PDF and CDF specified by

fy) = [@sn(v:a)]”,
and

b-1
F(y) = bgsn(y) [Psn(y:a)]

respectively, for —co < y < oo, where b > 0 is a shape parameter. Furthermore, ¢sy(+;a) and gy (+; a)

denote the PDF and CDF of a skew normal random variable with shape parameter a [26]. Let X =

exp [—exp(Y)]. [117] showed that the PDF and CDF of X are

B b log(—logx)—c log(—logx) —c b-1
fx) = _dxlogx¢SN( d ’“) CDSN( d “)] ’
and
b
Fx) = CI)SN(log(—l(;gx)—c;a)] :
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respectively, for 0 < x < 1, where —co < a < o0, b > 0 are shape parameters, c is a location parameter,
and d is a scale parameter. The kth moment of X is

E(Xk) = bfl ! exp{—kexp [@g}v(t;a)]}dt.
0

In particular, the mean and variance are

1
E(X) = bfo ! exp{— exp [@g}v(t;a)]}dt,

and

Var (X) = bf(;l ! exp{—Zexp [@E}V(t;a)]}dt— [E(X)])?,

respectively. This distribution has been applied to model percentages of teachers of the fundamental
level of the municipalities of Brazil and food/income taxa.

2.107. Unit generalized Rayleigh distribution
Let Y denote a generalized Rayleigh random variable with shape parameter a and scale parameter
b [111]. Let X = exp(—Y). The researchers in [85] showed that the PDF and CDF of X are

2ab* log x

flx) = exp [—(blog x)z] {1 — exp [—(blog x)z]}a,

and

F(x)=1- {1 —exp [—(blogx)z]}a_l,

respectively, for 0 < x < 1, where a > 0 is a shape parameter, and » > 0 is a scale parameter.
In reference [85], Figure 1 showed that the PDF can be monotonically increasing, monotonically
decreasing, or unimodal.

2.108. Unit Fav-Jerry distribution

Suppose Y is a Fav-Jerry random variable with shape parameter a [55]. Let X = exp (—%)
Karakaya and Saglam [94] showed that the PDF and CDF of X are

ab (2 —a’blog x) xeb=1

) = a*+1

2

and

(az +2—-a’blog x) xeb
Fla) =
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respectively, for 0 < x < 1, where a > 0 is a shape parameter, and b > 0 is a scale parameter. The kth
moment of X is

2abk + 2a*b* + a*b?
E(Xk): abk + 2a —|—a2'
(a®>+2) (k + ab)
In particular, the mean and variance are
_ 2ab+2d%b* + a*b?

EX) (a®42) (1 +ab)?’

and
dab +2a°b* + a*b*
(a®+2) (2 + ab)?

respectively. In reference [94], Figure 1 showed that the PDF can be decreasing, increasing, unimodal,
or decreasing-increasing. In reference [94], Table 1 showed that, as a and b increase, mean increases
while variance, skewness, and kurtosis decrease. For small a and b, the distribution is skewed to the
right. For large a and b, the distribution is skewed to the left. This distribution has been applied to
model proportions of total milk production in the first cow births from the Carnauba farm in Brazil and
Better Life Indices based on self-reported health data from 2015.

E(X)]

Var(X) =

2.109. Unit power half-normal distribution

Suppose Y is a power half-normal random variable with shape parameter a and scale parameter
b [66]. Let X = —L_. The researchers in [159] showed that the PDF and CDF of X are

1+Y"
2a (1-x 1-x a-l
0= ool

F(x)zl—[ZCI)(lb_x)—l]a,

X

and

respectively, for 0 < x < 1, where a > 0 is a shape parameter, and b > 0 is a scale parameter. The kth

moment of X is
1 —k
E(x¥) = af gl [1 4 pd! (ﬂ)] dr.
0 2

In particular, the mean and variance are

1 -1
E(X):af ! [1+b®‘1(%)] dt,
0

and

Var (X) = afol ! [1 +b¢‘l(%)r di = [E(X)]*,
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respectively. In reference [159], Figure 1 showed that the PDF can be unimodal. In reference [159],
Table 1 showed that skewness is negative for small @ and b and negative for large a and b.
This distribution has been applied to model patient health outcomes and survival rates under a
specific treatment.

2.110. Unit Monsef distribution

Suppose Y is a Monsef random variable with scale parameter a [4]. Let X = HLY The researchers
in [5] showed that the PDF and CDF of X are

a3

I =T (a® +2a+2) eXp(_la—xx)’

and

(2—|—2x2—4x—2ax—|—2a—|-a2) ax
(1-2)2(a® +2a+2) p(‘ )

respectively, for 0 < x < 1, where a > 0 is a scale parameter. The kth moment of X is

613 1 tk ax
- L P
) a2+2a+2fo (1—x)4eXp( l—x)

In particular, the mean and variance are

F(x)=1- T2

24+a
E(X) = 2+4+2a+d?’
and
Var(x) = -2~ [EX)P.
2 +2a+a?

respectively. In reference [5], Figure 1 showed that the PDF can be monotonically decreasing, or
unimodal. This distribution has been applied to model educational attainment for OECD countries.

2.111. Unit bimodal Birnbaum-Saunders distribution

Suppose Y is a bimodal Birnbaum-Saunders random variable with scale parameters a, b and location
parameter ¢ [139]. Let X = exp(—Y). The researchers in [119] showed that the PDF and CDF of X are

1 b \? b\
1)~ oo || oes) * (e }‘p('“)‘” +o)
and
1-® (1(x) +¢)
. o] if x < exp(-D),
D (1(x) +c¢
1- 2TT-0(0) if x > exp(-D),
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respectively, for 0 < x < 1, where #(x) = é ( \/—lol’j’x - . /—@), a > 0, b > 0 are scale parameters,

and —co < ¢ > oo is a location parameter. The mean and variance of X are

1

ST

{exp(—b) [1-®(c)] + f(;l P (1(x) +¢) dx},

and

Var(X)

exp (-72) foo PRV eXp{(l +4b)x? + 2bx [c [t(x)] - 1] + 2
) Jo

_ (P
42 Vb (—c 2bx }d ECON

respectively. This distribution has been applied to model biomedical measurements of 100 female
athletes and 102 male athletes competing in different sports and clinical marker of periodontal diseases.

2.112. Unit Omega distribution

Suppose Y is an Omega random variable with shape parameters a, b and location parameter ¢ [54].
Setting ¢ = 1 gives a unit distribution as shown in Prataviera and Cordeiro [146]. Its PDF and CDF are

2abxP1 (1 4+ 22\
flx) = 2 ( b) :
1-—x 1-—x

and

1+ x2\7
1—-xt)] ~°

F(x)=1- (
respectively, for 0 < x < 1, where a > 0 and b > 0 are shape parameters. The kth moment of X is

k ko k
E(Xk):2aB(E+1,a+l) le(a+1;B+1,E+a+1;—1).

In particular, the mean and variance are

1 1 1
E(X) :2“B(Z+1’“+1) 1F2(d+1;5+1,5+a+1;—1),

and

2 2 2
Var(X) = ZaB(E—i- 1,a+ 1) 1F2(a—|- 1;E+ 1,E+a—|- 1;—1)— [E(X)]z,

respectively. Prataviera and Cordeiro [146, Figure 1] showed that the PDF can be asymmetric left,
symmetric, asymmetric right, or U shaped. This distribution has been applied to model annual
percentages of antimicrobial resistant isolates in Portugal in 2012.
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2.113. Unit log-normal distribution

Suppose Y is a log-normal random variable with location parameter a and scale parameter b. Let

X = H—LY Ribeiro-Reis [155] showed that the PDF and CDF of X are

1

f(x) = —\/be(l . exp {—ﬁ [log 1 fx _ a]z} ’

and

1 1 log =~ —a
Flx) = - 4 —erf| 21>~
(x) 2—|—2er( b ),

respectively, for 0 < x < 1, where —co < a < oo is a location parameter, and » > 0 is a scale
parameter. Ribeiro-Reis [155, Figure 1] showed that the PDF can be symmetric, right symmetric, left
symmetric, U shaped, or M shaped. This distribution has been applied to model Firjan health indices
of 853 municipalities in the State of Minas Gerais, Brazil and proportions of households with per capita
household income below the extreme poverty line.

2.114. Unit power Lindley distribution

Suppose Y is a power Lindley random variable with shape parameter a and scale parameter b [63].
LetX = %/ The researchers in [96] showed that the PDF and CDF of X are
a bZ xa—l

f) = T e [1 +(1ix)a]eXp[_b(1fx)a]’

and

Flx) = 1_[1 +ﬁ(lfx)a]e)(p[_b(l fx)a]’

respectively, for 0 < x < 1, where a > 0 is a shape parameter, and » > 0 is a scale parameter. In
reference [96], Figure 1 showed that the PDF can be monotonically decreasing, unimodal, or bathtub
shaped. In reference [96], Table 1 showed that the distribution is platykurtic. This distribution has been
applied to model measures on burrs.

2.115. Unit gamma Lindley distribution

Suppose Y is a gamma Lindley random variable with shape parameter a and scale parameter b [7].
Let X = %, Karakaya and Saglam [95] showed that the PDF and CDF of X are

a1+ (a+b)(1-x)]x ' (b—bx+x)™
fx) = (1 +b)(bx—x—b)?

b

and

()’ ab (%)’
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respectively, for 0 < x < 1, where a > 0 is a shape parameter, and b > 0 is a scale parameter. Karakaya
and Saglam [95, Figure 1] showed that the PDF can be increasing, decreasing, or unimodal. This
distribution has been applied to model cost-effectiveness in firms’ risk management and educational
attainment for OECD countries.

2.116. Hassana and Alharbi’s unit inverse exponentiated Weibull distribution

Suppose Y is an inverse exponentiated Weibull random variable with scale parameter € and shape
parameters &, ¢ [112]. Let X = exp(—Y). Hassan and Alharbi [80] showed that the PDF and CDF of
X are

flx) = Sepx! (—log x)_‘s_1 exp [—8(— log x)_‘s] {1 —exp [—8(— log x)_é]}d)_l ’
and

F(x) = {1 —exp [—s(— log )c)_‘s]}qj ,

respectively, for 0 < x < 1, where £ > 0 is a scale parameter and 6 > 0, ¢ > 0 are shape parameters.

The kth moment of X is
o [(¢p—1\ (=1)/TK '
E(r)= ) () (- 4),
=0\ 1 Tille(j+1)]

In particular, the mean and variance are

E(x) = i (¢; 1)i! [(—1)j+ig¢ F(l _é)’

=0 e(j+ 1)

and

Var (X) = i (‘b_, 1) |(_1)Hi2j$¢ r(1 _ i)_ E(X)),

20N I infe(j+ 1))

respectively. In reference [80], Figure 1 showed that the PDF can be left skewed, right skewed,
asymmetric, or unimodal. In reference [80], Table 1 showed that the distribution can be leptokurtic,
or platykurtic. This distribution has been applied to model total milk production in the first cow births
and remission times of a random sample of bladder cancer patients.

2.117. A two—parameter unit probability model distribution [83]

The researchers in [83] proposed a two—parameter unit distribution with the PDF and CDF given by
f@) = (1= 1+ 0 x(a +5) + a-p].
and
F(x) =1-(1-x)%(1+ x)P,
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respectively, for 0 < x < 1, where @ > ,8 @ € R™, and B € R are shape parameters. The kth moment is
EN ) Ralk+i+ j) +3a +B]

ZJ)]Z (k+ti+j+1)(k+i+j+2)

In particular, the mean and variance are
(/3 D=1 [2a(1 +i+ j) +3a+8]

;)]Z (i+j+2)(i+j+3) ’

and
o oo NG 1)( Di2a(2+i+ j) +3a+4]
V‘”(X)_ZZ i+tj+3)(itj+4) - [EQOF,

i=0 j=

respectively. This distribution has been applied to model COVID-19 data, glass fiber strengths, total
milk production from the first cow births and unit capacity factors through a comparative study of two
distinct algorithms.

2.118. Unit Weibull probability distribution [160]

Suppose Y is a Weibull random variable with scale parameter o and shape parameter 8. Let X =
# The researchers in [160] showed that the PDF and CDF are

£(x) = aﬁ(l ;x)ﬂ_l ¥ exp [—a(l - X)B],

X

F(x) = exp [—a(l ;x)ﬁ],

respectively, for 0 < x < 1, where @ > 0 is a scale parameter, and 8 > 0 is a shape parameter. The kth
moment of X is

and

E(x*) _aﬁZZA,]B (i+k=Bj-B.Bj+1),

i=0 j=
R O D A i i
where A; ; = 7 (7" )a’. In particular, the mean and variance are
= aﬁZZA,]B i+ 1-Bj-B.Bi+1),
i=0 j=
and

Var (X) = a,BZ Z AijB(i+2-Bj-B.Bj+1)- [E(X)]z )

i=0 j=0
respectively. In reference [160], Figure 1 showed that the PDF can be bathtub shaped, right skewed, or

unimodal. This distribution has been applied to model educational attainment data and effectiveness of
a firm’s risk management in terms of cost.
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2.119. Unit exponentiated Weibull probability distribution Sarhan and Sobh [161]

Suppose Y is an exponentiated Weibull random variable with scale parameter @ and shape
parameters 3,y [130]. Let X = exp(-Y). Sarhan and Sobh [161] showed that the PDF and CDF

of X are
Bp-1 B B y-1
flx) = aBy (log l) exp [—a (log l) ]{1 —exp l_a (log l) ]} ’
X X X x

F(x)=1- {1 — exp [—a (log i)ﬁ]}y

respectively, for 0 < x < 1, where @ > 0 is a scale parameter, and 8 > 0, y > 0 are shape parameters.
The kth moment of X is

and

y-1 .
y-DTly) . )
;)F(y—i)(ﬂr1)!’“‘k((l+1)a,ﬁ), v eNt,
E(X*) =
o y(=Di(y-1)(y=2)(y=i) , ..
;) (i+1)! w, (i+1)a,B), v/ eNT,
where
=0 jla# B
In particular, the mean and variance are
y-1 .
yEDTH) )
,-Z—(:)F(V—i)(i+1)!#1((l+l)“’ ) e N,

E(X) =

S = YU D 020 (4 1), 7 e
i=0 .

and

((i+1)a.B) = [E(X)], YENT,

T DT
2T+ i
Var (X) =

o ((i+ DanB) = [E(X)]*, /€ NT,

i YD -D(r-2)---(y—i)
Z (i+ 1)

respectively. Sarhan and Sobh [161, Figure 1] showed that the PDF can be monotonically increasing,
monotonically decreasing, bathtub shaped, or unimodal. Sarhan and Sobh [161, Figure 2] showed that
skewness is always positive and initially decreasing, then increasing. Furthermore, kurtosis is positive

and increasing. This distribution has been applied to model breaking stress of carbon fibers, breaking
stress of carbon fibers, and failure times of the air conditioning system of an airplane.
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2.120. Unit log symmetric distribution [183]

Let Z denote a random variable symmetric around 0 with the PDF and CDF denoted by f7(+) and
Fz(-), respectively. The researchers in [183] proposed a unit log symmetric distribution with the PDF
and CDF

f(x) = ox(1 =) 2|18 [(n(lx—x))é]),

and

F(x)zFZ(log—( al )1

\n(1-x)

respectively, for 0 < x < 1, where o > 0 is a shape parameter, and > 0 is a scale parameter. The kth
moment of X is

ql
—
N’

k

1 = 1
E(x*) = E (ZO ailog(n) +oZ| |, a = Ei(1)=.
1=
In particular, the mean and variance are
1 ag
E(X) = 5E|) alog(n) +oZ|,
2 i=0
and
1 = ’
Var (X) = i {Z ai(log(n) + oZ| |- [E(X)]?,
i=0

respectively. In reference [183], Figures 1 and 2 showed that the PDF can be unimodal, decreasing-
increasing-decreasing bimodal, or trimodal. This distribution has been applied to model internet
access data.

2.121. Vila and Quintino’s unit asymmetric distribution

Suppose (Y1,Y2) have the bivariate extreme distribution with Fr'echet margins [57, p. 14], with

scale parameter o, shape parameter @ and correlation coefficient p. Let X = Yl)-/‘rle' Vila and
Quintino [184] showed that the PDF and CDF of X are
@ 2 a 2
: R G

fx) = =5 (s +1)? -— ,
0'2 [(;_t+1)2_p5%]2 (#4_1)2

and

(2.31)
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respectively, for 0 < x < 1, where s = =, o > 0 is a scale parameter, & > 0 is a shape parameter, and
0 < p < 1 is correlation coefficient. The kth moment of X can be approximated as

k k k—1
E(Xk) ~ (L) + Hi 2 K2 [(k— 1),[12—2/11] Var (Y])
M1+ (2 2 (u1 + 12) M1

+ 2 (u1 —kua) Cov (Y1, Y2) + (k+ 1)y Var (Y,) }

where
1
,ui:oT(l——), a>1,
a
2 1
Var (Y;) :0'[1"(1——)—1"2(1——)], a@>2
a a
and

2 1
|Cov (Y1.Y2)| < 0 [F(l - —) —r2(1 - —)] a>2.
o a
In particular, the mean and variance can be approximated as

H
Hr+H2 (uy + o)

E(X) ~ 3 {waVar (1) + (u2 — 1) Cov (Y1, Y2) =y Var (Y2)},

and

Var(X) ~ —H— {ﬂ (12 = 2u1) Var (Y1) + 2 (u1 = 2u2) Cov (Y1, 12) +3,U1VW(Y2)}

(1 +p2)* 1
1
Tty {iaVar (Y1) + (a2 — 1) Cov (Y1, Y2) — i Var (12)
H1 T H2
2
( _f] )4 {#2Val’ (Yl) + (/-12 _,Ul) Cov (Yl, Yz) — w1 Var (YZ)} ,
M1 T H2

respectively. Vila and Quintino [184, Figures 3 and 4] showed that the PDF can be unimodal, or
bathtub shaped. This distribution has been applied to model medium pass completion proportions in
UEFA Champions League and expenditures and income data from Italy.

2.122. Unit bimodal distribution [185]

Suppose (Y1,Y,) are correlated Birnbaum-Saunders random variables. Let X = % The
researchers in [185] showed that the PDF and CDF of X are

o {2 (5 + )} o+ 2 { [ \ﬂ}
aja; ( Bi Bas

drajan /1 - p? S
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_ @-I- B K(V”pvp Z_ZS B1B2 VUpVp
Bi Bas| \1- BBz ’
and
B2
. 11“(\/[)’71'0) V2 (sB2- 1)
(x) = E_Ef erf

v2(1-p?) a1+/sp1B2 (1 - p?) arw + \/ vw)’

; = _s 1 _ 2% [ = B B _ 2 [BB
respectively, for 0 < x < 1, where u, = 26 + 2 " wma \Bify Vp = o + ol T maz =,
a; > 0,a2 > 0,81 > 0,82 > 0 are scale parameters, and —1 < p < 1 is a correlation coefficient. The

kth moment of X is

-p
Xk:——i- f’”f erf ) V2 (B2 —1) w)dwd.

,/ 2(1-p ,[sﬁlﬁz 1— azw—i- \[ azw

In particular, the mean and variance are

_—+ ff __p) V2 (582 =) w)dwd,

\/17/)2 \/sﬁ]ﬁTazw—i— \/CVZT

and
az Sﬁz —F ) V2 (82 - 1) 2
Var f f erf J 1-p ’/smﬁz 1 p arw + \[ aza) dwdl ( )] ,

respectively. In reference [185], Figures 1-4 showed that the PDF can be bimodal. This distribution
has been applied to model data on income and consumption from Italy and percentage of the body fat
complement of athletes.

2.123. Unit power generalized Weibull distribution [56]

Suppose Y is a power generalized Weibull random variable with shape parameters «, 5, and scale
parameter A [52]. Let X = exp(—Y). The researchers in [56] showed that the PDF and CDF are X are

flx) = aB/l( log x)* 1 [1 4 A(~log x)"]ﬁ_1 exp{l —[1+ A(-log x)a]ﬁ} ,

X

and
F(x) = exp{1 = [1+ A(~log x)F).
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respectively, for 0 < x < 1, @ > 0, 8 > 0 are shape parameters, and 4 > 0 is a scale parameter. The kth

moment of X is

/l)"“ i (—_1)"((i+1),3—1

E(x") = aﬂe(k—a g ; )F (a(j+1)).

i,j=0

In particular, the mean and variance are

£ =apre 3, ST e o),

i,j=0 i J
and
3 (—1D)i/(; _
Var (X) = afﬁeg—a Z_O(,—ll)(( + lj?ﬁ 1)F (a(j+1))- [E(X)]z

respectively. In reference [56], Figure 1 showed that the PDF can be constant, bathtub shaped,
unimodal, J shaped (increasing), and inverted J shaped (decreasing). This distribution has been applied
to model COVID-19 mortality rates in the Kingdom of Saudi Arabia, failure times of an airplane’s
air-cooling system, burr measurements on iron sheets, and susceptibility indices for irradiated and

unirradiated peppermint packages.

3. Application with real data sets

In this section, we use real-life data sets to illustrate the application of several models reviewed in
Section 2. These data sets have been used by different authors and were obtained from various sources.
To ensure consistency, we prioritized data sets that have been widely used and recognized for their

relevance to unit probability distributions. These include:

e Tensile strength of polyester fibers data: This dataset consists of 30 measurements of tensile

strength of polyester fibers, as reported in Quesenberry and Hales [148].

Capacity factor datasets: Capacity factor is defined as the ratio of actual electricity output to the
maximum possible output from a power unit, and lies within the unit interval [0, 1]. It is widely
used as a reliability metric for evaluating the efficiency of energy generation systems. Different
algorithms have been proposed to estimate this metric under varying assumptions. Two datasets of
estimated capacity factors generated using two algorithms discussed in [39]: The SC16 algorithm
and the P3 algorithm are considered. Accordingly, we refer to these datasets as

— Capacity factor dataset 1 (SC16): Estimated using the SC16 algorithm, this dataset contains
23 values of the capacity factor derived from probabilistic production costing models.

— Capacity factor dataset 2 (P3): Estimated using the P3 algorithm, this dataset includes 22
values and is closely related in structure and purpose to the SC16 dataset, but utilizes a
different estimation scheme.

Core specimens of petroleum wells data: This dataset contains 48 observations obtained from 12
core samples taken from petroleum reservoirs, which were sampled across 4 cross-sections, as
reported in [149].
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e The capacity factor datasets: This data includes the capacity factor, which is the ratio of actual
electricity output to the maximum possible output generated using various algorithms.

e Soil fertility influence data: This data includes measurement of phosphorus concentration in the
leaves of 128 plants, as reported in Fonseca and Franca [61].

e Failure times data: This data consists of the failure times of 20 mechanical components, as
reported in [133].

e Secondary reactor pumps data: This data consists of times between failures of secondary reactor
pumps, as reported in Suprawhardana and Prayoto [175].

¢ Anxiety performance data: The data come from a study on anxiety conducted with a group of 166
‘normal’ women in Townsville, Queensland, Australia, as reported by [138].

e Daily pan evaporation data: The data pertains to daily pan evaporation, measured in hundredths
of inches, recorded in September 2016 at the San Joaquin Drainage 05 Friant Government Camp,
California, USA.

Similarly, in choosing models for illustration, we prioritize those that are widely recognized
and commonly used among practitioners, particularly those that are derived from popular classical
distributions. These include: The unit upper truncated Weibull (UUTW) distribution in [137];
the unit Gumbel type II (UG-II) distribution in [164]; the unit modified power function (UMP)
distribution in [138]; the unit Teissier (UT) distribution in [108]; the unit Lindley (UL) distribution
in [123]; the log-extended exponential-geometric (LEEG) distribution in [87]; Lindley conditional
Lindley+Gamma (LCG): A new one parameter distribution in [36]; the one parameter unit
Gumbel (OPUG) distribution in [24]; the unit Gompertz (UGz) distribution in [126]; and the
Kumaraswamy distribution, the power function (PF) distribution and beta distribution.

To illustrate the application of these selected models, we fit each of the chosen models to every data
set listed, see Tables 1-9 and Figures 1-9. This enables us to systematically compare the performance
of each model across real-life scenarios. By fitting every model to every dataset, we can assess how
well each model captures the underlying patterns and behaviors within different types of data. This
comparison enables us to identify the most effective models for specific datasets and provides valuable
insights into their practical applications in the context of unit probability distributions.

Table 1. Anxiety performance data.

AIC BIC AlCc CAIC HQC K-S P-value
UUTW -493.8465 -487.6226 -493.7729 -485.6226 -491.3202 0.2895 < 0.0001
UG-II -557.8554 -551.6315 -557.7818 -549.6315 -555.3291 0.33227 < 0.0001
MPF -514.9746 -508.7506 -514.9010 -506.7506 -512.4482 0.28291 < 0.0001
UT -467.9559 -464.8439 -467.9315 -463.8439 -466.6927 0.2621 < 0.0001
UL 756.4667  759.5787 756.4911 760.5787  757.7299  0.4311 < 0.0001
LEEG -515.2125 -508.9885 -515.1389 -506.9885 -512.6862 1 < 0.0001
LCG -431.5715 -428.4595 -431.5471 -427.4595 -430.3083 0.4139 < 0.0001
OPUG -456.0906 -452.9787 -456.0663 -451.9787 -454.8275 0.6707 < 0.0001
UGz -368.0573 -361.8334 -367.9837 -359.8334 -365.5310 0.2700 < 0.0001
Kumaraswamy -484.6297 -478.4057 -484.5560 -476.4057 -482.1033 0.2879 < 0.0001
Beta -474.8960 -468.6720 -474.8224 -466.6720 -472.3697 0.2989 < 0.0001
PF -373.4542 -370.3422 -373.4298 -369.3422 -372.1910 0.2708 < 0.0001

AIMS Mathematics
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Figure 1. Plots of the fitted PDFs and P-P plot for anxiety performance data.

Table 2. Core specimens of petroleum wells data.

AlIC BIC AlCc CAIC HQC K-S P-value
UUTW -101.1826 -97.4402 -100.9159 -95.4402 -99.7683 0.1648 0.1473
UG-II - - - - - - -
MPF -98.6255  -94.8831 -98.35881 -92.8831 -97.2112 0.1464  0.2549
UT -84.2570  -82.3858  -84.1700  -81.3858  -83.5498 0.2643 0.00245
UL 108.0842 109.9554 108.1711 110.9554 108.7913 0.3210  0.0001
LEEG -101.3644  -97.6220 -101.0977 -95.6220  -99.9501 1 < 0.0001
LCG -60.6019  -58.7307 -60.5149  -57.7307 -59.8948 0.3477 < 0.0001
OPUG -40.6256  -38.7544  -40.5386  -37.7544  -39.9185 0.7677 < 0.0001
UGz -108.8036 -105.0612 -108.5369 -103.0612 -107.3894 0.1013  0.7086
Kumaraswamy -100.6970 -96.9546 -100.4303 -94.9546  -99.2827 0.1679  0.1335
Beta -106.7326  -102.9902 -106.4659 -100.9902 -105.3183 0.1597 0.1727
PF -10.2067  -8.3355  -10.1197  -7.3355 -9.4995  0.4296 < 0.0001
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Figure 2. Plots of the fitted PDFs and P-P plot for core specimens of petroleum wells data.

Table 3. Daily pan evaporation data.

AIC BIC AlCc CAIC HQC K-S P-value
UuTWw -76.5694  -73.7670 -76.1249 -71.7670 -75.6729 0.1999 0.182
UG-II - - - - - - —
MPF -76.9754 -74.1730 -76.5310 -72.1730 -76.0789 0.2069 0.1533
uT -48.9215 -47.5203 -48.7786 -46.5203 -48.4732 0.3768  0.0004
UL 63.42959 64.8308 63.5725 65.8308 63.8778 0.3725  0.0005
LEEG -63.3737 -60.5713 -62.9292 -58.5713 -62.4772 1 < 0.0001
LCG -27.6520 -26.2508 -27.5092 -25.2508 -27.2038 0.3974  0.0002
OPUG -20.2517 -18.8505 -20.1088 -17.8505 -19.8034 0.8099 < 0.0001
UGz -57.4261 -54.6237 -56.9817 -52.6237 -56.5296 0.2355 0.0717
Kumaraswamy -76.0951 -73.2927 -75.6506 -71.2927 -75.1985 0.2030 0.1685
Beta -77.6190 -74.8166 -77.1746 -72.8166 -76.7225 0.1897 0.2308
PF -0.7948 0.6064  -0.6519 1.6064  -0.3465 0.5009 < 0.0001
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Figure 3. Plots of the fitted PDFs and P-P plot for daily pan evaporation data.

Table 4. Failure times data.

AIC BIC AlCc CAIC HQC K-S P-value
UuTWwW -48.8456 -46.8542 -48.1397 -44.8542 -48.4569 0.1999  0.182
UG-II - - - - - - —
MPF -47.8879 -45.8964 -47.1820 -43.8964 -47.4991 0.2069 0.1533
UT -31.4800 -30.4843 -31.2578 -29.4843 -31.2856 0.3768  0.0004
UL 51.5714 52.5671 51.7936 53.5671 51.7657 0.3725  0.0005
LEEG -56.4383 -54.4469 -55.7324 -52.4469 -56.0496 1 < 0.0001
LCG -43.3055 -42.3097 -43.0832 -41.3097 -43.1111 0.3974  0.0002
OPUG -28.2670 -27.2713 -28.0448 -26.2713 -28.0726 0.8099 < 0.0001
UGz -12.6512  -10.6597 -11.9453 -8.6597 -12.2624 0.2355 0.0717
Kumaraswamy -47.2968 -45.3054 -46.5910 -43.3054 -46.9081 0.2030 0.1685
Beta -51.7626 -49.7711 -51.0567 -47.7711 -51.3739 0.1897 0.2308
PF -15.1164 -14.1207 -14.8942 -13.1207 -14.9220 0.5009 < 0.0001
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Figure 4. Plots of the fitted PDFs and P-P plot for failure times data.

Table 5. Phosphorus concentration data.

AlIC BIC AlCc CAIC HQC K-S P-value
UUTW -384.2896 -378.5855 -384.1936 -376.5855 -381.9720 0.1027  0.1346
UG-II - - - - - - -
MPF -374.6277 -368.9237 -374.5317 -366.9237 -372.3101 0.1140  0.0720
UT -286.2761 -283.4241 -286.2444 -282.4241 -285.1173 0.3094 < 0.0001
UL 282.9622  285.8143 282.9940 286.8143 284.1210 0.30552 < 0.0001
LEEG -352.9109 -347.2068 -352.8149 -345.2068 -350.5933 1 < 0.0001
LCG -263.2934  -260.4414 -263.2617 -259.4414 -262.1346 0.3199 < 0.0001
OPUG -164.3754 -161.5233 -164.3436 -160.5233 -163.2166 0.8039 < 0.0001
UGz -76.9956  -71.2916  -76.8996  -69.2916  -74.6780  0.4696 < 0.0001
Kumaraswamy -384.0737 -378.3696 -383.9777 -376.3696 -381.7561 0.0954  0.1947
Beta -390.1785 -384.4745 -390.0825 -382.4745 -387.8609 0.0971  0.1792
PF -81.4684  -78.6164  -81.4367 -77.6164 -80.3096 0.47005 < 0.0001
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Figure 5. Plots of the fitted PDFs and P-P plot for Phosphorus concentration data.

Table 6. Tensile strength data.

AIC BIC AICc CAIC HQC K-S P-value
UUTW -2.8938  -0.0914  -2.4493 1.9086 -1.9973  0.0578  0.9998
UG-II - - - - - - -
MPF -2.9222 -0.1198 2.4777 1.8802 -2.0256  0.0515 1
UT -2.7375  -1.3363 -2.5947  -0.3363  -2.2893 0.0807  0.9808
UL 138.9697 140.3709 139.1126 141.3709 139.4180 0.2721 0.0188
LEEG -3.0504 -0.2480 -2.6059 1.7519 -2.1538 1 < 0.0001
LCG -3.8932 -2.4920 -3.7504 -1.4920 -3.4450 0.0960 0.9203
OPUG 5.8950 -4.4938  -5.7521 -3.4938  -5.4467 0.6443 < 0.0001
UGz -3.8976  -1.0952  -3.4532 0.9048 -3.0011 0.0733  0.9932
Kumaraswamy -2.6221 0.1803 -2.1776 2.1803 -1.7256  0.0650  0.9987
Beta -2.6101 0.1923 -2.1657 2.1923 -1.7136  0.0669  0.9979
PF -1.4495  -0.0483 -1.3067 0.9517 -1.0013  0.1374  0.5755
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Figure 6. Plots of the fitted PDFs and P-P plot for tensile strength data.

Table 7. Capacity factor data I.

1.0

AlIC BIC AlCc CAIC HQC K-S P-value
UuUTW -15.9192  -13.6482 -15.3192 -11.6482 -15.3480 0.1550 0.6384
UG-1I -19.2780 -17.0070 -18.6780 -15.0070 -18.7069 0.1139  0.9266
MPF -14.5776  -12.3066 -13.9776 -10.3066 -14.0064 0.1484 0.6919
UT -11.1913  -10.0558 -11.0009 -9.0558 -10.9058 0.1878  0.392
UL 140.0437 141.1792 140.2341 142.1792 140.3292 0.4755 < 0.0001
LEEG -16.3738  -14.1029 -15.7738 -12.1029 -15.8027 1 < 0.0001
LCG -4.4904  -3.3549  -4.2999  -2.3549  -4.2048 0.3640 0.0045
OPUG -20.6198  -19.4843 -20.4293 -18.4843 -20.3342 0.6466 < 0.0001
UGz -18.6728 -16.4018 -18.0728 -14.4018 -18.1017 0.1336  0.8065
Kumaraswamy -15.3416 -13.0706 -14.7416 -11.0706 -14.7704 0.1790  0.4529
Beta -16.9690 -15.8335 -16.7785 -14.8335 -16.6834 0.1836  0.4202
PF -15.2149  -12.9439 -14.6149 -10.9439 -14.6438 0.1893  0.3817
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Figure 7. Plots of the fitted PDFs and P-P plot for capacity factor data I.

Table 8. Capacity factor data II.

1.0

AlIC BIC AlCc CAIC HQC K-S P-value
UUTW -10.2649  -8.0828  -9.6333  -6.0828  -9.7508 0.1748  0.5122
UG-II - - - - - -
MPF -10.2269  -8.0448  -9.5954  -6.0448  -9.7129 0.1439  0.7523
UT -6.5524  -5.4614  -6.3524  -44614  -6.2954 0.1910 0.3982
UL 125.8079 126.8989 126.0079 127.8989 126.0649 0.4600  0.0002
LEEG -10.7873  -8.6052  -10.1557 -6.6052  -10.2733 1 < 0.0001
LCG -3.2717  -2.1807  -3.0717  -1.1807  -3.0147 0.3513  0.0088
OPUG -15.0104 -13.9194 -14.8104 -129194 -14.7534 0.6472 < 0.0001
UGz -13.1320 -10.9500 -12.5005 -8.9500 -12.6180 0.1370 0.8036
Kumaraswamy -9.6872  -7.5051  -9.0557 -5.5051 -9.1732 0.1963  0.365
Beta -9.5639  -7.3818  -8.9323  -5.3818  -9.0498 0.2002 0.3413
PF -11.1706  -10.0795 -10.9706  -9.0795 -10.9136 0.2047 0.3151
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Figure 8. Plots of the fitted PDFs and P-P plot for capacity factor data II.

Table 9. Times between failures of secondary reactor pumps.

AIC BIC AICc CAIC HQC K-S P-value
UUTW -37.3035 -35.0325 -36.7035 -33.0325 -36.7323 0.1183 0.8671
UG-II - - - - - -
MPF -39.1096 -36.8387 -38.5096 -34.8387 -38.5385 0.0975 0.9659
UT -38.5716 -37.4361 -38.3811 -36.4361 -38.2860 0.1430 0.6826
UL 104.3503 105.4858 104.5408 106.4858 104.6359 0.3274 0.0107
LEEG -38.9377 -36.6667 -38.3377 -34.6667 -38.3665 1 < 0.0001
LCG -33.4175 -32.2820 -33.2270 -31.2820 -33.1320 0.2633 0.0676
OPUG -38.0862 -36.9507 -37.8957 -35.9507 -37.8006 0.6718 < 0.0001
UGz -26.5726  -24.3017 -25.9726 -22.3017 -26.0015 0.2217 0.1788
Kumaraswamy -36.6592 -34.3883 -36.0592 -32.3883 -36.0881 0.1393 0.7123
Beta -36.0571 -33.7861 -35.4571 -31.7861 -35.4859 0.1541 0.5918
PF -29.0615 -27.9260 -28.8710 -26.9260 -28.7759 0.2248 0.1674
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Figure 9. Plots of the fitted PDFs and P-P plot for times between failures of secondary
reactor pumps.

The empirical analysis conducted in this review serves to assess the practical performance of twelve
selected unit continuous distributions across nine real-world datasets. These datasets span a range of
areas, including economics, engineering, and biological sciences with each characterized by variables
naturally bounded within the unit interval [0,1], such as proportions and probabilities. The method
of maximum likelihood was used for parameter estimation. The values of the five selection criteria,
including the Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), Corrected
Akaike Information Criterion (AICc), Consistent Akaike Information Criterion (CAIC), and Hanna-
Quinn Information Criterion (HQC) are provided in Tables 1-9.

Overall, the results demonstrate that the selected unit distributions exhibit a high degree of flexibility
in modeling bounded data, with several models yielding good fits depending on the nature and
characteristics of the dataset. For instance, the Beta and Kumaraswamy distributions continue to serve
as robust baseline models due to their tractable forms and interpretability. However, in many cases,
the unit upper truncated Weibull, the unit Gumbel type II distribution, the log-extended exponential-
geometric (LEEG) distribution, etc. outperformed traditional models by better capturing skewness,
and kurtosis, or by providing more flexible tail behavior. In particular,

e For anxiety performance data: According to the selection criteria values in Table 1, the best
fitting model is the unit Gumbel type II distribution (UG-II), the second best fitting model is the
log-extended exponential-geometric (LEEG) distribution, and the third best fitting model is the
modified power function distribution (MPF). The worst fit is given by the UL.

e For the core specimens of petroleum wells data: According to the selection criteria values in
Table 2, the best fitting model is the unit Gompertz distribution (UGz), the second best fitting
model is the beta distribution, and the third best fitting model is the log-extended exponential-
geometric (LEEG) distribution. The worst fit is given by the UL.

e For the daily pan evaporation data: According to the selection criteria values in Table 3, the best
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fitting model is the beta distribution, the second best fitting model is the unit modified power
function distribution (MPF), and the third best fitting model is the unit upper truncated Weibull
distribution. The worst fit is given by the UL.

e For the failure times data: According to the selection criteria values in Table 4, the best fitting
model is the log-extended exponential-geometric (LEEG) distribution, the second best fitting
model is the beta distribution, and the third best fitting model is the unit modified power function
distribution (MPF). The worst fit is given by the UL.

e Soil fertility influence (Phosphorus concentration ) data: According to the selection criteria
values in Table 5, the best fitting model is the beta distribution, the second best fitting model
is the Kumaraswamy distribution, and the third best fitting model is the unit upper truncated
Weibull (UUTW) distribution. The worst fit is given by the UL.

e Tensile strength of polyester fibers data: According to the selection criteria values in Table 6, the
best fitting model is the unit Gompertz distribution (UGz), the second best fitting model is Lindley
conditional+Gamma distribution (LCG) and the third best fitting model is the LEEG distribution.
The worst fit is given by the UL.

e The capacity factor datasets I: According to the selection criteria values in Table 7, the best fitting
model is the one parameter unit Gumbel distribution (OPUG), the second best fitting model is
the unit Gumbel type II distribution (UG-II), and the third best fitting model is the unit Gompertz
distribution (UGz). The worst fit is given by the UL.

e The capacity factor datasets II: According to the selection criteria values in Table 8, the best
fitting model is the one parameter unit Gumbel distribution (OPUG), the second best fitting model
is the unit Gompertz distribution (UGz), and the third best fitting model is the power function
distribution (PF). The worst fit is given by the UL.

e The secondary reactor pumps data: According to the selection criteria values in Table 9, the best
fitting model is the unit modified power function distribution (MPF), the second best fitting model
is the log-extended exponential-geometric (LEEG) distribution, and the third best fitting model is
the UT. The worst fit is given by the UL.

It is important to highlight that no single distribution emerged as the universally best-performing
model across all datasets. Rather, the performance of each distribution is largely data dependent,
with different models performing in different contexts. For example, distributions such as the unit
log-logistic and unit Gumbel perform well in datasets with heavy tails, while others like the power
function and unit exponential variants are more suited to symmetric, or lightly skewed datasets. This
variation highlights a key finding of this review, the empirical features of the data, and the theoretical
properties of the distributions. In conclusion, the analysis supports the usefulness and versatility of
unit continuous distributions, particularly their contemporary extensions. It does, however, also make
it apparent that there is no one-size-fits-all model. Rather, this compendium’s strength is its breadth,
providing researchers with a wealth of tools from which they can choose the best model based on
actual data.

AIMS Mathematics Volume 10, Issue 11, 25939-26057.



26042

4. Conclusions

In this review, we have provided a detailed and comprehensive overview of over one-hundred-unit
continuous probability distributions, encompassing classical models. These distributions play a vital
role in modeling proportions, rates, and other bounded data that arise naturally in many scientific and
engineering fields. In particular, we fit twelve of these distributions to nine diverse datasets. The
empirical findings demonstrate the high flexibility and fitting capability of these models, confirming
their value in applied statistics. Notably, the analysis show that while all selected models perform
well under certain conditions, there is no universally best-performing distribution across all datasets.
This highlights the importance of context-specific model selection and the need to understand the
underlying structure of the data being analyzed. We also highlight the continued evolution of unit
distributions, with ongoing developments introducing greater flexibility, improved tail behavior, and
better alignment with complex data patterns. By documenting these advancements, we hope this work
will serve as a foundational resource for researchers and practitioners seeking to model bounded data
accurately and effectively.

Future research directions include: (1) Developing multivariate extensions of unit distributions; (2)
proposing copula-based constructions for modeling joint dependencies; and (3) exploring Bayesian
estimation methods tailored to the unit setting. The wide range of distributions reviewed here offers
a strong foundation for such future developments, and we hope this compendium stimulates further
innovation and practical application in this growing area of statistics. The wealth of unit distributions
reviewed here provides a strong basis for such future explorations.
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Appendix

The expressions in Section 2 include various special functions, including the gamma function
defined by

I'(a) = fom 1~ exp(~t)dt;

the upper incomplete gamma function defined by

X
7(a,x):f 1~V exp(—1)dr;
0

the lower incomplete gamma function defined by

I(a,x) = f 1 exp(~t)d:

the error function defined by

2 X
erf(x) = Tj(; exp (—tz) dt;

T

the complementary error function defined by

I N
erfc(x) = \/_jx‘ p( t)dt,

T
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the sine function defined by

.
t

Si(x) = f L ar;
0 t

the cosine function defined by

Ci(x) = — f O,
X

t

the standard normal probability density function defined by
2

o) = =5 )

the standard normal cumulative distribution function defined by

o = [ s

the beta function defined by

B(a, b) :f @1 (1= 1) ar,
0

the incomplete beta function defined by

X
By(a,b) = f @11 = 1)
0
the incomplete beta function ratio defined by

I(a,b) =

>
—~
8-
S
~—
(=) p)
=
-~
T
—_
—~
—
|
~
~—
T
—_
QU
N

the exponential integral defined by

the logarithmic integral defined by

: Tl
Ll(x)zﬁ log(t)a’t;

the generalized exponential integral defined by

Ea(b):‘f1 4 exp(—bt)dr,
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the Whittaker function defined by

exp(—3)x* oo f\a+b-1
W) — 2D [t () explonar
r (% —a+ b) 0 X
the Lerch function defined by

by i

d(a,b) :lz_(:) (i—l)—cb)“;

the modified Bessel function of the second kind defined by

%(”) [(x) ~ L(x)], ifveZ,
K,(x) =

lim K, (x), ifveZ;

u—v

the modified Bessel function of the first kind of order v defined by

1 2k+v
1 G
ST (k+ v+ k! \2

the confluent hypergeometric function defined by

1F1(a; b; x) :i

where (f)x = f(f+1)---(f + k—1) denotes the ascending factorial; the hypergeometric function
defined by

—~
w‘a

X_
(kU

(o)

(a)
1Fa(a;b,c;x) = Z
kO

the Gauss hypergeometric function defined by
2F1(a,b;c;x) =
the hypergeometric function defined by
S (@i (b)i 2+
Fa(a,b;c,d; x) = —
2F2(a, bi ¢, d; x) Z( )i k!
the hypergeometric function defined by

3Fa2(a,b,c;d, e;x) =
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the generalized hypergeometric function defined by

= X
. E: k .
qu(al,...,ap,bl,... k',

Humbert’s confluent hypergeometric function of the first kind defined by

[ee) (o] j
by = 315 s,

i=0 j=0 H']

Humbert’s confluent hypergeometric function of the second kind defined by

Y (a,b,c;x,y) ZZ lﬂ l,)]),

The properties of these functions can be found in Abramowitz and Stegun [8], Srivastava and
Karlsson [170], Prudnikov et al. [147] and Gradshteyn and Ryzhik [70].
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