We developed a delayed SIR (Susceptible-Infected-Recovered) model incorporating infectious/immune periods and demographics (fertility and mortality rates), proving the existence, nonnegativity, and uniqueness of solutions for the system under demographic equilibrium. Analysis confirmed a threshold at $ \mathfrak{R}_0 = 1 $, with an endemic equilibrium emerging when $ \mathfrak{R}_0 > 1 $. Crucially, the stability of this endemic state was governed by a critical mortality rate ($ \mu_c $). High-mortality populations ($ \mu > \mu_c $) exhibited a stable endemic state, whereas low-mortality populations ($ \mu < \; \mu_c $) experienced instability and sustained oscillations. For these low-mortality populations, critical thresholds for the transmission rate ($ \beta_c $) and disease duration ($ \tau_{1c} $) were identified, beyond which destabilization occurred. This demonstrated a fundamental dual dependence of long-term disease dynamics on both demographic (e.g., life expectancy) and epidemiological (e.g., transmission rate, disease duration) parameters. Consequently, public health strategies (like vaccination targets) may need adjustment based on a population's demographic structure, not just its immediate epidemiological characteristics.
Citation: Anastasia Mozokhina, Ivan Popravka, Masoud Saade, Vitaly Volpert. Epidemic model with time delays and fertility/mortality rates[J]. AIMS Mathematics, 2025, 10(11): 25849-25878. doi: 10.3934/math.20251143
We developed a delayed SIR (Susceptible-Infected-Recovered) model incorporating infectious/immune periods and demographics (fertility and mortality rates), proving the existence, nonnegativity, and uniqueness of solutions for the system under demographic equilibrium. Analysis confirmed a threshold at $ \mathfrak{R}_0 = 1 $, with an endemic equilibrium emerging when $ \mathfrak{R}_0 > 1 $. Crucially, the stability of this endemic state was governed by a critical mortality rate ($ \mu_c $). High-mortality populations ($ \mu > \mu_c $) exhibited a stable endemic state, whereas low-mortality populations ($ \mu < \; \mu_c $) experienced instability and sustained oscillations. For these low-mortality populations, critical thresholds for the transmission rate ($ \beta_c $) and disease duration ($ \tau_{1c} $) were identified, beyond which destabilization occurred. This demonstrated a fundamental dual dependence of long-term disease dynamics on both demographic (e.g., life expectancy) and epidemiological (e.g., transmission rate, disease duration) parameters. Consequently, public health strategies (like vaccination targets) may need adjustment based on a population's demographic structure, not just its immediate epidemiological characteristics.
| [1] |
S. P. F. Hoch, L. Hutwagner, Opportunistic candidiasis: An epidemic of the 1980s, Clin. Infect. Dis., 21 (1995), 897–904. https://doi.org/10.1093/clinids/21.4.897 doi: 10.1093/clinids/21.4.897
|
| [2] |
C. Chintu, U. H. Athale, P. S. Patil, Childhood cancers in Zambia before and after the HIV epidemic, Arch. Dis. Child., 73 (1995), 100–105. https://doi.org/10.1136/adc.73.2.100 doi: 10.1136/adc.73.2.100
|
| [3] |
R. M. Anderson, C. Fraser, A. C. Ghani, C. A. Donnelly, S. Riley, N. M. Ferguson, et al., Epidemiology, transmission dynamics and control of SARS: The 2002–2003 epidemic, Philos. T. Roy. Soc. B, 359 (2004), 1091–1105. https://doi.org/10.1093/acprof:oso/9780198568193.003.0010 doi: 10.1093/acprof:oso/9780198568193.003.0010
|
| [4] |
W. K. Lam, N. S. Zhong, W. C. Tan, Overview on SARS in Asia and the world, Respirology, 8 (2003), S2–S5. https://doi.org/10.1046/j.1440-1843.2003.00516.x doi: 10.1046/j.1440-1843.2003.00516.x
|
| [5] |
S. H. Chen, F. Mallamace, C. Y. Mou, M. Broccio, C. Corsaro, A. Faraone, et al., The violation of the Stokes–Einstein relation in supercooled water, P. Natl. A. Sci., 103 (2006), 12974–12978. https://doi.org/10.1073/pnas.0603253103 doi: 10.1073/pnas.0603253103
|
| [6] |
A. M. Kilpatrick, A. A. Chmura, D. W. Gibbons, R. C. Fleischer, P. P. Marra, P. Daszak, Predicting the global spread of H5N1 avian influenza, P. Natl. A. Sci., 103 (2006), 19368–19373. https://doi.org/10.1073/pnas.0609227103 doi: 10.1073/pnas.0609227103
|
| [7] |
S. Jain, L. Kamimoto, A. M. Bramley, A. M. Schmitz, S. R. Benoit, J. Louie, et al., Hospitalized patients with 2009 H1N1 influenza in the United States, April–June 2009, New Engl. J. Med., 361 (2009), 1935–1944. https://doi.org/10.1056/NEJMoa0906695 doi: 10.1056/NEJMoa0906695
|
| [8] |
M. P. Girard, J. S. Tam, O. M. Assossou, M. P. Kieny, The 2009 A (H1N1) influenza virus pandemic: A review, Vaccine, 28 (2010), 4895–4902. https://doi.org/10.1016/j.vaccine.2010.05.031 doi: 10.1016/j.vaccine.2010.05.031
|
| [9] |
S. Briand, E. Bertherat, P. Cox, P. Formenty, M. P. Kieny, J. K. Myhre, et al., The international Ebola emergency, New Engl. J. Med., 371 (2014), 1180–1183. https://doi.org/10.1056/NEJMp1409858 doi: 10.1056/NEJMp1409858
|
| [10] |
B. Kreuels, D. Wichmann, P. Emmerich, J. S. Chanasit, G. de Heer, S. Kluge, et al., A case of severe Ebola virus infection complicated by gram-negative septicemia, New Engl. J. Med., 371 (2014), 2394–2401. https://doi.org/10.1056/NEJMoa1411677 doi: 10.1056/NEJMoa1411677
|
| [11] | M. Kapralov, S. Khanna, M. Sudan, Approximating matching size from random streams, In: Proceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete algorithms, SIAM, 2014,734–751. |
| [12] |
R. Almeida, S. Qureshi, A fractional measles model having monotonic real statistical data for constant transmission rate of the disease, Fractal Fract., 3 (2019), 53. http://dx.doi.org/10.3390/fractalfract3040053 doi: 10.3390/fractalfract3040053
|
| [13] | S. Sharma, V. Volpert, M. Banerjee, Extended SEIQR type model for COVID-19 epidemic and data analysis, MedRxiv, 2020,152–190. https://doi.org/10.1101/2020.08.10.20171439 |
| [14] | F. Brauer, P. V. den Driessche, J. Wu, L. J. S. Allen, Mathematical epidemiology, Springer, 1945 (2008). https://doi.org/10.1007/978-3-540-78911-6 |
| [15] | M. J. Keeling, P. Rohani, Modeling infectious diseases in humans and animals, Princeton University Press, 2008. |
| [16] |
A. d'Onofrio, M. Banerjee, P. Manfredi, Spatial behavioural responses to the spread of an infectious disease can suppress Turing and Turing–Hopf patterning of the disease, Physica A, 545 (2020), 123773. http://dx.doi.org/10.1016/j.physa.2020.123773 doi: 10.1016/j.physa.2020.123773
|
| [17] |
G. Q. Sun, Z. Jin, Q. X. Liu, L. Li, Chaos induced by breakup of waves in a spatial epidemic model with nonlinear incidence rate, J. Stat. Mech.-Theory E., 2008 (2008), P08011. http://dx.doi.org/10.1088/1742-5468/2008/08/P08011 doi: 10.1088/1742-5468/2008/08/P08011
|
| [18] |
D. Bichara, A. Iggidr, Multi-patch and multi-group epidemic models: A new framework, J. Math. Biol., 77 (2018), 107–134. http://dx.doi.org/10.1007/s00285-017-1185-7 doi: 10.1007/s00285-017-1185-7
|
| [19] |
R. K. McCormack, L. J. S. Allen, Multi-patch deterministic and stochastic models for wildlife diseases, J. Biol. Dynam., 1 (2007), 63–85. https://doi.org/10.1080/17513750601032711 doi: 10.1080/17513750601032711
|
| [20] |
E. H. Elbasha, A. B. Gumel, Vaccination and herd immunity thresholds in heterogeneous populations, J. Math. Biol., 83 (2021), 73. http://dx.doi.org/10.1007/s00285-021-01695-y doi: 10.1007/s00285-021-01695-y
|
| [21] |
S. Anita, M. Banerjee, S. Ghosh, V. Volpert, Vaccination in a two-group epidemic model, Appl. Math. Lett., 119 (2021), 107197. http://dx.doi.org/10.1016/j.aml.2021.107197 doi: 10.1016/j.aml.2021.107197
|
| [22] | T. S. Faniran, A. Ali, N. E. Al-Hazmi, J. K. K. Asamoah, T. A. Nofal, M. O. Adewole, New variant of SARS-CoV-2 dynamics with imperfect vaccine, Complexity, 2022 (2022). https://doi.org/10.1155/2022/1062180 |
| [23] | N. Ahmed, Z. Wei, D. Baleanu, M. Rafiq, M. A. Rehman, Spatio-temporal numerical modeling of reaction-diffusion measles epidemic system, Chaos, 29 (2019). https://doi.org/10.1063/1.5116807 |
| [24] |
J. A. N. Filipe, M. M. Maule, Effects of dispersal mechanisms on spatio-temporal development of epidemics, J. Theor. Biol., 226 (2004), 125–141. http://dx.doi.org/10.1016/j.jtbi.2003.09.005 doi: 10.1016/j.jtbi.2003.09.005
|
| [25] | M. Martcheva, An introduction to mathematical epidemiology, Springer, 61 (2015). https://doi.org/10.1007/978-1-4899-7612-3 |
| [26] | F. Brauer, C. C. Chavez, Z. Feng, Mathematical models in epidemiology, Springer, 32 (2019). https://doi.org/10.1007/978-1-4939-9828-9 |
| [27] |
H. W. Hethcote, The mathematics of infectious diseases, SIAM Rev., 42 (2000), 599–653. https://doi.org/10.1137/S0036144500371907 doi: 10.1137/S0036144500371907
|
| [28] |
H. S. Hurd, J. B. Kaneene, The application of simulation models and systems analysis in epidemiology: A review, Prev. Vet. Med., 15 (1993), 81–99. https://doi.org/10.1016/0167-5877(93)90105-3 doi: 10.1016/0167-5877(93)90105-3
|
| [29] |
S. Ghosh, V. Volpert, M. Banerjee, An epidemic model with time-distributed recovery and death rates, B. Math. Biol., 84 (2022), 78. http://dx.doi.org/10.1007/s11538-022-01041-3 doi: 10.1007/s11538-022-01041-3
|
| [30] |
M. Saade, S. Ghosh, M. Banerjee, V. Volpert, An epidemic model with time delays determined by the infectivity and disease durations, Math. Biosci. Eng., 20 (2023), 12864–12888. https://doi.org/10.3934/mbe.2023574 doi: 10.3934/mbe.2023574
|
| [31] |
S. Ghosh, V. Volpert, M. Banerjee, An epidemic model with time delay determined by the disease duration, Mathematics, 10 (2022), 2561. http://dx.doi.org/10.3390/math10152561 doi: 10.3390/math10152561
|
| [32] |
M. Saade, S. Ghosh, M. Banerjee, V. Volpert, Delay epidemic models determined by latency, infection, and immunity duration, Math. Biosci., 370 (2024), 109155. http://dx.doi.org/10.1016/j.mbs.2024.109155 doi: 10.1016/j.mbs.2024.109155
|
| [33] |
A. Mozokhina, I. Popravka, M. Saade, V. Volpert, Modeling the influence of lockdown on epidemic progression and economy, Mathematics, 12 (2024), 3106. https://doi.org/10.3390/math12193106 doi: 10.3390/math12193106
|
| [34] |
M. Saade, S. Anita, V. Volpert, Dynamics of persistent epidemic and optimal control of vaccination, Mathematics, 11 (2023), 3770. http://dx.doi.org/10.3390/math11173770 doi: 10.3390/math11173770
|
| [35] |
M. Saade, S. Ghosh, M. Banerjee, V. Volpert, Dynamics of delay epidemic model with periodic transmission rate, Appl. Math. Model., 138 (2025), 115802. http://dx.doi.org/10.1016/j.apm.2024.115802 doi: 10.1016/j.apm.2024.115802
|
| [36] |
M. Saade, Modeling the impact of epidemic spread and lockdown on economy, Comput. Res. Model., 17 (2025), 339–363. https://doi.org/10.20537/2076-7633-2025-17-2-339-363 doi: 10.20537/2076-7633-2025-17-2-339-363
|
| [37] |
R. M. Anderson, R. M. May, Population biology of infectious diseases: Part I, Nature, 280 (1979), 361–367. https://doi.org/10.1038/280361a0 doi: 10.1038/280361a0
|
| [38] |
K. Ciesielski, On Stefan Banach and some of his results, Banach J. Math. Anal., 1 (2007), 1–10. http://dx.doi.org/10.15352/bjma/1240321550 doi: 10.15352/bjma/1240321550
|
| [39] | Gilbert Strang, Introduction to linear algebra, SIAM, 6 (2022). |
| [40] | S. X. Wu, X. Y. Meng, Hopf bifurcation analysis of a multiple delays stage-structure predator-prey model with refuge and cooperation, Electron. Res. Arch., 33 (2025). https://doi.org/10.3934/era.2025045 |
| [41] |
C. Y. Yin, X. Y. Meng, J. M. Zuo, Modeling the effects of vaccinating strategies and periodic outbreaks on Dengue in Singapore, J. Appl. Anal. Comput, 15 (2025), 1284–1309. https://doi.org/10.11948/20240205 doi: 10.11948/20240205
|
| [42] |
Y. Wang, X. Y. Meng, Bifurcation and control of a delayed Leslie–Gower fractional order predator–prey model with fear effect and prey refuge, Adv. Contin. Discret. M., 2025 (2025), 103. http://dx.doi.org/10.1186/s13662-025-03877-2 doi: 10.1186/s13662-025-03877-2
|