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Abstract: We developed a delayed SIR (Susceptible-Infected-Recovered) model incorporating
infectious/immune periods and demographics (fertility and mortality rates), proving the existence,
nonnegativity, and uniqueness of solutions for the system under demographic equilibrium. Analysis
confirmed a threshold at Ry, = 1, with an endemic equilibrium emerging when R, > 1. Crucially,
the stability of this endemic state was governed by a critical mortality rate (u.). High-mortality
populations (u > u.) exhibited a stable endemic state, whereas low-mortality populations (u < )
experienced instability and sustained oscillations. For these low-mortality populations, critical
thresholds for the transmission rate (8.) and disease duration (7;.) were identified, beyond which
destabilization occurred. This demonstrated a fundamental dual dependence of long-term disease
dynamics on both demographic (e.g., life expectancy) and epidemiological (e.g., transmission rate,
disease duration) parameters. Consequently, public health strategies (like vaccination targets)
may need adjustment based on a population’s demographic structure, not just its immediate
epidemiological characteristics.
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1. Introduction

Mathematical modeling has emerged as an indispensable tool for understanding and mitigating the
impacts of epidemics. Its development in epidemiology has been driven by the recurrent emergence
of large-scale outbreaks, including HIV (Human Immunodeficiency Virus) from the 1980s to the
present [1,2], SARS (Severe Acute Respiratory Syndrome) in 2002-2003 [3,4], HSN1 influenza (Avian
Influenza) in 2005 [5, 6], HIN1 (Swine Flu) in 2009 [7, 8], and Ebola in 2014 [9, 10]. The recent
COVID-19 (Coronavirus Disease 2019) pandemic further underscored its critical role, profoundly
affecting public health, economies, and societal structures globally.
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The foundation of contemporary epidemiological modeling was significantly influenced by the
Spanish influenza pandemic of 1918—-1919 and the seminal work of Kermack and McKendrick [11,12].
This has led to the introduction of numerous models, with multi-compartment frameworks forming the
cornerstone of modern studies and providing essential insights into disease transmission dynamics.
Current applications encompass deciphering historical outbreaks, forecasting the trajectories of
ongoing and future diseases [13—15], models incorporating nonlinear transmission rates [16, 17],
multi-patch models [18, 19], multi-group models addressing population heterogeneity [20], and
frameworks integrating vaccination and control measures [21, 22]. Spatiotemporal models further
characterize spatial distributions of susceptible and infected individuals by accounting for individual
mobility [23, 24]. Comprehensive overviews are available in monographs [25, 26] and review
articles [27,28].

Classical SIR-type (Susceptible-Infected-Recovered) models underpin the development of both
single and multi-strain epidemic formulations, typically assuming that recoveries and deaths are
proportional to the number infected at time t. To address limitations inherent in these assumptions,
delay differential equation (DDE) models have become a powerful mathematical tool. By incorporating
explicit delays, DDE models more accurately capture temporal features of disease progression and
transmission. They have been widely applied to study infectious diseases like influenza (single
and multi-strain) and COVID-19 [29-31] for single-strain models, and [32] for both single-strain
and two-strain models with cross-immunity. Models describing interactions between two strains
without cross-immunity [33], systems with distributed recovery and death rates (where DDEs provide
suitable approximations [29]), delay models with vaccination [34], and dynamics involving periodic
transmission rates for single and double strains [35] have also been investigated.

Complementary research has explored economic-demographic dynamical systems [33, 36],
illustrating scenarios where lockdown can control epidemic by reducing the number of infectious
individuals to its minimum and preserve the economic state of population, while epidemic can lead
to economic deterioration.

Epidemic models based on systems of ordinary differential equations (ODEs) that integrate
age-specific fertility and mortality rates provide crucial insights into long-term disease dynamics
and population impacts. These ODE frameworks capture how birth rates replenish susceptible
individuals and how disease-induced mortality alters age structure, influencing transmission potential
and endemic equilibria. Incorporating demography into such differential equation models is essential
for predicting the evolution of diseases like COVID-19 in specific populations and for evaluating long-
term vaccination strategies.

In parallel to these developments, another critical advancement has been the use of DDEs to model
fixed time periods inherent to disease biology, such as the duration of infection (7;) and acquired
immunity (7). Models such as the one proposed by [33,34] have been instrumental in this area.

While appropriate for studying the pure effects of delays, a significant limitation of such models
is their assumption of a closed population without vital dynamics (i.e., no births or natural deaths),
which restricts their applicability to short-term outbreaks or hypothetical scenarios. In this paper, we
develop a novel epidemic model that synthesizes these two critical strands of research. We extend
the established DDE framework [33, 34] by incorporating essential demographic processes, namely,
age-specific fertility (y) and mortality (u, o) rates.

Within this context, the present study first introduces an extended epidemic propagation model
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with birth rate, natural mortality rate, and disease-induced mortality rate. Then, we consider
the specific case without mortality due to infection, and rigorously demonstrate the existence,
uniqueness, nonnegativity, and boundedness of its solutions. Subsequent analysis identifies the
system’s equilibrium states and examines their stability properties under the condition of demographic
balance (where fertility rate equals mortality rate). Finally, we present conclusions and outline further
research perspectives.

2. Extended epidemic propagation model

In our previous research [33, 34], we have analyzed a closed-population SIR model with fixed
delays (infection period 7, and immunity period 7,), given by the system:

% ==JO)+J({t—-711 —T12),

% =J@) - J(t—-11),

? =Jt—-1)-Jt -1 —T1y),
1 = s i,

where 3 is infection transmission rate and J(¢) represents the number of the new incidences at time ?.
This model, which assumes a constant population size with no births or natural deaths, is well-suited
for modeling short-term outbreaks but is limited in its application to endemic diseases that persist
on the timescale of human lifespans. To study long-term dynamics, it is essential to incorporate
vital dynamics (births and deaths). Therefore, in this work, we extend the previous framework by
introducing demographic parameters, leading to a novel system of DDEs.

We consider a mathematical model of population dynamics that describes the spread of an infectious
disease. It is assumed that, at any time ¢, the population can be partitioned into three mutually exclusive
compartments: Susceptible S (), infected I(¢), and recovered R(¢) individuals. The total population size
at time 7 is given by

N(@) =S@) + 1) + R(2), 2.1

where:

e S(7) denotes the number of individuals susceptible to the infection;
e /(t) denotes the number of infected individuals who are capable of transmitting the disease;
e R(?) denotes the number of individuals who have recovered and are temporarily immune.

The transmission of the disease occurs through interactions between susceptible and infected
individuals. The number of newly infected individuals at time ¢ is modeled by the function
B
J(@) = —=SOI(),
@) NG (O1(1)
where 8 > 0 represents the disease transmission rate, which characterizes the frequency of effective
contacts between individuals. The dynamics of the model are further governed by the parameters of
Table 1.
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Table 1. Parameters of the SIR model (2.4) with delays and demographics.

Parameter  Definition Reference(s)

B Disease transmission rate (effective [14,15,33,34]
contacts per unit time)

T1 Duration of the infectious period [33,34]

T, Duration of the temporary immune  [33,34]
period

0% Birth  rate  coefficient (new [14,15]
susceptible individuals per unit
time)

u Natural mortality rate (deaths per [14,15]
capita per unit time)

o) Disease-induced mortality [14,37]

rate (additional deaths per infected
individual per unit time)

To model mortality, we assume that the lifetime 7" of an infected individual, measured from the
moment of infection, follows an exponential distribution

T ~ Exp(l), A=u+é,

where A represents the total mortality rate (natural plus disease-induced).
The probability density function of T is given by

fr@®) = e, 120,

and the probability that an individual survives until time ¢ after infection is:

MT>0:J“ﬁﬂmm:e”ﬁ

t

An important feature of the exponential distribution is its memoryless property:
P(T>s+t|T>s5)=P(T >1), Vs,t=>0.

This implies that the probability of an event occurring in the future depends only on the elapsed time
and not on the history of the process prior to the current moment.
Number of infected individuals. The infectious period lasts for a fixed duration 7,. At time ¢, the
infected individuals are those who were infected at some time u € [f — 7y, ¢] but have not died by time ¢
due to either natural (u) or disease-induced (9) mortality.

The probability that an individual infected at time u remains alive at time ¢ is given by e~ #+90~),
Therefore, the number of infected individuals at time ¢ is described by the integral:

!
mp]ﬁﬂmﬁwww. (2.2)
-7
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Number of recovered individuals. The duration of the immune period after recovery is 7,. At time z,
the recovered individuals are those who were infected at some time u € [t — T; — T, ¢t — 71] but have
survived both the infectious period of length 7; and the subsequent immune period until time z.

The probability of survival until time ¢ is the joint probability of surviving the infectious and immune
periods. Using the memoryless property of the exponential distribution, this probability is expressed as
the product e~ #+971 . g=H(=T1=1) " where ¢~ 97 ig the probability of surviving the infectious period,
and e#~"17 ig the probability of surviving the immune period. Thus, the number of recovered
individuals with active immunity at time 7 is given by

1—T1
R(f) = f J(u)e” Wrom gmHt=T1i=n) gy (2.3)
t

—T1—72

Expressions (2.2) and (2.3) account for time delays due to the durations of the infectious and
immune periods, as well as mortality. The number of susceptible individuals at time ¢ can be calculated
by substituting (2.2) and (2.3) into (2.1). These integral expressions provide the foundation for
deriving a complete system of delay differential equations that describe the dynamics of the epidemic
in the population.
Differentiating the expressions for /(7) and R(¢). To construct the system of differential equations, we
compute the time derivatives of /(¢) and R(#). Differentiating (2.2) with respect to ¢, we apply Leibniz’s
rule to get

@ _ d (f J(u)e—(;1+6)(t—u)du =J@) - e—(ﬂ+6)T1 J(l _ Tl) — ('u + 6)I(Z)

dt — di\J,_,
Similarly, differentiating (2.3) with respect to 7, we obtain
dR(1)

— = = NI = 1) = TN (1 = 71 = 7) = HR(D).

Number of susceptible individuals. To complete the formulation of the model, we derive an equation
for the number of susceptible individuals S (¢). Recall that the total population size is N(t) = S(¢) +
I(t) + R(t), with I(¢) and R(¢) already defined.

Susceptible individuals are those who are not currently infected but are at risk of infection upon
contact with infected individuals. The dynamics of S (¢) are influenced by the following factors:

e Births: New individuals enter the population at a rate yN(f), and are assumed to be initially
susceptible.

e Infection: Susceptible individuals become infected at a rate J(¢) = %S (OI().

e Loss of immunity: Individuals who complete the immune period return to the susceptible class
after a delay of 7, + 7,, provided they have survived the entire duration. The corresponding flux
is e WO emHT J(t — T — 1y).

e Mortality: Natural mortality reduces the number of susceptible individuals at a rate uS (7).
Incorporating all these processes, we derive the differential equation for S (7) as follows
ds (1)
dt

which completes the system of equations and enables the full description of the epidemic dynamics.
Infection propagation is modelled with the system of delay differential equations

= yN(t) — J(1) + e WO 2 (1 — 1) — 15) — uS (1),
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dfz?)‘ = YN@) = (D) + e R (1 =71 = 12) = pS (), (2.42)

% = J(@) = et~ 1) = (u+ O)I(D), (2-45)

dflgt) — e—(,u+6)7'1 J(t _ Tl) _ e—(ﬂ+5)71 e—#TZJ(t -7 — 7-2) — ,uR(t)’ (24C)
__B

1) = FsS IO, (2:4d)

This system is considered with the following initial conditions:
N(@) =S5() =Ny, 1(6)=R(6)=0, VYOe[-(11+712),0),

N@O)=Ny>0, S0)=S80>0, 100=1,>20, RO)=0, (So+1Ip=Ny).

Remark 1. By setting u = y = 6 = 0, the proposed model reduces to the previously studied version
in [33].

3. Demographically stable epidemic propagation model without disease-induced mortality

This section presents the analysis of a special case in which the population is in demographic
equilibrium (y = u > 0), and the disease is non-lethal (6 = 0). We investigate the solution’s non-
negativity, existence, and uniqueness, and establish theorems concerning the existence and stability of
a stationary state.

To analyze the dynamics of the total population size N(¢), we differentiate (2.1) with respect to
time ¢ and get

dN(t) d

—— =— @+ 1) +R()).
T = g SO+ +R(®)
Substituting the expressions from system (2.4), we obtain:
dN(1)
7 YN(t) — uN(t) — ON(2).

If y = > 0and ¢ = 0, this expression simplifies to

% = YN() = uN(t) = 0 => N(1) = N

This means that demographic processes - birth and natural death - exactly balance each other, and the
population size remains constant throughout the disease dynamics, that is,

S+ I(t) + R(t) = Ny (constant). 3.1

We obtain the following system of equations:

ds (1)

— YNy — J(&) + e "D J(t — 1) — 1) — uS (1), (3.2a)
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gggz::JO)—er”JU——TQ-—uIOL (3.2b)

—dlfly) = e FT (= 1)) — e P J( - 1) — 1) — UR(D), (3.2¢)

10 = L s (3.2d)
Ny

with the initial conditions:
SO =Ny>0, 1(0)=0, R =0, VYOe[-(r1+71),0),

S0)=80>0, 10)=1,=>0, RO)=0 (So+1H=Ny). (3.3)

3.1. Nonnegativity, existence, and uniqueness of solution
3.1.1. Nonnegativity of solution

To ensure the biological validity of the model, we must show that all variables remain nonnegative
forallr > 0.

Lemma 2. The function J(t) = N%S (OI(t) in system (3.2) satisfies the condition J(t) > 0 for all t > 0,
given the initial conditions: S(0) > 0,1(0) > 0,R(0) = 0, and S(6) = Ny > 0,1(0) = 0,R(0) = 0 for all
0 e [—(r1 +712),0).

Proof. Assume that the function J(¢#) becomes nonpositive at some point in time. Then, due to the
continuity of J(#) and the initial condition J(0) = NﬁoS (0)I(0) > 0, there exists a “first” moment 7, > O
at which the function crosses zero. This moment can be defined as

to = inf{t > 0 : J(r) = O},
It holds that
J@®) >0 Vre|0,1),
since J(0) > 0, and the function does not reach zero before time #,. Consider two cases corresponding
to the condition J(#y) = 0 (S (£p)I(ty) = 0):
e Case 1. If S(¢y) = 0, then from equation (3.2a), we get

ds (1)

ar = ’}/N() + e_p(TI+T2)J(l0 - T — Tz).

Note that J(tg — 71 — 72) = 0, since ty — 71 — T, € [-(7| + T2), tp). Therefore,

ds (1)

> vNy > 0.
a1 YNo

This means there exists § > 0 such that S(r) < S(#y) for t € (to — 8,1ty) and S(¥) > S(#y) for
t € (tp,tnp + 0). Since S(ty) = 0, it follows that S(r) < O for t € (fp — 6,1)). However, the
function S (f) cannot become negative without crossing zero, and since S (0) > 0, this contradicts
the definition of ¢#; as the first time at which J(¢y) = 0.
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e Case 2. If I(ty) = 0, then from the integral form (2.2) for /() under y = u > 0 and § = 0, we have

0]
I(ty) = f J(w)e Py = 0.
1o

-
Since the exponential factor e #“= > 0 for all u € [ty — 71,1], it follows that J(u) = 0
almost everywhere on this interval. Due to the continuity of J(¢), this implies J(#) = 0 for all
t € [ty — 71, ty], which contradicts the definition of 7, as the first moment where J(#y) = 0.

Thus, the assumption that J(#) becomes nonpositive leads to a contradiction. Therefore, J(¢) > 0
forall £ > 0.

O

Theorem 3. Let the functions S(t), I(t), and R(t) be a solution of system (3.2) under the initial
conditions S(0) > 0,1(0) > O,R(0) = 0, and S(®) = Ny > 0, I(6) = 0, RO = O for all
0 € [—(11 + 12),0). Then, for all t > 0, the following inequalities

S@®>0, IH>0, R®»=0
hold.

Proof. Assume that the function S () becomes nonpositive at some point. By continuity, it must cross
the #-axis. If S (#;) = 0 at some time #; > 0, then
das )
.
Repeating the same reasoning as in the lemma above, we conclude that S () > 0 for all > 0.
Now consider the integral expression for the number of infectious individuals given by

!
I(t) = f Jw)e My,
-7

Fix an arbitrary #* > 0. Consider two cases depending on the value of t* — 7.

YNy + €_'u(Tl+T2)J(l1 —T|—Ty) > YNy > 0.

e Case 1. * — 71 < 0. Given the initial conditions where I(f) = O for all 6 € [—(7; + 73),0), the
integral becomes as

[*
It = f JW)e "y > 0,
0

since J(u) > O for all u > 0 according to Lemma 2.
e Case 2. 1" — 1; > 0. We obtain

-
(") = f JW)e " du > 0,
-1

because J(u) > 0 for all # > 0 by Lemma 2.

Thus, for any ¢t > 0, we have /() > 0. We also have the integral expression for R(¢), derived from (2.3)
as follows: )
-
R(t) = f J(u)e #eT T gy,
t

Applying similar reasoning to that used for /(z), we conclude that R(¢) > O for all ¢ > O. m|
Remark 4. From Theorem 3 and equality (3.1), we demonstrate the boundedness of the solution of
system (3.2).
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3.1.2. Existence and uniqueness of solution

Now, we proceed to the proof of the existence theorem. We will prove the existence and uniqueness
of the solution of system (3.2) for ¢ € [0, n(t; + 72)] where n € N, with the initial conditions (3.3).

Note that if (3.2a) and (3.2b) have unique solutions, then J(¢) is uniquely determined. Thus,
Eq (3.2¢) has a unique solution. Hence, it is sufficient to prove the existence and uniqueness of solution
for the Eqgs (3.2a) and (3.2b).

Let us set 8 = 71 + 75, and let (S, I,,, R,) be the restriction of the solution (S, I, R) on the interval
[(n — 1)0,n6], n € N. We have the following theorem.

Theorem 5. [f there exists a unique solution (S ,-1,1,-1, R,—1) of system (3.2) in the domain

BS(t—6)I(t—-0) S O},
No

T, = {(S, LR EX | : ()=
where X, is defined by
Y1 =T € C([(n=2)0,(n—1)0L,R) : 0 < T,,_1(t) < Np, VYt € [(n—2)6, (n— 1)d]},

then the system (3.2) will have a unique solution (S ,, I,, R,) in the domain

BSa-0)lt-6) 0}’
Ny

T, = {(S,I,R) €S . () =
where
2, =T, e C([(n—1)0,n0],R) : 0 < T,(t) < Ny, VYt € [(n—1)0,n0]}, neN.

Proof. If t € [(n — 1)8,n0] where n € N, thent — 0 € [(n — 2)0, (n — 1)8] and J(¢ — 6) is known and
determined in the previous time interval of the function J(¢). Set ,(t) = J(¢—6). For n = 1, the solution
is given by the function on [—6, 0], and {; is given as

o = 0 if x € [6,0),
= £S0)(0)>0 ifx=0.

When ¢ € [(n — 1)6, nf], then system (3.2) becomes
ds (1)

—— = YN-Jo+ LD T — S (1), (3.4a)
% = J@O) = J(t—T)e™ ™ — ul (D), (3.4b)
% = J(t—11) = Lu(De T — uR(?), (3.4¢)

J@) = %S(t)l(t), (3.4d)

where (,(t) = J(t — 6,) as explained previously. To prove this theorem, we need a mathematical setup
of complete metric space, which is defined properly in the following lemma.

AIMS Mathematics Volume 10, Issue 11, 25849-25878.



25858

Lemma 6. (Z,,d) is a complete metric space with respect to the metric d(T}, T?) defined by

AT ,T> = sup {e-W|T,; (1) - T,f(z)|},n eN
te[(n—1)0,nb)

and v > 0 is a constant.

Proof. First, we prove that X, is a complete metric space with respect to the supremum metric given
by the equality
dup(T,. T) = sup |T,(1) = T, (o).
rel(n—1)6,n6]

Consider a Cauchy sequence {T' (1)} in Z,. Then, for any € > 0, there exists M, € N such that

do (T, T = sup  |Ti(t) — TPl < € for i,j> M.
te[(n—1)0,n6)

Therefore, for all 7 € [(n — 1)8,n6], {T'(1)} is a Cauchy sequence in R and, hence, converges to a real
number denoted by 7,,(t). Choose any ¢ € [(n — 1)6, n8]. Hence, there exists C, € N such that if ¢ > C,,
then |T¢(t) — T,(f)| < €/2. Furthermore, since {T'} is a Cauchy sequence in (Z,, dgp), there exists M,
such that

dop(TLTH = sup  |Ti(t) — Ti(D)| < €/2 for i,j> M,.
te[(n—1)0,n0)

Next, choose ¢ > max{M,, C;}. Then, for all i > M;,
IT,(0) = Tu(0) = T,(0) = T(0) + T,(0) = Tu(0] < IT,(1) = T (0] + |T;(0) = T(0)] < e.
Taking supremum over [(n — 1)0, n6] in both sides of the above inequality, we get
dap(T., T,) < €, fori > M.

It remains to show that T, € X,. It is clear that for all i € N, 0 < T'(r) < Ny, for all t € [(n — 1)6, nd).
Taking limitasi — oo, we get 0 < T,(¢) < Ny, forall t € [(n—1)0, nf]. Take any ¢, € [(n—1)6, n6]. Then,

lim T,,(t) = lim lim T/.(¢) = lim lim T (¢) = lim T’ (t9) = Ta(to),

t—ty =1y 100 1—00 >ty

which proves that T, is continuous at t,. Thus, T, € X,, and, hence, (%,, dy,,) is a complete metric
space. Next, we have the following relation between the two metrics d and d,, on X,:

e dyy (T, T}) < d(T,, T}) < " dyy (T, T},

n’*-n

which implies that d and d,,, are equivalent metrics. This proves that (%, d) is a complete metric space.
O

We now proceed to prove the existence and uniqueness of solution of system (3.4a) and (3.4b) in
the metric space (X,, d). For any given function 7'(¢) € Z,, the equation

ds
% =yNo - %S(I)T(t) + &u(DeH T — uS (0), (3.5)
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with the condition S ((n — 1)0) > 0, n € N, can be written as

as@ B _ —u(r1+72)
el ( NOT(t) +)S (1) = yNo + Lu(D)e™ ,

and it has a unique solution given by

!

Sr() = (Sr((n-1)0) + f b(x)e M dx)e A0,

(n-1)
We set
Sr() = Cr(He ™,
where t
Cr(t) = S1((n - 1)8) + f( b
b(u) = yNo + £ (w)e ™),
and

Ar(u) = f 1) + s
(n—1)0 0

(3.6)

3.7

(3.8)

(3.9

Since £, > 0, we can ensure that S7(¢) > 0, i.e., S, > 0, in the current interval. Since the functions T
and S 7 are positive and bounded, then the function C7 is bounded. There is a positive number ¢7 such

that CT(t) <Cr: vVt >0.
Lemma 7. Function Cr defined in (3.7) is Lipschitz in T.

Proof. From the boundedness of T(s), £,(u), and S r((n— 1), we can write |T(s)| < M for all s and some

M > 0 and |{,(u)| < Z for all u and some Z > 0. This ensures b(u) is bounded, that is,

|b(u)| < YNy + Ze ™7™ =: B.

Since the initial condition depends continuously on 7', then S 7((n — 1)0) is Lipschitz in 7, i.e., there

exists Ky > 0 such that

1S7,((n = 1) = S7,((n = 1O)| < Ko (T, T>).

Since ¢ is in a bounded interval [(n — 1)0, (n — 1)6 + L], then for some Ly > 0, |t — (n — 1)6] < Ly. Next,

t

ICr, () = Cr,(0)] = |[S7,((n = 1)O) = S 1,((n — 1)O)] + f b(x) (€M1 - &) dx]

(n-1)0

Using the triangle inequality, we get

ICr, (1) = Cr,()] < IS7,((n = DO) = S, ((n = DO)| +

(n—=1)8

We have,
IS 7,((n = 1DO) = Sr,((n — DO)| < Ko dyuyp(T, T),

f [ b(x) (eATl @ _ eATZ(x)) dx|.
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and ) t
f b(x) (eATl (x) _ eATz(X)) dx < Bf |6AT1 (x _ eATZ(x)| dx.
(n—1)0

(n-1)0
The exponential function is Lipschitz on bounded domains. Specifically, A7(x) is bounded because
|T(s)] < M and |x— (n—1)0| < Ly. Thus,

(B BM .
|AT(X)| < L_l)g (FOM +/.l) ds < (70 +/,l) Ly =:R.

The function ¢ is Lipschitz on [—-R, R] with constant e® (since |de®/dz| = €* < ). So we can write

|eAT1 (%) — eATZ(x)I S eRlATI (x) - ATz(x)l'

Hence,
Ar, (0 - A () = |2 f (T\(s) - Ta(s))ds
NO (n—1)0
B B
< _dsup(Tl’ TZ) |X - (I’l - 1)9| < _LO dSLlp(T]7 TZ)
N() NO

Combining these, we get

|eAT1()C) _ eATZ()C)| S eR %LO dsup(Tl’TZ)'
0

Therefore, we have

f !
[ b —en)axs s [ o Bpyan,m

(n—1)0 (n-1)6 0

< BeRﬁLO dsup(Tlv TZ) LO = BeRﬁL%) dsup(Tl’ T2)
0 0

Finally, we can write

Cr (1) = Cr(0)] < (Ko , BeR%Lé) dou(T1, T),

where R = (% + ,u) L. Thus, Cr is Lipschitz in T with constant K = K, + Be® N%L%. m]

Note that subscript T is used to denote the unique solution of Eq (3.5) for a given function 7'(¢) € X,,.
Let us denote Jr () = NEOS r(1)T (1), then the equation

a0 _ P s oy - %

)T = )e ™ — uT 1
7 Ng Sr(t—1)T(t—71)e uT (1), (3.10)

with the condition I7((n — 1)) > 0 and ¢ € [(n — 1)0,nf] also has a unique solution, which can be

written in the form t

Ir(t) = Ir((n = 1)) + H(&, T)dé,
(n-1)0

where

HE,T) = %Cr(f)T(rf)e_AT@ - %CT@: — )T (€ = 1)e ™ — uT'(§). (3.11)
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Let us consider the map L : (¥£,,d) — (X,,d) defined by the equality

t
L(T() = Ir((n - 1)) + H(, T)dé, (3.12)
(n-1)0
where H(&, T) satisfies (3.11). Before proceeding further, we verify that L maps (Z,, d) into itself.
Lemma 8. The map L : (X,,d) — (X£,,d) defined in (3.12) is well-defined.

Proof. We have

{50 )
Next,
| HEDE = - j: . deL;‘f)dg o d%?df).
Thus, t
- H(¢, T)dé = St((n— 1)6) + Rr((n = D) = (S7() + R (1))
Hence, t
Ir((n = 1)6) + H(&, T)dé = No — (S (1) + Rr ().

(n—-1)8

This implies L(T'(t)) = Ir((n — 1)6) + f(:l—l)e H(¢&, T)dé lies between 0 and N,. Let us also note that if
T,(2), T2(¢t) € X, and T'(?) = T»(?), then S 1, () = Sr,(?), and, consequently, H(¢, T,) = H(&, T,). Hence,
the map L is well-defined. O

Next, we prove that the map L : (£,,d) — (£, d) defined in (3.12) is a contraction.
Lemma9. The map L : (X,,d) — (X,,d) defined in (3.12) is a contraction map.

Proof. For any two functions T(t), T,(?) € X,

|L(T(1)) = L(T>(0)| < f |H(, T1) — H(E, To)ldé.

(n—1)0

Then, we have the following estimate:
|H(E. Ty) - HE Ty)| =

%'(CTl(f)Tl(f)e_Arl(g) - Cr, (& —1)T1(€ - Tl)e_Aﬁ -1 _ /JNOTl(f))

—(Crz(f)Tz(f)e_ATz(“f) — Cr,(€ = T)Ta(é = 1y)e "™ — ,uNoTz(f))‘-

Thus,
|HE T) - HET)| =
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% Cr, (©)e M O(T (&) - T,(8)) + TL(6)(Cr, (@)eAn® _ CTz(f)e’ATz(f))
+CT1(§ - Tl)e_/\ﬁ (5—71)(T2(§ -11)—T(& - Tl)) + To(& - Tl)(CTz(f _ Tl)e_ATz(‘f_Tl)

—Cr, (€ = )e 1) 4+ uUNW(Ta (&) — T1(8))

We use the following properties:

e Cr(p) < ¢r, and ¢ = max{Cr,, Cr,} is a uniform bound, so |Cr(p)| < ¢ for all p and both 7'} and 7.

ele’|<landle”—e* <|po—pu|forp>0,u>0.

e The domain is bounded: |u—(n—1)6| < y for some y > 0, so |Ar, () — Ar,(w)| < Nﬁo (:_1)9 |T(s)—
T,(s)|ds.

o |T:(é) < Mfori=1,2andall & with M > 0.

e Cr is Lipschitz in T by Lemma 3, that is, |Cr,(u) — Cr,(u)| < K|T(u) — T»(u)| for some K > 0,
uniformly in u.

o |T\(é) - To(6)| < e*d(Ty, T»).

Applying the triangle inequality and the above properties, we get

,3 5
|H(E,T) - HE Ty)| < N Zl All,

where

o A = Cp,(@)e T () - T2(€)),

o Ay = To(&) (Cr,(@e @ — Cp,()e9),

o A3 = Cr, (¢ —1)eMETN(Ty(é - 1)) = Ti(€ — 11)),

o Ay =T = 1) (Cry(E = 7)e ™ ) — Cp, (€ = T)e M),
o As = uNy(T (&) — T1(§)).

Thus,
o |A| <& 1T (&) — TL (O] = &T1(§) — To(é)| < ¢e™d(Ty, T»),

Aa] < IT2)[ICr, (€) = Cr, (O] - e O] + |Cry (€)] - |11 @ — O] <

%d(Ty, T),

Ve
= (MK + MPx,,
No

M [Kevfd(Tl, T)-1+¢- g)(evfd(Tl, T5)
0

o |A3]| <&-1-e%d(Ty,Ty) = ¢e”d(T,, T,),
[ ]

Adl < IT2(€ = TOI[ICr,E = 11) = Cr (€ = Tl [ M) 4 |Co, (6 = 1) - |76
—eME < M [Kevfd(Tl, )-1+¢- ]é/\/evgd(ﬂ’ T,)
0

MZcBy

- (MK + ZPX
Ny

e’ d(T,, T»),
o |As| < uNoe™*d(T,, T»).
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Hence,
McBy

5
D 1Al < etd(T), T>) + (MK +
0

)evfd(Tl, T>) + ¢e”d(T,, T»)
i=1
McBy

+(MK+
0

)evfd(Tl ,Ta) + uNoe™d(T,, T,)

2MeBy

0

= (25 +2MK + + yNo) e“d(Ty, T»).
Multiplying by Nﬁo we get

2MeBy

0

|HE T) - HET)| < § (2& +2MK + + #No) e“d(T, T>).
0

This inequality implies the estimate

!
+ ,UNO) d(Ty,T») etdé
(n-1)0

McBy

0

|L(T (1) = LT, ()] < § (25 vOMEK + 2
0

e —1

4

:£(25+2MK+
N

0

2MeBy

0

MZcBy

0

+ ,uNo) d(T,,T,)

th

2
< g (25 +2MK + + ,uNo) d(T,, T,).
0

v
Therefore,

2MeBy

0

e—vt

L(Ty(1)) = L(T»(1))| < % (25 +2MK + + yNo) 1—1/d(T1, T,).
0

Taking the supremum of both sides, we get

2MEBy

d(I(T)), L(Ty)) < § (25 +2MK + + ,uNO) %d(Tl, T5).
0

We choose the value of v > 0 large enough such that Nﬁo (25 +2MK + % + ,uNO) % < 1.
Consequently, L : (Z,,d) — (Z,,d) is a contraction map on the complete metric space (%, d). O

To finish the proof of the existence of solution, we use the following theorem [38].

Theorem 10. Let (QQ,d) be a complete metric space and let v : Q — Q be a contraction mapping
on Q. Then, ¥ has a unique fixed point x € Q (such that y(x) = x).

It follows from this theorem that the map L has a unique fixed point. Thus, there exists a unique
function 7, € X satisfying the equality 7,(t) = Ir,((n — 1)0)) + f(;—n ) H(, T,)dé, where H(E, T,,) 1s
given in (3.11). Besides, we note that H(¢,T) is a continuous function on [(n — 1), n6]. Hence,

the derivative % exists. This completes the proof of the existence and uniqueness of solution of
system (3.2) on [(n — 1)6, nf], where n € N. O
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As a consequence of this theorem, we can guarantee that / > 0 in the current interval, i.e., [, > 0 in
the current interval. Also, we have S, > 0 in the current interval. Hence, we can say
_ ﬁSnH(t - 9)1n+1(t - 9)

{n+1 - N, > 0, in Zn+l-
0

Consequently, we have the following theorem.

Theorem 11. There exists a unique solution (S, I, R,) of system (3.2) in the domain X3, where X is
defined by

2={T € C([0,n0,R) : 0 < T(t) < Np,Vt€[0,n0] : neN, T(t) =0:1t€[-0,0)} = UZ/"

J=1

and . . i
Su= Z; SJT[(j—l)H,jH)’ 1, = Z; IjT[(j—l)H,jG)’ R, = Z;RjT[(j—l)B,jG)’
= = =
where Y4 is the indicator function that takes value 1 in the set A and O otherwise.

3.2. Stationary states of the system

We now consider the possibility of a stationary state for system (3.2), that is, constant
values (S*, I, R*) at which all derivatives vanish. First, note that the system always admits a trivial
stationary state corresponding to the complete absence of infection (S*,I*, R*) = (Ny,0,0). This
solution reflects the situation in which the epidemic does not spread. More interesting is the study
of a nontrivial stationary state with I* > 0. We set the righthand sides of Eqs (3.2a)—(3.2c) to zero and

B

assume J(t) = J* = VS*I* is constant. We obtain a system of algebraic equations from which the

0
stationary values are expressed as follows:

e Number of susceptible individuals:

pNo

S = =y

(3.13)

e Number of infected individuals:

1*=N0(1— K )( L-er™ ) (3.14)

ﬁ(l _ e_,UTl) 1 — e~u(T1+12)

e Number of recovered individuals:

No (1 = g ) e (1 — ™)

R =
- 1 — e #(Ti+712)

(3.15)

Thus, the stationary solution (S*, I*, R*) is fully determined by the model parameters and the initial
population size N,. This stationary solution will be positive if the following condition holds:

1_—/”1
H <1 — M>l

B(1 —e+m) %
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Therefore, we naturally define the basic reproduction number as

_ B —e™)
= P

Ro (3.16)

Remark 12. Consider the basic reproduction number Ry as a function of the parameter y. Then,

1 — e H71
lim Ro() = lim 2= _
u—0* u—0* M

Bt
This result is consistent with the previously obtained value of the basic reproduction number in the
model without demographic processes, thatis, y = u = 6 = 0 (see [33,34]).

Theorem 13. If 'Ry < 1, then the solution of system (3.2) tends to the trivial stationary solution, i.e.,

limS() = Ny, limI(t) =0, limR() = 0.
t—00 t—oo

>0

Proof. From the nonnegativity of the solutions of system (3.2), it follows that they are bounded. That is,
S() <Ny, I(t) <Ny, R(t)<N,.

Then, from the integral form of /(¢), we derive the estimate

! t
I = f Jue™ ™ du < f BI(De™ " du.
-7 t

-7

Define
M(t) = sup I(s).

SE[t—71,t]

Then,

— pTHTI

t 7] 1
I(t) < BM(¢) f e M du = BM(1) f eds = BM(t) ———— = RoM(?).
-7 0 M
Using the estimate above, we find an upper bound for M(¢) as follows:

M(t) = sup I(s) < sup RoM(s) =Ry sup I(s).

SE[t—T71,1] SE[t—T71,1] SE[t—271,t]

Thus, we obtain

sup I(s) <Ry sup I(s), sup I(s) <Ry sup I(s), ...

SE[t—T71,t] se[t—2711,t] se[t—2711,t] s€[t—3711,t]

Therefore, for any n € N, provided ¢ — (n + 1)1, > 0, the following holds:

I(t) <Ry sup I(s) <Ry sup  I(s).

se[t-11,1] s€[t—(n+1)71,1]

Thus, for sufficiently large # and accordingly large n € N, we have

I(t) <R, sup  I(s).

se[t—(n+1)7y,t]
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Taking a rough estimate /(f) < Ny, and noting that sup . I(s) < Ny for any 7* > 0, we conclude that
ast — oo and Ry < 1, then
lim /(f) < lim RGN, = 0.

[—oc0
Hence, lim,;_,., I(¢) = 0.
Now, rewriting the differential equation for R(¢), we get

dR(t
—di ) +uR(t) = e (1t - 1) — e Tt - 1) — 1)),

Denote the righthand side as
fO) = e It —1)— e Tt — 1) — 1)).
The general solution of this linear nonhomogeneous ODE is
! !
R() =e™ (R(O) + f e‘”f(s)ds) = e‘“tf e f(s)ds.
0 0

Since J(1) = N%S (H)1(¢) and S (7) 1s bounded above, from lim,_,, (#) = 0, it follows that lim,_,, J(¢) = 0,
and, hence, lim,_,, f(¢) = 0.

Fix an arbitrary € > 0. Since f(f) — 0 as t — oo, there exists 7 > 0 such that for all s > T,
|f(s)] < %. We split the integral

! T !
f e’ f(s)ds = f e f(s)ds + f e f(s)ds.
0 0 T

. T .
The first term is a constant: C; = fo e f(s)ds. Estimate the second term

t 1 ut _ uT
f e f(s)ds| < 2 f ds =S ¢
T 2 T

2
R < e

Therefore,
ut L uT

1 —_ e_ﬂ(t_T)
C] + &

Se"”Cl + &
ICl 3

2|Cy]
&

Now choose 77 > 0 such that e 7' |C,| < %, e, T’ > i ln( ) Thus, for ¢t > max{T, T’}, we have

&

2

IR()| < g +ze
Since € > 0 is arbitrary, we conclude that lim,,., R(f) = 0. From this, it follows that S(r) — N, as
t — oo, since S (1) + I(t) + R(t) = Ny. O

This theoretical result is further supported by numerical example displayed in Figure 1 which
illustrates that basic reproduction number Ry has an important property, and it serves as a threshold
parameter for the existence of an epidemic. If Ry < 1 as in Figure 1(a), then the infection eventually
dies out, and if R, equals 1 or slightly larger than 1 as in Figure 1(b), then a transition to a stationary
state with the presence of infected individuals is possible.
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Epidemic progression Epidemic progression
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Figure 1. Numerical simulation of system (3.2) for the initial conditions Ny = 10°, S(z) =
No, I(t) = R(t) = 0Vt <0, S(O) = Ng—1, I(t) = 1, R(t) = 0, and the parameters
y=u=1073, 7, =10, 7, = 180; (a) 8 = 0.098 (R, ~ 0.98); (b) 8 = 0.102 (R ~ 1.015).

3.3. Stability analysis

Introduce the state vector of the system

S (1)
X0 =[10],
R(7)

then system (3.2) can be written in vector form
d
EX(t) = F(X(@®), Xt —11), X(t — 71 —12)),

where ¥ : R®> x R? x R® — R3 is a nonlinear mapping. Consider the stationary solution
T
X = [S I, R*] , satisfying 7 (X*, X", X*) = 0. Adding a small perturbation to it, we get

XH=X"+V(@®, |IVO<I.
Linearizing the system around X*, we obtain the approximate system
d
EV(I) =JIVO)+ LVit-1)+LBV(E—-1 — 1),
where Ji, J,, J3 are Jacobian matrices evaluated at X* with respect to X(¢), X(t — 71), X(t — 71 — T2),

respectively.
Let V() = e'v, where v € R?. Then,

AEve" = e Jiv + e Ly + M) Iy,
where E is the identity matrix. Dividing both sides by eV, we obtain
AEv = Jiv + e Ly + 72 Ly
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Therefore, the characteristic equation of the system takes the form

det(AE = J; = ™ Jy — e J3) = 0. (3.17)
The Jacobian matrices J, J,, J3 evaluated at X* have the following form:
B B G
_ﬁol — M _ITOS 0 5 0 5 O 0
J, = %I* %S* —u 0], J= —N—Oe‘f”ll* —N—Oe‘/”lS* 0],
0 0 —u Fermr Lermst 0

B —u(ri+12) 7* B —u(ti+12) Q *
N Y | N DR\ S 0]

Jy = 0 0 0f.

_B umiHm)px _ B —u(ri+T) O %
o€ ) N 2)§* 0

Substituting the explicit forms of Jy, J,, and J; into (3.17), we obtain the simplified
characteristic equation

(4 +,Ll) A+ EI* +u— ﬁ]*e—u‘*’#)(ﬁ*“rz) 1a + - ES* + Es*e_(,“_ﬂ)ﬁ
" y Yo (3.18)
- ES* - ﬁS*e—(/Hﬂ)(TﬁTz) ) —El* + El*e_(,u_ﬂ)ﬁ - 0.
No No Ny Ny

Note that the characteristic equation is transcendental, so it can have an infinite number of roots.

Theorem 14. Let 7 be an unstable characteristic root of equation (3.17), i.e., Re(z) > 0. Then, the
following estimate holds
|zl < (1]l + 12l + (151,

where || - || denotes the matrix norm induced by the vector norm.

Proof. We define the matrix
W) =Ji+ e+ e My

Using this matrix, the characteristic Eq (3.17) can be rewritten as:
P(z;71372) = det(zE — W(z)) = 0.
This means that z is an eigenvalue of the matrix W(z), and there exists an index j € {1, 2, 3} such that
z=4;, where ;€ ac(W(z),

where 0(W(z)) denotes the spectrum of the matrix W(z).
We can use the property that for any eigenvalue A of a matrix A (1 € 0(A)), the inequality |1] < ||A]|
holds [39]. Then:
2l = 1 S W@ = 1) + ey + e XM ).

Applying the triangle inequality for matrix norms, we obtain
IW@I = 1]y + e + e 2 L5 < L+ 10+ (151

O
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Remark 15. This theorem implies that there exists a bounded region in the right half-plane of the
complex plane C* that contains all unstable characteristic roots of Eq (3.17).

From the form of the characteristic Eq (3.18), it follows that

A=—u
or
/l+£1*+,u— ﬁl*e—(/lﬂ.t)(‘rlﬂ'z) . /l+/.l— ES*-FES*e_(/H#)TI
No Ny No Ny (3.19)
_ ES* _ ES *e—(/l+/1)(‘rl+72) X —EI* + El*e—(/lﬂl)‘rl — O
Ny Ny No No
Introducing the notation,
B .. B .
=1+ , =—] . b==—S§".
* g No No
Then, Eq (3.19) becomes
(x+a—ae™ ) (x = b+ be™™) — (b — be ") (ae™™ —a) = 0.
Expanding the terms, we find
x[x +a(l — e ) 4 p(e™™ — 1)] = 0.
Thus, either
A=—u
or
A= —a(l — g WAOFT)Y _ o=t _ 1y gy, (3.20)

Lemma 16. If R > 1, then Eq (3.20) has no nontrivial positive real roots.

Proof. Denote the righthand side of Eq (3.20) by f(4). Then,
FQ) = —a(l = e W) (e in gy
F/Q) = —a(t + Tp)e WD) 4 pr e Wr T,
Note that a > 0, b > 0. Therefore,

#Tle_(f“'/l)‘rl IJTI e_f”-l

/ —(put+)T _
() < brie =T =

<1, Vae]0,o00).
Equation f(1) = A can be rewritten as

g) = f(H)-1=0.
We already know that /(1) < 1 forall 1 > 0, so

g =fA-1<0, VYae|0,c0).
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This means that g(A) is strictly decreasing on [0, co). Evaluating g(1) at 4 = 0, we get
(0) = f(0) = —a(l — ™) < 0.
Since g(A) is strictly decreasing, then
YA>0: g)<g0)<0.

Therefore, the equation g(1) = 0 cannot have real positive solutions. This completes the proof of
the lemma. o

The basic reproduction number, ‘R, represents a fundamental epidemic threshold whose value
determines whether a disease can establish itself in a population. The condition Ry, > 1 signifies
that the pathogen is capable of sustained transmission, leading to an endemic state. The biological
implication of R is that conditions of the emergence of persistent epidemics are formulated in terms
of the pathogen’s transmission rate (3, the duration of the infectious period 7, and the natural mortality
rate of the host population p.

The main observation from the bifurcation plot given by Figure 2(a) is that if Ry > 1, system (3.2)
could have either periodic solution when y = u are less than some critical value u. (Figure 2(b),(d))
or damped oscillation which leads to stable endemic solution when y = u exceeds that critical
value u. (Figure 2(c),(e)). It remains to mention that the basic reproduction number corresponding
to the parameters values of Figure 2 satisfies R € [1.9, 2).

On the other hand, from the bifurcation graph given in Figure 3(a), we observe thatif y = u < y,
and Ry > 1, the system (3.2) could have either damped oscillation (stable endemic solution) when
the disease transmission rate S is less than some critical value (Figure 3(b),(d)) or periodic solution
when S exceeds that critical value (Figure 3(c),(e)). The basic reproduction number corresponding
to the parameters values of Figure 3 satisfies Ry € [1,2). The transition to periodic oscillations via a
Hopf bifurcation, along with the general theory for delay epidemic models, is studied in works such
as [40-42].

Likewise, from the bifurcation graph given in Figure 4(a), we observe thatif y = 4 < y. and Ry > 1,
the system (3.2) could have either damped oscillation (stable endemic solution) when the disease
duration 7 is less than some critical value (Figure 4(b),(d)) or periodic solution when 7, exceeds
that critical value (Figure 4(c),(e)). The basic reproduction number corresponding to the parameters
values of Figure 4 satisfies Ry € (1.04, 3).
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3 «10° Bifurcation Diagram for Infected Compartment
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Figure 2. (a) The bifurcation of the infected compartment, that is, we plot the local
maximums and local minimums of the oscillations after the graph of infected compartment
stabilizes, against y = u in system (3.2) for the initial conditions Ny = 10°, S(f) = Ny, I(t) =
Rt) = 0Vt <0, SO = No—-1, I(r) = 1, R(t) = 0, and the parameters § =
0.2, 71 = 10, 7, = 180; (b),(d)y = =107 Ry = 2); (c),(e) y = u = 8x 1073 (Ry = 1.92).
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3 «10° Bifurcation Diagram for Infected Compartment

25

N

Infected Individuals (1)
- <]

I
)

0
0.1 0.12 0.14 0.16 0.18 0.2
5]
(a)
Epidemic progression «10% Epidemic progression
12
5000
10
“ 4000 w8
© ©
3 3
23000 ] 2% —I
© o
£ £
2000 4
2 UULUULUULUUUUUUULUL
0 0
0 1000 2000 3000 4000 5000 6000 7000 0 1000 2000 3000 4000 5000 6000 7000
Time (days) Time (days)
(b) (©
3D phase portrait 3D phase portrait
x10* «10°
10 6
- —Ry ~ 1.07 ::4 —Ry~ 15
z €,
6000 15
g 4000 3 10
10
92 o, 2000 6 5 :
x10° 96 4g 0 it x10° 8 0 t
() 10 (t) @) 10 ()
(d) (e)

Figure 3. (a) The bifurcation of the infected compartment, that is, we plot the
local maximums and local minimums of the oscillations after the graph of infected
compartment stabilizes, against the parameter 8 in system (3.2) for the initial conditions
Ny = 10% S(@®) = Ny, I(t) = R(t) =0Vt <0, SOO) =Ny—1, I(t) = 1, R(¢) = 0, and
the parameters y = u = 107, 7, = 10, 7, = 180; (b),(d) 8 = 0.108 (R, ~ 1.07); (c),(e)
B=0.15 Ry = 1.5).
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Figure 4. (a) The bifurcation of the infected compartment, that is, we plot the

local maximums and local minimums of the oscillations after the graph of the infected
compartment stabilizes, against the parameter 7, in system (3.2) for the initial conditions

N():

10%, S(t) = Ny, I(t) = R(1) = 0 ¥t < 0, S(0) = Ng—1, I(t) = 1, R(#) = 0, and

the parameters 8 = 0.2, y = u = 1073, 1, = 180; (b),(d) 7, = 5.3 Ry = 1.06); (c).(e)

T = 5.5 (SR() ~ 1097)

The bifurcation diagrams in Figures 2(a), 3(a), and 4(a) collectively demonstrate that the system
undergoes a supercritical Hopf bifurcation for each parameter. This is characterized by a transition
from a stable endemic equilibrium to stable periodic oscillations as the respective parameter crosses a
critical threshold. Specifically, this transition occurs:

¢ In Figure 2(a), as the mortality rate y = u decreases past the critical value u,. = 0.006.
e In Figure 3(a), as the transmission rate S increases past 8. ~ 0.115.
e In Figure 4(a), as the infectious period delay 7, increases past 7y, ~ 5.4.
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Consistently, for parameter y = u values above their critical thresholds (y = p = 8 x 107 > u.
in Figure 2(b),(d); and parameters 8 and 7, below their critical thresholds g = 0.108 < S, in
Figure 3(b),(d); 7 = 5.3 < 1. in Figure 4 (b),(d), the solutions converge to a stable equilibrium.
Conversely, for values below the critical thresholds (y = u = 10~ < g, in Figure 2(c),(e); and above
their critical thresholds g = 0.15 > S, in Figure 3(c),(e); 71 = 5.5 > 7. in Figure 4(c),(e), the
solutions converge to a stable limit cycle. The stability analysis of the endemic equilibrium is not
solely dependent on R,. The same value of R, > 1 can lead to either a stable equilibrium or recurring
waves, depending on the specific combination of underlying biological parameters (5, 71, ut).

Figures 2—4 show that the oscillation amplitude is highly sensitive to changes in the parameters 3, 7,
and u near their critical bifurcation thresholds, but this sensitivity diminishes significantly when the
parameters are far from these critical values.

One of the fundamental methods of sensitivity analysis is based on computing derivatives of model
outputs with respect to input parameters. Considering the stationary values S*, I*, and R* defined in
equalities (3.13)—(3.15), we find

oS~ 1 or OR*
B B B B BB —e#) — )
Since % /S* is always negative, meaning S* decreases as 8 increases, the magnitude of sensitivity

is inversely proportional to 8. On the other hand, regarding /* and R*, the sign depends on the term
B(1 — ™) — u in the denominator. However, since Ry > 1 is the condition for the stationary values I*
and R* to be positives, that is, S(1 — e*™) — u > 0, then both of I* and R* increase with 5. An
analogous procedure, computing the normalized derivatives with respect to 7, and u, can be applied to
comprehensively assess the sensitivity of the system to all its key parameters.

4. Discussion

This work presents a comprehensive analysis of an extended SIR model incorporating vital
dynamics (birth and death rates) and discrete delays representing the infectious and immune periods.
The core contributions are structured as follows. First, a novel system of DDEs is constructed
to describe the dynamics of susceptible, infected, and recovered populations, generalizing previous
models by including the parameters 7y, u, and 6.

Second, for the foundational special case of a demographically stable population without disease-
induced mortality (y = ¢ > 0, ¢ = 0), the work rigorously establishes the existence, nonnegativity, and
uniqueness of the system’s solutions. It further derives the disease-free equilibrium and a formula for
the basic reproduction number R, providing the necessary threshold condition for an outbreak.

The disease-free equilibrium loses stability when R, > 1, leading to the emergence of a
positive equilibrium. The stability of this endemic state, whether asymptotically stable or exhibiting
periodic oscillations, depends not only on the basic reproduction number but also critically on
the fertility/mortality rates. Specifically, within the demographically equilibrated system (3.2), the
instability of the endemic stationary solution is governed by critical values of the fertility/mortality
rate (u.), the disease transmission rate (5.), and the disease duration (7,.), as visualized in Figures 2—4.

For the critical fertility/mortality rate u., when Ry > 1, the endemic equilibrium is locally
asymptotically stable if u. < u = vy, but becomes unstable if u = y < u., resulting in oscillatory
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behavior. The critical value u. signifies a demographic tipping point. In populations with a high birth
rate (i.e., a young population where y is effectively high), the model predicts a stable endemic state. In
contrast, populations with lower birth rates (e.g., aging populations where u is lower) are more likely to
experience persistent epidemic waves if i < u.. This underscores the need for public health planning to
account for demographic structure, suggesting that aging societies may need to prepare for long-term,
oscillatory epidemic patterns even for the same disease.

Regarding the critical transmission rate (., stability exhibits a dual dependence, that is, if
u = vy < u. the endemic equilibrium remains locally asymptotically stable when 8 < S., yet loses
stability and induces oscillations when 8 > .. That is, reducing transmission (8) through vaccination
or social distancing does more than lower case numbers; it can prevent the onset of destabilizing
oscillations. The target is not just to push Ry below 1, but in vulnerable demographics, to push 8
below . to ensure predictability.

The critical duration 7. highlights that measures which shorten the infectious period—such as
test-to-isolate policies and effective treatments—are not just beneficial; they are essential tools for
shifting the system from an unstable, oscillatory regime into a stable one, thereby simplifying long-
term health planning.

5. Conclusions

The delay models developed here are generic but slightly more complex than the epidemic
components of models in [33,34] due to additional terms accounting for fertility and mortality. Those
works, in which y = u = 0, demonstrate that the stability analysis of the endemic solution depends
completely on the basic reproduction number, namely, if R, exceeds some critical value R, > 1, the
endemic solution is unstable leading to periodic oscillations. Otherwise, if 1 < Ry < R, then the
endemic solution is stable with damped oscillations. However as mentioned above, the case is different
in the present work, in which the models characterize epidemic progression using six parameters
B, T1, T2 ¥, U, and &, which can be estimabled from the literature. This approach enables applications
to research more complex multi-compartment models (involving distinct susceptible/infected groups)
and immuno-epidemic models, particularly concerning infection-induced mortality. Investigating the
model’s applicability to transmissible diseases also presents a promising avenue for future research.
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