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Abstract: We developed a delayed SIR (Susceptible-Infected-Recovered) model incorporating
infectious/immune periods and demographics (fertility and mortality rates), proving the existence,
nonnegativity, and uniqueness of solutions for the system under demographic equilibrium. Analysis
confirmed a threshold at R0 = 1, with an endemic equilibrium emerging when R0 > 1. Crucially,
the stability of this endemic state was governed by a critical mortality rate (µc). High-mortality
populations (µ > µc) exhibited a stable endemic state, whereas low-mortality populations (µ < µc)
experienced instability and sustained oscillations. For these low-mortality populations, critical
thresholds for the transmission rate (βc) and disease duration (τ1c) were identified, beyond which
destabilization occurred. This demonstrated a fundamental dual dependence of long-term disease
dynamics on both demographic (e.g., life expectancy) and epidemiological (e.g., transmission rate,
disease duration) parameters. Consequently, public health strategies (like vaccination targets)
may need adjustment based on a population’s demographic structure, not just its immediate
epidemiological characteristics.
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1. Introduction

Mathematical modeling has emerged as an indispensable tool for understanding and mitigating the
impacts of epidemics. Its development in epidemiology has been driven by the recurrent emergence
of large-scale outbreaks, including HIV (Human Immunodeficiency Virus) from the 1980s to the
present [1,2], SARS (Severe Acute Respiratory Syndrome) in 2002–2003 [3,4], H5N1 influenza (Avian
Influenza) in 2005 [5, 6], H1N1 (Swine Flu) in 2009 [7, 8], and Ebola in 2014 [9, 10]. The recent
COVID-19 (Coronavirus Disease 2019) pandemic further underscored its critical role, profoundly
affecting public health, economies, and societal structures globally.
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The foundation of contemporary epidemiological modeling was significantly influenced by the
Spanish influenza pandemic of 1918–1919 and the seminal work of Kermack and McKendrick [11,12].
This has led to the introduction of numerous models, with multi-compartment frameworks forming the
cornerstone of modern studies and providing essential insights into disease transmission dynamics.
Current applications encompass deciphering historical outbreaks, forecasting the trajectories of
ongoing and future diseases [13–15], models incorporating nonlinear transmission rates [16, 17],
multi-patch models [18, 19], multi-group models addressing population heterogeneity [20], and
frameworks integrating vaccination and control measures [21, 22]. Spatiotemporal models further
characterize spatial distributions of susceptible and infected individuals by accounting for individual
mobility [23, 24]. Comprehensive overviews are available in monographs [25, 26] and review
articles [27, 28].

Classical SIR-type (Susceptible-Infected-Recovered) models underpin the development of both
single and multi-strain epidemic formulations, typically assuming that recoveries and deaths are
proportional to the number infected at time t. To address limitations inherent in these assumptions,
delay differential equation (DDE) models have become a powerful mathematical tool. By incorporating
explicit delays, DDE models more accurately capture temporal features of disease progression and
transmission. They have been widely applied to study infectious diseases like influenza (single
and multi-strain) and COVID-19 [29–31] for single-strain models, and [32] for both single-strain
and two-strain models with cross-immunity. Models describing interactions between two strains
without cross-immunity [33], systems with distributed recovery and death rates (where DDEs provide
suitable approximations [29]), delay models with vaccination [34], and dynamics involving periodic
transmission rates for single and double strains [35] have also been investigated.

Complementary research has explored economic-demographic dynamical systems [33, 36],
illustrating scenarios where lockdown can control epidemic by reducing the number of infectious
individuals to its minimum and preserve the economic state of population, while epidemic can lead
to economic deterioration.

Epidemic models based on systems of ordinary differential equations (ODEs) that integrate
age-specific fertility and mortality rates provide crucial insights into long-term disease dynamics
and population impacts. These ODE frameworks capture how birth rates replenish susceptible
individuals and how disease-induced mortality alters age structure, influencing transmission potential
and endemic equilibria. Incorporating demography into such differential equation models is essential
for predicting the evolution of diseases like COVID-19 in specific populations and for evaluating long-
term vaccination strategies.

In parallel to these developments, another critical advancement has been the use of DDEs to model
fixed time periods inherent to disease biology, such as the duration of infection (τ1) and acquired
immunity (τ2). Models such as the one proposed by [33, 34] have been instrumental in this area.

While appropriate for studying the pure effects of delays, a significant limitation of such models
is their assumption of a closed population without vital dynamics (i.e., no births or natural deaths),
which restricts their applicability to short-term outbreaks or hypothetical scenarios. In this paper, we
develop a novel epidemic model that synthesizes these two critical strands of research. We extend
the established DDE framework [33, 34] by incorporating essential demographic processes, namely,
age-specific fertility (γ) and mortality (µ, δ) rates.

Within this context, the present study first introduces an extended epidemic propagation model
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with birth rate, natural mortality rate, and disease-induced mortality rate. Then, we consider
the specific case without mortality due to infection, and rigorously demonstrate the existence,
uniqueness, nonnegativity, and boundedness of its solutions. Subsequent analysis identifies the
system’s equilibrium states and examines their stability properties under the condition of demographic
balance (where fertility rate equals mortality rate). Finally, we present conclusions and outline further
research perspectives.

2. Extended epidemic propagation model

In our previous research [33, 34], we have analyzed a closed-population SIR model with fixed
delays (infection period τ1 and immunity period τ2), given by the system:

dS (t)
dt

= −J(t) + J(t − τ1 − τ2),

dI(t)
dt

= J(t) − J(t − τ1),

dR(t)
dt

= J(t − τ1) − J(t − τ1 − τ2),

J(t) =
β

N
S (t)I(t),

where β is infection transmission rate and J(t) represents the number of the new incidences at time t.
This model, which assumes a constant population size with no births or natural deaths, is well-suited
for modeling short-term outbreaks but is limited in its application to endemic diseases that persist
on the timescale of human lifespans. To study long-term dynamics, it is essential to incorporate
vital dynamics (births and deaths). Therefore, in this work, we extend the previous framework by
introducing demographic parameters, leading to a novel system of DDEs.

We consider a mathematical model of population dynamics that describes the spread of an infectious
disease. It is assumed that, at any time t, the population can be partitioned into three mutually exclusive
compartments: Susceptible S (t), infected I(t), and recovered R(t) individuals. The total population size
at time t is given by

N(t) = S (t) + I(t) + R(t), (2.1)

where:

• S (t) denotes the number of individuals susceptible to the infection;
• I(t) denotes the number of infected individuals who are capable of transmitting the disease;
• R(t) denotes the number of individuals who have recovered and are temporarily immune.

The transmission of the disease occurs through interactions between susceptible and infected
individuals. The number of newly infected individuals at time t is modeled by the function

J(t) =
β

N(t)
S (t)I(t),

where β > 0 represents the disease transmission rate, which characterizes the frequency of effective
contacts between individuals. The dynamics of the model are further governed by the parameters of
Table 1.
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Table 1. Parameters of the SIR model (2.4) with delays and demographics.

Parameter Definition Reference(s)
β Disease transmission rate (effective

contacts per unit time)
[14, 15, 33, 34]

τ1 Duration of the infectious period [33, 34]
τ2 Duration of the temporary immune

period
[33, 34]

γ Birth rate coefficient (new
susceptible individuals per unit
time)

[14, 15]

µ Natural mortality rate (deaths per
capita per unit time)

[14, 15]

δ Disease-induced mortality
rate (additional deaths per infected
individual per unit time)

[14, 37]

To model mortality, we assume that the lifetime T of an infected individual, measured from the
moment of infection, follows an exponential distribution

T ∼ Exp(λ), λ = µ + δ,

where λ represents the total mortality rate (natural plus disease-induced).
The probability density function of T is given by

fT (t) = λe−λt, t ≥ 0,

and the probability that an individual survives until time t after infection is:

P(T > t) =

∫ ∞

t
fT (u) du = e−λt.

An important feature of the exponential distribution is its memoryless property:

P(T > s + t | T > s) = P(T > t), ∀s, t ≥ 0.

This implies that the probability of an event occurring in the future depends only on the elapsed time
and not on the history of the process prior to the current moment.
Number of infected individuals. The infectious period lasts for a fixed duration τ1. At time t, the
infected individuals are those who were infected at some time u ∈ [t − τ1, t] but have not died by time t
due to either natural (µ) or disease-induced (δ) mortality.

The probability that an individual infected at time u remains alive at time t is given by e−(µ+δ)(t−u).
Therefore, the number of infected individuals at time t is described by the integral:

I(t) =

∫ t

t−τ1

J(u)e−(µ+δ)(t−u)du. (2.2)
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Number of recovered individuals. The duration of the immune period after recovery is τ2. At time t,
the recovered individuals are those who were infected at some time u ∈ [t − τ1 − τ2, t − τ1] but have
survived both the infectious period of length τ1 and the subsequent immune period until time t.

The probability of survival until time t is the joint probability of surviving the infectious and immune
periods. Using the memoryless property of the exponential distribution, this probability is expressed as
the product e−(µ+δ)τ1 · e−µ(t−τ1−u), where e−(µ+δ)τ1 is the probability of surviving the infectious period,
and e−µ(t−τ1−u) is the probability of surviving the immune period. Thus, the number of recovered
individuals with active immunity at time t is given by

R(t) =

∫ t−τ1

t−τ1−τ2

J(u)e−(µ+δ)τ1e−µ(t−τ1−u)du. (2.3)

Expressions (2.2) and (2.3) account for time delays due to the durations of the infectious and
immune periods, as well as mortality. The number of susceptible individuals at time t can be calculated
by substituting (2.2) and (2.3) into (2.1). These integral expressions provide the foundation for
deriving a complete system of delay differential equations that describe the dynamics of the epidemic
in the population.
Differentiating the expressions for I(t) and R(t). To construct the system of differential equations, we
compute the time derivatives of I(t) and R(t). Differentiating (2.2) with respect to t, we apply Leibniz’s
rule to get

dI(t)
dt

=
d
dt

(∫ t

t−τ1

J(u)e−(µ+δ)(t−u)du
)

= J(t) − e−(µ+δ)τ1 J(t − τ1) − (µ + δ)I(t).

Similarly, differentiating (2.3) with respect to t, we obtain

dR(t)
dt

= e−(µ+δ)τ1 J(t − τ1) − e−(µ+δ)τ1e−µτ2 J(t − τ1 − τ2) − µR(t).

Number of susceptible individuals. To complete the formulation of the model, we derive an equation
for the number of susceptible individuals S (t). Recall that the total population size is N(t) = S (t) +

I(t) + R(t), with I(t) and R(t) already defined.
Susceptible individuals are those who are not currently infected but are at risk of infection upon

contact with infected individuals. The dynamics of S (t) are influenced by the following factors:

• Births: New individuals enter the population at a rate γN(t), and are assumed to be initially
susceptible.
• Infection: Susceptible individuals become infected at a rate J(t) =

β

N(t)S (t)I(t).
• Loss of immunity: Individuals who complete the immune period return to the susceptible class

after a delay of τ1 + τ2, provided they have survived the entire duration. The corresponding flux
is e−(µ+δ)τ1e−µτ2 J(t − τ1 − τ2).
• Mortality: Natural mortality reduces the number of susceptible individuals at a rate µS (t).

Incorporating all these processes, we derive the differential equation for S (t) as follows

dS (t)
dt

= γN(t) − J(t) + e−(µ+δ)τ1e−µτ2 J(t − τ1 − τ2) − µS (t),

which completes the system of equations and enables the full description of the epidemic dynamics.
Infection propagation is modelled with the system of delay differential equations
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dS (t)
dt

= γN(t) − J(t) + e−(µ+δ)τ1e−µτ2 J(t − τ1 − τ2) − µS (t), (2.4a)

dI(t)
dt

= J(t) − e−(µ+δ)τ1 J(t − τ1) − (µ + δ)I(t), (2.4b)

dR(t)
dt

= e−(µ+δ)τ1 J(t − τ1) − e−(µ+δ)τ1e−µτ2 J(t − τ1 − τ2) − µR(t), (2.4c)

J(t) =
β

N(t)
S (t)I(t). (2.4d)

This system is considered with the following initial conditions:

N(θ) = S (θ) = N0, I(θ) = R(θ) = 0, ∀θ ∈ [−(τ1 + τ2), 0),

N(0) = N0 > 0, S (0) = S 0 > 0, I(0) = I0 ≥ 0, R(0) = 0, (S 0 + I0 = N0).

Remark 1. By setting µ = γ = δ = 0, the proposed model reduces to the previously studied version
in [33].

3. Demographically stable epidemic propagation model without disease-induced mortality

This section presents the analysis of a special case in which the population is in demographic
equilibrium (γ = µ > 0), and the disease is non-lethal (δ = 0). We investigate the solution’s non-
negativity, existence, and uniqueness, and establish theorems concerning the existence and stability of
a stationary state.

To analyze the dynamics of the total population size N(t), we differentiate (2.1) with respect to
time t and get

dN(t)
dt

=
d
dt

(S (t) + I(t) + R(t)) .

Substituting the expressions from system (2.4), we obtain:

dN(t)
dt

= γN(t) − µN(t) − δN(t).

If γ = µ > 0 and δ = 0, this expression simplifies to

dN(t)
dt

= γN(t) − µN(t) = 0 =⇒ N(t) = N0.

This means that demographic processes - birth and natural death - exactly balance each other, and the
population size remains constant throughout the disease dynamics, that is,

S (t) + I(t) + R(t) = N0 (constant). (3.1)

We obtain the following system of equations:

dS (t)
dt

= γN0 − J(t) + e−µ(τ1+τ2)J(t − τ1 − τ2) − µS (t), (3.2a)
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dI(t)
dt

= J(t) − e−µτ1 J(t − τ1) − µI(t), (3.2b)

dR(t)
dt

= e−µτ1 J(t − τ1) − e−µ(τ1+τ2)J(t − τ1 − τ2) − µR(t), (3.2c)

J(t) =
β

N0
S (t)I(t) (3.2d)

with the initial conditions:

S (θ) = N0 > 0, I(θ) = 0, R(θ) = 0, ∀θ ∈ [−(τ1 + τ2), 0),

S (0) = S 0 > 0, I(0) = I0 ≥ 0, R(0) = 0 (S 0 + I0 = N0). (3.3)

3.1. Nonnegativity, existence, and uniqueness of solution

3.1.1. Nonnegativity of solution

To ensure the biological validity of the model, we must show that all variables remain nonnegative
for all t ≥ 0.

Lemma 2. The function J(t) =
β

N0
S (t)I(t) in system (3.2) satisfies the condition J(t) > 0 for all t > 0,

given the initial conditions: S (0) > 0, I(0) > 0,R(0) = 0, and S (θ) = N0 > 0, I(θ) = 0,R(θ) = 0 for all
θ ∈ [−(τ1 + τ2), 0).

Proof. Assume that the function J(t) becomes nonpositive at some point in time. Then, due to the
continuity of J(t) and the initial condition J(0) =

β

N0
S (0)I(0) > 0, there exists a “first” moment t0 > 0

at which the function crosses zero. This moment can be defined as

t0 = inf
{
t > 0 : J(t) = 0

}
.

It holds that
J(t) > 0 ∀t ∈ [0, t0),

since J(0) > 0, and the function does not reach zero before time t0. Consider two cases corresponding
to the condition J(t0) = 0 (S (t0)I(t0) = 0):

• Case 1. If S (t0) = 0, then from equation (3.2a), we get

dS (t0)
dt

= γN0 + e−µ(τ1+τ2)J(t0 − τ1 − τ2).

Note that J(t0 − τ1 − τ2) ≥ 0, since t0 − τ1 − τ2 ∈ [−(τ1 + τ2), t0). Therefore,

dS (t0)
dt

≥ γN0 > 0.

This means there exists δ > 0 such that S (t) < S (t0) for t ∈ (t0 − δ, t0) and S (t) > S (t0) for
t ∈ (t0, t0 + δ). Since S (t0) = 0, it follows that S (t) < 0 for t ∈ (t0 − δ, t0). However, the
function S (t) cannot become negative without crossing zero, and since S (0) > 0, this contradicts
the definition of t0 as the first time at which J(t0) = 0.
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• Case 2. If I(t0) = 0, then from the integral form (2.2) for I(t) under γ = µ > 0 and δ = 0, we have

I(t0) =

∫ t0

t0−τ1

J(u)e−µ(t0−u)du = 0.

Since the exponential factor e−µ(t0−u) > 0 for all u ∈ [t0 − τ1, t0], it follows that J(u) = 0
almost everywhere on this interval. Due to the continuity of J(t), this implies J(t) = 0 for all
t ∈ [t0 − τ1, t0], which contradicts the definition of t0 as the first moment where J(t0) = 0.
Thus, the assumption that J(t) becomes nonpositive leads to a contradiction. Therefore, J(t) > 0
for all t > 0.

�

Theorem 3. Let the functions S (t), I(t), and R(t) be a solution of system (3.2) under the initial
conditions S (0) > 0, I(0) > 0,R(0) = 0, and S (θ) = N0 > 0, I(θ) = 0, R(θ) = 0 for all
θ ∈ [−(τ1 + τ2), 0). Then, for all t > 0, the following inequalities

S (t) > 0, I(t) > 0, R(t) ≥ 0

hold.

Proof. Assume that the function S (t) becomes nonpositive at some point. By continuity, it must cross
the t-axis. If S (t1) = 0 at some time t1 > 0, then

dS (t1)
dt

= γN0 + e−µ(τ1+τ2)J(t1 − τ1 − τ2) ≥ γN0 > 0.

Repeating the same reasoning as in the lemma above, we conclude that S (t) > 0 for all t > 0.
Now consider the integral expression for the number of infectious individuals given by

I(t) =

∫ t

t−τ1

J(u)e−µ(t−u)du.

Fix an arbitrary t∗ > 0. Consider two cases depending on the value of t∗ − τ1.

• Case 1. t∗ − τ1 < 0. Given the initial conditions where I(θ) = 0 for all θ ∈ [−(τ1 + τ2), 0), the
integral becomes as

I(t∗) =

∫ t∗

0
J(u)e−µ(t∗−u)du > 0,

since J(u) > 0 for all u > 0 according to Lemma 2.
• Case 2. t∗ − τ1 ≥ 0. We obtain

I(t∗) =

∫ t∗

t∗−τ1

J(u)e−µ(t∗−u)du > 0,

because J(u) > 0 for all u > 0 by Lemma 2.

Thus, for any t > 0, we have I(t) > 0. We also have the integral expression for R(t), derived from (2.3)
as follows:

R(t) =

∫ t−τ1

t−τ1−τ2

J(u)e−µτ1e−µ(t−τ1−u)du.

Applying similar reasoning to that used for I(t), we conclude that R(t) ≥ 0 for all t > 0. �

Remark 4. From Theorem 3 and equality (3.1), we demonstrate the boundedness of the solution of
system (3.2).
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3.1.2. Existence and uniqueness of solution

Now, we proceed to the proof of the existence theorem. We will prove the existence and uniqueness
of the solution of system (3.2) for t ∈ [0, n(τ1 + τ2)] where n ∈ N, with the initial conditions (3.3).

Note that if (3.2a) and (3.2b) have unique solutions, then J(t) is uniquely determined. Thus,
Eq (3.2c) has a unique solution. Hence, it is sufficient to prove the existence and uniqueness of solution
for the Eqs (3.2a) and (3.2b).

Let us set θ = τ1 + τ2, and let (S n, In,Rn) be the restriction of the solution (S , I,R) on the interval
[(n − 1)θ, nθ], n ∈ N. We have the following theorem.

Theorem 5. If there exists a unique solution (S n−1, In−1,Rn−1) of system (3.2) in the domain

Σ̂n−1 =

{(
S , I,R

)
∈ Σ3

n−1 : ζn−1(t) =
βS (t − θ)I(t − θ)

N0
≥ 0

}
,

where Σn−1 is defined by

Σn−1 = {Tn−1 ∈ C([(n − 2)θ, (n − 1)θ],R) : 0 ≤ Tn−1(t) ≤ N0,∀t ∈ [(n − 2)θ, (n − 1)θ]},

then the system (3.2) will have a unique solution (S n, In,Rn) in the domain

Σ̂n =

{(
S , I,R

)
∈ Σ3

n : ζn(t) =
βS (t − θ)I(t − θ)

N0
≥ 0

}
,

where
Σn = {Tn ∈ C([(n − 1)θ, nθ],R) : 0 ≤ Tn(t) ≤ N0,∀t ∈ [(n − 1)θ, nθ]}, n ∈ N.

Proof. If t ∈ [(n − 1)θ, nθ] where n ∈ N, then t − θ ∈ [(n − 2)θ, (n − 1)θ] and J(t − θ) is known and
determined in the previous time interval of the function J(t). Set ζn(t) = J(t−θ). For n = 1, the solution
is given by the function on [−θ, 0], and ζ1 is given as

ζ1(x) =

0 if x ∈ [−θ, 0),
β

N0
S (0)I(0) > 0 if x = 0.

When t ∈ [(n − 1)θ, nθ], then system (3.2) becomes

dS (t)
dt

= γN0 − J(t) + ζn(t)e−µ(τ1+τ2) − µS (t), (3.4a)

dI(t)
dt

= J(t) − J(t − τ1)e−µτ1 − µI(t), (3.4b)

dR(t)
dt

= J(t − τ1) − ζn(t)e−µ(τ1+τ2) − µR(t), (3.4c)

J(t) =
β

N0
S (t)I(t), (3.4d)

where ζn(t) = J(t − θ1) as explained previously. To prove this theorem, we need a mathematical setup
of complete metric space, which is defined properly in the following lemma.

AIMS Mathematics Volume 10, Issue 11, 25849–25878.



25858

Lemma 6. (Σn, d) is a complete metric space with respect to the metric d(T 1
n ,T

2
n ) defined by

d(T 1
n ,T

2
n ) = sup

t∈[(n−1)θ,nθ]

{
e−νt|T 1

n (t) − T 2
n (t)|

}
, n ∈ N

and ν ≥ 0 is a constant.

Proof. First, we prove that Σn is a complete metric space with respect to the supremum metric given
by the equality

dsup(T 1
n ,T

2
n ) = sup

t∈[(n−1)θ,nθ]
|T 1

n (t) − T 2
n (t)|.

Consider a Cauchy sequence
{
T i

n(t)
}

in Σn. Then, for any ε > 0, there exists M0 ∈ N such that

dsup(T i
n,T

j
n) = sup

t∈[(n−1)θ,nθ]
|T i

n(t) − T j
n(t)| < ε for i, j ≥ M0.

Therefore, for all t ∈ [(n − 1)θ, nθ],
{
T i

n(t)
}

is a Cauchy sequence in R and, hence, converges to a real
number denoted by Tn(t). Choose any t ∈ [(n − 1)θ, nθ]. Hence, there exists Ct ∈ N such that if c > Ct,
then |T c

n(t) − Tn(t)| < ε/2. Furthermore, since
{
T i

n
}

is a Cauchy sequence in (Σn, dsup), there exists M1

such that
dsup(T i

n,T
j

n) = sup
t∈[(n−1)θ,nθ]

|T i
n(t) − T j

n(t)| < ε/2 for i, j ≥ M1.

Next, choose c > max{M1,Ct}. Then, for all i ≥ M1,

|T i
n(t) − Tn(t)| = |T i

n(t) − T c
n(t) + T c

n(t) − Tn(t)| ≤ |T i
n(t) − T c

n(t)| + |T c
n(t) − Tn(t)| < ε.

Taking supremum over [(n − 1)θ, nθ] in both sides of the above inequality, we get

dsup(T i
n,Tn) < ε, for i ≥ M1.

It remains to show that Tn ∈ Σn. It is clear that for all i ∈ N, 0 ≤ T i
n(t) ≤ N0, for all t ∈ [(n − 1)θ, nθ].

Taking limit as i→ ∞, we get 0 ≤ Tn(t) ≤ N0, for all t ∈ [(n−1)θ, nθ]. Take any t0 ∈ [(n−1)θ, nθ]. Then,

lim
t→t0

Tn(t) = lim
t→t0

lim
i→∞

T i
n(t) = lim

i→∞
lim
t→t0

T i
n(t) = lim

i→∞
T i

n(t0) = Tn(t0),

which proves that Tn is continuous at t0. Thus, Tn ∈ Σn, and, hence, (Σn, dsup) is a complete metric
space. Next, we have the following relation between the two metrics d and dsup on Σn:

e−nθνdsup(T 1
n ,T

2
n ) ≤ d(T 1

n ,T
2
n ) ≤ e−(n−1)θνdsup(T 1

n ,T
2
n ),

which implies that d and dsup are equivalent metrics. This proves that (Σn, d) is a complete metric space.
�

We now proceed to prove the existence and uniqueness of solution of system (3.4a) and (3.4b) in
the metric space (Σn, d). For any given function T (t) ∈ Σn, the equation

dS (t)
dt

= γN0 −
β

N0
S (t)T (t) + ζn(t)e−µ(τ1+τ2) − µS (t), (3.5)
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with the condition S
(
(n − 1)θ

)
≥ 0, n ∈ N, can be written as

dS (t)
dt

+
( β
N0

T (t) + µ
)
S (t) = γN0 + ζn(t)e−µ(τ1+τ2),

and it has a unique solution given by

S T (t) =
(
S T ((n − 1)θ) +

∫ t

(n−1)θ
b(x)eΛT (x)dx

)
e−ΛT (t).

We set
S T (t) = CT (t)e−ΛT (t), (3.6)

where

CT (t) = S T ((n − 1)θ) +

∫ t

(n−1)θ
b(x)eΛT (x)dx, (3.7)

b(u) = γN0 + ζn(u)e−µ(τ1+τ2), (3.8)

and
ΛT (u) =

∫ u

(n−1)θ

( β
N0

T (s) + µ
)
ds. (3.9)

Since ζn ≥ 0, we can ensure that S T (t) ≥ 0, i.e., S n ≥ 0, in the current interval. Since the functions T
and S T are positive and bounded, then the function CT is bounded. There is a positive number c̃T such
that CT (t) ≤ c̃T : ∀t ≥ 0.

Lemma 7. Function CT defined in (3.7) is Lipschitz in T .

Proof. From the boundedness of T (s), ζn(u), and S T ((n−1), we can write |T (s)| ≤ M for all s and some
M > 0 and |ζn(u)| ≤ Z for all u and some Z > 0. This ensures b(u) is bounded, that is,

|b(u)| ≤ γN0 + Ze−µ(τ1+τ2) =: B.

Since the initial condition depends continuously on T , then S T ((n − 1)θ) is Lipschitz in T , i.e., there
exists K0 > 0 such that

|S T1((n − 1)θ) − S T2((n − 1)θ)| ≤ K0 dsup(T1,T2).

Since t is in a bounded interval [(n− 1)θ, (n− 1)θ+ L0], then for some L0 > 0, |t − (n− 1)θ| ≤ L0. Next,

|CT1(t) −CT2(t)| =

∣∣∣∣∣∣[S T1((n − 1)θ) − S T2((n − 1)θ)
]
+

∫ t

(n−1)θ
b(x)

(
eΛT1 (x) − eΛT2 (x)

)
dx

∣∣∣∣∣∣ .
Using the triangle inequality, we get

|CT1(t) −CT2(t)| ≤ |S T1((n − 1)θ) − S T2((n − 1)θ)| +

∣∣∣∣∣∣
∫ t

(n−1)θ
b(x)

(
eΛT1 (x) − eΛT2 (x)

)
dx

∣∣∣∣∣∣ .
We have,

|S T1((n − 1)θ) − S T2((n − 1)θ)| ≤ K0 dsup(T1,T2),

AIMS Mathematics Volume 10, Issue 11, 25849–25878.



25860

and ∫ t

(n−1)θ
b(x)

(
eΛT1 (x) − eΛT2 (x)

)
dx ≤ B

∫ t

(n−1)θ

∣∣∣eΛT1 (x) − eΛT2 (x)
∣∣∣ dx.

The exponential function is Lipschitz on bounded domains. Specifically, ΛT (x) is bounded because
|T (s)| ≤ M and |x − (n − 1)θ| ≤ L0. Thus,

|ΛT (x)| ≤
∫ x

(n−1)θ

(
β

N0
M + µ

)
ds ≤

(
βM
N0

+ µ

)
L0 =: R.

The function ez is Lipschitz on [−R,R] with constant eR (since |dez/dz| = ez ≤ eR). So we can write∣∣∣eΛT1 (x) − eΛT2 (x)
∣∣∣ ≤ eR|ΛT1(x) − ΛT2(x)|.

Hence,

|ΛT1(x) − ΛT2(x)| =

∣∣∣∣∣∣ βN0

∫ x

(n−1)θ
(T1(s) − T2(s))ds

∣∣∣∣∣∣
≤

β

N0
dsup(T1,T2) |x − (n − 1)θ| ≤

β

N0
L0 dsup(T1,T2).

Combining these, we get ∣∣∣eΛT1 (x) − eΛT2 (x)
∣∣∣ ≤ eR β

N0
L0 dsup(T1,T2).

Therefore, we have∫ t

(n−1)θ
b(x)

(
eΛT1 (x) − eΛT2 (x)

)
dx ≤ B

∫ t

(n−1)θ
eR β

N0
L0 dsup(T1,T2)dx

≤ BeR β

N0
L0 dsup(T1,T2) L0 = BeR β

N0
L2

0 dsup(T1,T2).

Finally, we can write

|CT1(t) −CT2(t)| ≤
(
K0 + BeR β

N0
L2

0

)
dsup(T1,T2),

where R =
(
βM
N0

+ µ
)

L. Thus, CT is Lipschitz in T with constant K = K0 + BeR β

N0
L2

0. �

Note that subscript T is used to denote the unique solution of Eq (3.5) for a given function T (t) ∈ Σn.
Let us denote JT (t) =

β

N0
S T (t)T (t), then the equation

dI(t)
dt

=
β

N0
S T (t)T (t) −

β

N0
S T (t − τ1)T (t − τ1)e−µτ1 − µT (t), (3.10)

with the condition IT ((n − 1)θ) ≥ 0 and t ∈ [(n − 1)θ, nθ] also has a unique solution, which can be
written in the form

IT (t) = IT ((n − 1)θ) +

∫ t

(n−1)θ
H(ξ,T )dξ,

where

H(ξ,T ) =
β

N0
CT (ξ)T (ξ)e−ΛT (ξ) −

β

N0
CT (ξ − τ1)T (ξ − τ1)e−ΛT (ξ−τ1) − µT (ξ). (3.11)
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Let us consider the map L : (Σn, d)→ (Σn, d) defined by the equality

L(T (t)) = IT ((n − 1)θ) +

∫ t

(n−1)θ
H(ξ,T )dξ, (3.12)

where H(ξ,T ) satisfies (3.11). Before proceeding further, we verify that L maps (Σn, d) into itself.

Lemma 8. The map L : (Σn, d)→ (Σn, d) defined in (3.12) is well-defined.

Proof. We have

H(ξ,T ) = −

(dS T (ξ)
dξ

+
dRT (ξ)

dξ

)
.

Next, ∫ t

(n−1)θ
H(ξ,T )dξ = −

( ∫ t

(n−1)θ

dS T (ξ)
dξ

dξ +

∫ t

(n−1)θ

dRT (ξ)
dξ

dξ
)
.

Thus, ∫ t

(n−1)θ
H(ξ,T )dξ = S T ((n − 1)θ) + RT ((n − 1)θ) −

(
S T (t) + RT (t)

)
.

Hence,

IT ((n − 1)θ) +

∫ t

(n−1)θ
H(ξ,T )dξ = N0 −

(
S T (t) + RT (t)

)
.

This implies L(T (t)) = IT ((n − 1)θ) +
∫ t

(n−1)θ
H(ξ,T )dξ lies between 0 and N0. Let us also note that if

T1(t),T2(t) ∈ Σn and T1(t) = T2(t), then S T1(t) = S T2(t), and, consequently, H(ξ,T1) = H(ξ,T2). Hence,
the map L is well-defined. �

Next, we prove that the map L : (Σn, d)→ (Σn, d) defined in (3.12) is a contraction.

Lemma 9. The map L : (Σn, d)→ (Σn, d) defined in (3.12) is a contraction map.

Proof. For any two functions T1(t),T2(t) ∈ Σn,

|L(T1(t)) − L(T2(t))| ≤
∫ t

(n−1)θ
|H(ξ,T1) − H(ξ,T2)|dξ.

Then, we have the following estimate: ∣∣∣H(ξ,T1) − H(ξ,T2)
∣∣∣ =

β

N0

∣∣∣∣∣(CT1(ξ)T1(ξ)e−ΛT1 (ξ) −CT1(ξ − τ1)T1(ξ − τ1)e−ΛT1 (ξ−τ1) − µN0T1(ξ)
)

−

(
CT2(ξ)T2(ξ)e−ΛT2 (ξ) −CT2(ξ − τ1)T2(ξ − τ1)e−ΛT2 (ξ−τ1) − µN0T2(ξ)

)∣∣∣∣∣.
Thus, ∣∣∣H(ξ,T1) − H(ξ,T2)

∣∣∣ =
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β

N0

∣∣∣∣∣CT1(ξ)e
−ΛT1 (ξ)(T1(ξ) − T2(ξ)

)
+ T2(ξ)

(
CT1(ξ)e

−ΛT1 (ξ) −CT2(ξ)e
−ΛT2 (ξ))

+CT1(ξ − τ1)e−ΛT1 (ξ−τ1)(T2(ξ − τ1) − T1(ξ − τ1)
)

+ T2(ξ − τ1)
(
CT2(ξ − τ1)e−ΛT2 (ξ−τ1)

−CT1(ξ − τ1)e−ΛT1 (ξ−τ1)) + µN0
(
T2(ξ) − T1(ξ)

)∣∣∣∣∣.
We use the following properties:

• CT (ρ) ≤ c̃T , and c̃ = max{c̃T1 , c̃T2} is a uniform bound, so |CT (ρ)| ≤ c̃ for all ρ and both T1 and T2.
• |e−ρ| ≤ 1 and |e−ρ − e−µ| ≤ |ρ − µ| for ρ ≥ 0, µ ≥ 0.
• The domain is bounded: |u− (n−1)θ| ≤ χ for some χ > 0, so |ΛT1(u)−ΛT2(u)| ≤ β

N0

∫ u

(n−1)θ
|T1(s)−

T2(s)|ds.
• |Ti(ξ)| ≤ M for i = 1, 2 and all ξ, with M > 0.
• CT is Lipschitz in T by Lemma 3, that is, |CT1(u) − CT2(u)| ≤ K|T1(u) − T2(u)| for some K > 0,

uniformly in u.
• |T1(ξ) − T2(ξ)| ≤ eνξd(T1,T2).

Applying the triangle inequality and the above properties, we get

∣∣∣H(ξ,T1) − H(ξ,T2)
∣∣∣ ≤ β

N0

5∑
i=1

|Ai|,

where

• A1 = CT1(ξ)e
−ΛT1 (ξ)(T1(ξ) − T2(ξ)),

• A2 = T2(ξ)
(
CT1(ξ)e

−ΛT1 (ξ) −CT2(ξ)e
−ΛT2 (ξ)

)
,

• A3 = CT1(ξ − τ1)e−ΛT1 (ξ−τ1)(T2(ξ − τ1) − T1(ξ − τ1)),
• A4 = T2(ξ − τ1)

(
CT2(ξ − τ1)e−ΛT2 (ξ−τ1) −CT1(ξ − τ1)e−ΛT1 (ξ−τ1)

)
,

• A5 = µN0(T1(ξ) − T2(ξ)).

Thus,

• |A1| ≤ c̃ · 1 · |T1(ξ) − T2(ξ)| = c̃|T1(ξ) − T2(ξ)| ≤ c̃eνξd(T1,T2),
•

|A2| ≤ |T2(ξ)|
[
|CT1(ξ) −CT2(ξ)| · |e

−ΛT1 (ξ)| + |CT2(ξ)| · |e
−ΛT1 (ξ) − e−ΛT2 (ξ)|

]
≤

M
[
Keνξd(T1,T2) · 1 + c̃ ·

β

N0
χeνξd(T1,T2)

]
=

(
MK +

Mc̃βχ
N0

)
eνξd(T1,T2),

• |A3| ≤ c̃ · 1 · eνξd(T1,T2) = c̃eνξd(T1,T2),
•

|A4| ≤ |T2(ξ − τ1)|
[
|CT2(ξ − τ1) −CT1(ξ − τ1)| · |e−ΛT2 (ξ−τ1)| + |CT1(ξ − τ1)| · |e−ΛT2 (ξ−τ1)

−e−ΛT1 (ξ−τ1)|
]
≤ M

[
Keνξd(T1,T2) · 1 + c̃ ·

β

N0
χeνξd(T1,T2)

]
=

(
MK +

Mc̃βχ
N0

)
eνξd(T1,T2),

• |A5| ≤ µN0eνξd(T1,T2).

AIMS Mathematics Volume 10, Issue 11, 25849–25878.



25863

Hence,
5∑

i=1

|Ai| ≤ c̃eνξd(T1,T2) +

(
MK +

Mc̃βχ
N0

)
eνξd(T1,T2) + c̃eνξd(T1,T2)

+

(
MK +

Mc̃βχ
N0

)
eνξd(T1,T2) + µN0eνξd(T1,T2)

=

(
2c̃ + 2MK +

2Mc̃βχ
N0

+ µN0

)
eνξd(T1,T2).

Multiplying by β

N0
, we get

∣∣∣H(ξ,T1) − H(ξ,T2)
∣∣∣ ≤ β

N0

(
2c̃ + 2MK +

2Mc̃βχ
N0

+ µN0

)
eνξd(T1,T2).

This inequality implies the estimate

∣∣∣L(T1(t)) − L(T2(t))| ≤
β

N0

(
2c̃ + 2MK +

2Mc̃βχ
N0

+ µN0

)
d(T1,T2)

∫ t

(n−1)θ
eνξdξ

=
β

N0

(
2c̃ + 2MK +

2Mc̃βχ
N0

+ µN0

)
eνt − 1
ν

d(T1,T2)

≤
β

N0

(
2c̃ + 2MK +

2Mc̃βχ
N0

+ µN0

)
eνt

ν
d(T1,T2).

Therefore,

e−νt
∣∣∣L(T1(t)) − L(T2(t))

∣∣∣ ≤ β

N0

(
2c̃ + 2MK +

2Mc̃βχ
N0

+ µN0

)
1
ν

d(T1,T2).

Taking the supremum of both sides, we get

d(L(T1), L(T2)) ≤
β

N0

(
2c̃ + 2MK +

2Mc̃βχ
N0

+ µN0

)
1
ν

d(T1,T2).

We choose the value of ν > 0 large enough such that β

N0

(
2c̃ + 2MK +

2Mc̃βχ
N0

+ µN0

)
1
ν
< 1.

Consequently, L : (Σn, d)→ (Σn, d) is a contraction map on the complete metric space (Σn, d). �

To finish the proof of the existence of solution, we use the following theorem [38].

Theorem 10. Let (Ω, d) be a complete metric space and let ψ : Ω → Ω be a contraction mapping
on Ω. Then, ψ has a unique fixed point x ∈ Ω (such that ψ(x) = x).

It follows from this theorem that the map L has a unique fixed point. Thus, there exists a unique
function Tu ∈ Σ satisfying the equality Tu(t) = ITu((n − 1)θ)) +

∫ t

(n−1)θ
H(ξ,Tu)dξ, where H(ξ,Tu) is

given in (3.11). Besides, we note that H(ξ,T ) is a continuous function on [(n − 1)θ, nθ]. Hence,
the derivative dTu(t)

dt exists. This completes the proof of the existence and uniqueness of solution of
system (3.2) on [(n − 1)θ, nθ], where n ∈ N. �
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As a consequence of this theorem, we can guarantee that I ≥ 0 in the current interval, i.e., In ≥ 0 in
the current interval. Also, we have S n ≥ 0 in the current interval. Hence, we can say

ζn+1 =
βS n+1(t − θ)In+1(t − θ)

N0
≥ 0, in Σn+1.

Consequently, we have the following theorem.

Theorem 11. There exists a unique solution (S u, Iu,Ru) of system (3.2) in the domain Σ3, where Σ is
defined by

Σ = {T ∈ C([0, nθ],R) : 0 ≤ T (t) ≤ N0,∀t ∈ [0, nθ] : n ∈ N, T (t) = 0 : t ∈ [−θ, 0)} =

n⋃
j=1

Σ j,

and

S u =

n∑
j=1

S jΥ[
( j−1)θ, jθ

), Iu =

n∑
j=1

I jΥ[
( j−1)θ, jθ

), Ru =

n∑
j=1

R jΥ[
( j−1)θ, jθ

),
where ΥA is the indicator function that takes value 1 in the set A and 0 otherwise.

3.2. Stationary states of the system

We now consider the possibility of a stationary state for system (3.2), that is, constant
values (S ∗, I∗,R∗) at which all derivatives vanish. First, note that the system always admits a trivial
stationary state corresponding to the complete absence of infection (S ∗, I∗,R∗) = (N0, 0, 0). This
solution reflects the situation in which the epidemic does not spread. More interesting is the study
of a nontrivial stationary state with I∗ > 0. We set the righthand sides of Eqs (3.2a)–(3.2c) to zero and

assume J(t) ≡ J∗ =
β

N0
S ∗I∗ is constant. We obtain a system of algebraic equations from which the

stationary values are expressed as follows:

• Number of susceptible individuals:

S ∗ =
µN0

β(1 − e−µτ1)
. (3.13)

• Number of infected individuals:

I∗ = N0

(
1 −

µ

β(1 − e−µτ1)

) (
1 − e−µτ1

1 − e−µ(τ1+τ2)

)
. (3.14)

• Number of recovered individuals:

R∗ =
N0

(
1 − µ

β(1−e−µτ1 )

)
e−µτ1(1 − e−µτ2)

1 − e−µ(τ1+τ2) . (3.15)

Thus, the stationary solution (S ∗, I∗,R∗) is fully determined by the model parameters and the initial
population size N0. This stationary solution will be positive if the following condition holds:

µ

β(1 − e−µτ1)
< 1 ⇐⇒

β(1 − e−µτ1)
µ

> 1.
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Therefore, we naturally define the basic reproduction number as

R0 =
β(1 − e−µτ1)

µ
. (3.16)

Remark 12. Consider the basic reproduction number R0 as a function of the parameter µ. Then,

lim
µ→0+
R0(µ) = lim

µ→0+

β(1 − e−µτ1)
µ

= βτ1.

This result is consistent with the previously obtained value of the basic reproduction number in the
model without demographic processes, that is, γ = µ = δ = 0 (see [33, 34]).

Theorem 13. If R0 < 1, then the solution of system (3.2) tends to the trivial stationary solution, i.e.,

lim
t→∞

S (t) = N0, lim
t→∞

I(t) = 0, lim
t→∞

R(t) = 0.

Proof. From the nonnegativity of the solutions of system (3.2), it follows that they are bounded. That is,

S (t) ≤ N0, I(t) < N0, R(t) < N0.

Then, from the integral form of I(t), we derive the estimate

I(t) =

∫ t

t−τ1

J(u)e−µ(t−u)du ≤
∫ t

t−τ1

βI(t)e−µ(t−u)du.

Define
M(t) = sup

s∈[t−τ1,t]
I(s).

Then,

I(t) ≤ βM(t)
∫ t

t−τ1

e−µ(t−u)du = βM(t)
∫ τ1

0
e−µsds = βM(t)

1 − e−µτ1

µ
= R0M(t).

Using the estimate above, we find an upper bound for M(t) as follows:

M(t) = sup
s∈[t−τ1,t]

I(s) ≤ sup
s∈[t−τ1,t]

R0M(s) = R0 sup
s∈[t−2τ1,t]

I(s).

Thus, we obtain

sup
s∈[t−τ1,t]

I(s) ≤ R0 sup
s∈[t−2τ1,t]

I(s), sup
s∈[t−2τ1,t]

I(s) ≤ R0 sup
s∈[t−3τ1,t]

I(s), . . .

Therefore, for any n ∈ N, provided t − (n + 1)τ1 ≥ 0, the following holds:

I(t) ≤ R0 sup
s∈[t−τ1,t]

I(s) ≤ Rn
0 sup

s∈[t−(n+1)τ1,t]
I(s).

Thus, for sufficiently large t and accordingly large n ∈ N, we have

I(t) ≤ Rn
0 sup

s∈[t−(n+1)τ1,t]
I(s).
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Taking a rough estimate I(t) ≤ N0, and noting that sups∈[0,t∗] I(s) ≤ N0 for any t∗ > 0, we conclude that
as t → ∞ and R0 < 1, then

lim
t→∞

I(t) ≤ lim
n→∞
R

n
0N0 = 0.

Hence, limt→∞ I(t) = 0.
Now, rewriting the differential equation for R(t), we get

dR(t)
dt

+ µR(t) = e−µτ1 J(t − τ1) − e−µ(τ1+τ2)J(t − τ1 − τ2).

Denote the righthand side as

f (t) = e−µτ1 J(t − τ1) − e−µ(τ1+τ2)J(t − τ1 − τ2).

The general solution of this linear nonhomogeneous ODE is

R(t) = e−µt

(
R(0) +

∫ t

0
eµs f (s)ds

)
= e−µt

∫ t

0
eµs f (s)ds.

Since J(t) =
β

N0
S (t)I(t) and S (t) is bounded above, from limt→∞ I(t) = 0, it follows that limt→∞ J(t) = 0,

and, hence, limt→∞ f (t) = 0.
Fix an arbitrary ε > 0. Since f (t) → 0 as t → ∞, there exists T > 0 such that for all s > T ,

| f (s)| < εµ

2 . We split the integral∫ t

0
eµs f (s)ds =

∫ T

0
eµs f (s)ds +

∫ t

T
eµs f (s)ds.

The first term is a constant: C1 =
∫ T

0
eµs f (s)ds. Estimate the second term∣∣∣∣∣∣

∫ t

T
eµs f (s)ds

∣∣∣∣∣∣ ≤ εµ

2

∫ t

T
eµsds = ε

eµt − eµT

2
.

Therefore,

|R(t)| ≤ e−µt

∣∣∣∣∣∣C1 + ε
eµt − eµT

2

∣∣∣∣∣∣ ≤ e−µt|C1| + ε
1 − e−µ(t−T )

2
.

Now choose T ′ > 0 such that e−µT ′ |C1| <
ε
2 , i.e., T ′ > 1

µ
ln

(
2|C1 |

ε

)
. Thus, for t > max{T,T ′}, we have

|R(t)| ≤
ε

2
+
ε

2
= ε.

Since ε > 0 is arbitrary, we conclude that limt→∞ R(t) = 0. From this, it follows that S (t) → N0 as
t → ∞, since S (t) + I(t) + R(t) = N0. �

This theoretical result is further supported by numerical example displayed in Figure 1 which
illustrates that basic reproduction number R0 has an important property, and it serves as a threshold
parameter for the existence of an epidemic. If R0 < 1 as in Figure 1(a), then the infection eventually
dies out, and if R0 equals 1 or slightly larger than 1 as in Figure 1(b), then a transition to a stationary
state with the presence of infected individuals is possible.
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(a) (b)

Figure 1. Numerical simulation of system (3.2) for the initial conditions N0 = 106, S (t) =

N0, I(t) = R(t) = 0 ∀t < 0, S (0) = N0 − 1, I(t) = 1, R(t) = 0, and the parameters
γ = µ = 10−3, τ1 = 10, τ2 = 180; (a) β = 0.098 (R0 ≈ 0.98); (b) β = 0.102 (R0 ≈ 1.015).

3.3. Stability analysis

Introduce the state vector of the system

X(t) =


S (t)
I(t)
R(t)

 ,
then system (3.2) can be written in vector form

d
dt

X(t) = F (X(t), X(t − τ1), X(t − τ1 − τ2)),

where F : R3 × R3 × R3 → R3 is a nonlinear mapping. Consider the stationary solution
X∗ =

[
S ∗, I∗, R∗

]T
, satisfying F (X∗, X∗, X∗) = 0. Adding a small perturbation to it, we get

X(t) = X∗ + V(t), ‖V(t)‖ � 1.

Linearizing the system around X∗, we obtain the approximate system

d
dt

V(t) = J1V(t) + J2V(t − τ1) + J3V(t − τ1 − τ2),

where J1, J2, J3 are Jacobian matrices evaluated at X∗ with respect to X(t), X(t − τ1), X(t − τ1 − τ2),
respectively.

Let V(t) = eλtv, where v ∈ R3. Then,

λEveλt = eλtJ1v + eλ(t−τ1)J2v + eλ(t−τ1−τ2)J3v,

where E is the identity matrix. Dividing both sides by eλt, we obtain

λEv = J1v + e−λτ1 J2v + e−λ(τ1+τ2)J3v.
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Therefore, the characteristic equation of the system takes the form

det
(
λE − J1 − e−λτ1 J2 − e−λ(τ1+τ2)J3

)
= 0. (3.17)

The Jacobian matrices J1, J2, J3 evaluated at X∗ have the following form:

J1 =


−

β

N0
I∗ − µ −

β

N0
S ∗ 0

β

N0
I∗ β

N0
S ∗ − µ 0

0 0 −µ

 , J2 =


0 0 0

−
β

N0
e−µτ1 I∗ − β

N0
e−µτ1S ∗ 0

β

N0
e−µτ1 I∗ β

N0
e−µτ1S ∗ 0

 ,

J3 =


β

N0
e−µ(τ1+τ2)I∗ β

N0
e−µ(τ1+τ2)S ∗ 0

0 0 0
−

β

N0
e−µ(τ1+τ2)I∗ − β

N0
e−µ(τ1+τ2)S ∗ 0

 .
Substituting the explicit forms of J1, J2, and J3 into (3.17), we obtain the simplified
characteristic equation

(λ + µ)
[ (
λ +

β

N0
I∗ + µ −

β

N0
I∗e−(λ+µ)(τ1+τ2)

)
·

(
λ + µ −

β

N0
S ∗ +

β

N0
S ∗e−(λ+µ)τ1

)
−

(
β

N0
S ∗ −

β

N0
S ∗e−(λ+µ)(τ1+τ2)

)
·

(
−
β

N0
I∗ +

β

N0
I∗e−(λ+µ)τ1

) ]
= 0.

(3.18)

Note that the characteristic equation is transcendental, so it can have an infinite number of roots.

Theorem 14. Let z be an unstable characteristic root of equation (3.17), i.e., Re(z) ≥ 0. Then, the
following estimate holds

|z| ≤ ‖J1‖ + ‖J2‖ + ‖J3‖,

where ‖ · ‖ denotes the matrix norm induced by the vector norm.

Proof. We define the matrix
W(z) = J1 + e−zτ1 J2 + e−z(τ1+τ2)J3.

Using this matrix, the characteristic Eq (3.17) can be rewritten as:

P(z; τ1; τ2) = det(zE −W(z)) = 0.

This means that z is an eigenvalue of the matrix W(z), and there exists an index j ∈ {1, 2, 3} such that

z = λ j, where λ j ∈ σ(W(z)),

where σ(W(z)) denotes the spectrum of the matrix W(z).
We can use the property that for any eigenvalue λ of a matrix A (λ ∈ σ(A)), the inequality |λ| ≤ ‖A‖

holds [39]. Then:
|z| = |λ j| ≤ ‖W(z)‖ = ‖J1 + e−zτ1 J2 + e−z(τ1+τ2)J3‖.

Applying the triangle inequality for matrix norms, we obtain

‖W(z)‖ = ‖J1 + e−zτ1 J2 + e−z(τ1+τ2)J3‖ ≤ ‖J1‖ + ‖J2‖ + ‖J3‖.

�
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Remark 15. This theorem implies that there exists a bounded region in the right half-plane of the
complex plane C+ that contains all unstable characteristic roots of Eq (3.17).

From the form of the characteristic Eq (3.18), it follows that

λ = −µ

or (
λ +

β

N0
I∗ + µ −

β

N0
I∗e−(λ+µ)(τ1+τ2)

)
·

(
λ + µ −

β

N0
S ∗ +

β

N0
S ∗e−(λ+µ)τ1

)
−

(
β

N0
S ∗ −

β

N0
S ∗e−(λ+µ)(τ1+τ2)

)
·

(
−
β

N0
I∗ +

β

N0
I∗e−(λ+µ)τ1

)
= 0.

(3.19)

Introducing the notation,

x = λ + µ, a =
β

N0
I∗, b =

β

N0
S ∗.

Then, Eq (3.19) becomes

(x + a − ae−x(τ1+τ2))(x − b + be−xτ1) − (b − be−x(τ1+τ2))(ae−xτ1 − a) = 0.

Expanding the terms, we find

x[x + a(1 − e−x(τ1+τ2)) + b(e−xτ1 − 1)] = 0.

Thus, either
λ = −µ

or
λ = −a(1 − e−(µ+λ)(τ1+τ2)) − b(e−(µ+λ)τ1 − 1) − µ. (3.20)

Lemma 16. If R0 ≥ 1, then Eq (3.20) has no nontrivial positive real roots.

Proof. Denote the righthand side of Eq (3.20) by f (λ). Then,

f (λ) = −a(1 − e−(µ+λ)(τ1+τ2)) − b(e−(µ+λ)τ1 − 1) − µ,

f ′(λ) = −a(τ1 + τ2)e−(µ+λ)(τ1+τ2) + bτ1e−(µ+λ)τ1 .

Note that a ≥ 0, b > 0. Therefore,

f ′(λ) ≤ bτ1e−(µ+λ)τ1 =
µτ1e−(µ+λ)τ1

1 − e−µτ1
<
µτ1e−µτ1

1 − e−µτ1
< 1, ∀λ ∈ [0,∞).

Equation f (λ) = λ can be rewritten as

g(λ) := f (λ) − λ = 0.

We already know that f ′(λ) < 1 for all λ ≥ 0, so

g′(λ) = f ′(λ) − 1 < 0, ∀λ ∈ [0,∞).
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This means that g(λ) is strictly decreasing on [0,∞). Evaluating g(λ) at λ = 0, we get

g(0) = f (0) = −a(1 − e−µ(τ1+τ2)) ≤ 0.

Since g(λ) is strictly decreasing, then

∀λ > 0 : g(λ) < g(0) ≤ 0.

Therefore, the equation g(λ) = 0 cannot have real positive solutions. This completes the proof of
the lemma. �

The basic reproduction number, R0, represents a fundamental epidemic threshold whose value
determines whether a disease can establish itself in a population. The condition R0 > 1 signifies
that the pathogen is capable of sustained transmission, leading to an endemic state. The biological
implication of R0 is that conditions of the emergence of persistent epidemics are formulated in terms
of the pathogen’s transmission rate β, the duration of the infectious period τ1, and the natural mortality
rate of the host population µ.

The main observation from the bifurcation plot given by Figure 2(a) is that if R0 > 1, system (3.2)
could have either periodic solution when γ = µ are less than some critical value µc (Figure 2(b),(d))
or damped oscillation which leads to stable endemic solution when γ = µ exceeds that critical
value µc (Figure 2(c),(e)). It remains to mention that the basic reproduction number corresponding
to the parameters values of Figure 2 satisfies R0 ∈ [1.9, 2).

On the other hand, from the bifurcation graph given in Figure 3(a), we observe that if γ = µ < µc

and R0 > 1, the system (3.2) could have either damped oscillation (stable endemic solution) when
the disease transmission rate β is less than some critical value (Figure 3(b),(d)) or periodic solution
when β exceeds that critical value (Figure 3(c),(e)). The basic reproduction number corresponding
to the parameters values of Figure 3 satisfies R0 ∈ [1, 2). The transition to periodic oscillations via a
Hopf bifurcation, along with the general theory for delay epidemic models, is studied in works such
as [40–42].

Likewise, from the bifurcation graph given in Figure 4(a), we observe that if γ = µ < µc andR0 > 1,
the system (3.2) could have either damped oscillation (stable endemic solution) when the disease
duration τ1 is less than some critical value (Figure 4(b),(d)) or periodic solution when τ1 exceeds
that critical value (Figure 4(c),(e)). The basic reproduction number corresponding to the parameters
values of Figure 4 satisfies R0 ∈ (1.04, 3).
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(a)

(b) (c)

(d) (e)

Figure 2. (a) The bifurcation of the infected compartment, that is, we plot the local
maximums and local minimums of the oscillations after the graph of infected compartment
stabilizes, against γ = µ in system (3.2) for the initial conditions N0 = 106, S (t) = N0, I(t) =

R(t) = 0 ∀t < 0, S (0) = N0 − 1, I(t) = 1, R(t) = 0, and the parameters β =

0.2, τ1 = 10, τ2 = 180; (b),(d) γ = µ = 10−3 (R0 ≈ 2); (c),(e) γ = µ = 8×10−3 (R0 ≈ 1.92).
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(a)

(b) (c)

(d) (e)

Figure 3. (a) The bifurcation of the infected compartment, that is, we plot the
local maximums and local minimums of the oscillations after the graph of infected
compartment stabilizes, against the parameter β in system (3.2) for the initial conditions
N0 = 106, S (t) = N0, I(t) = R(t) = 0 ∀t < 0, S (0) = N0 − 1, I(t) = 1, R(t) = 0, and
the parameters γ = µ = 10−3, τ1 = 10, τ2 = 180; (b),(d) β = 0.108 (R0 ≈ 1.07); (c),(e)
β = 0.15 (R0 ≈ 1.5).
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(a)

(b) (c)

(d) (e)

Figure 4. (a) The bifurcation of the infected compartment, that is, we plot the
local maximums and local minimums of the oscillations after the graph of the infected
compartment stabilizes, against the parameter τ1 in system (3.2) for the initial conditions
N0 = 106, S (t) = N0, I(t) = R(t) = 0 ∀t < 0, S (0) = N0 − 1, I(t) = 1, R(t) = 0, and
the parameters β = 0.2, γ = µ = 10−3, τ2 = 180; (b),(d) τ1 = 5.3 (R0 ≈ 1.06); (c),(e)
τ1 = 5.5 (R0 ≈ 1.097).

The bifurcation diagrams in Figures 2(a), 3(a), and 4(a) collectively demonstrate that the system
undergoes a supercritical Hopf bifurcation for each parameter. This is characterized by a transition
from a stable endemic equilibrium to stable periodic oscillations as the respective parameter crosses a
critical threshold. Specifically, this transition occurs:

• In Figure 2(a), as the mortality rate γ = µ decreases past the critical value µc ≈ 0.006.
• In Figure 3(a), as the transmission rate β increases past βc ≈ 0.115.
• In Figure 4(a), as the infectious period delay τ1 increases past τ1c ≈ 5.4.
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Consistently, for parameter γ = µ values above their critical thresholds (γ = µ = 8 × 10−3 > µc

in Figure 2(b),(d); and parameters β and τ1 below their critical thresholds β = 0.108 < βc in
Figure 3(b),(d); τ1 = 5.3 < τ1c in Figure 4 (b),(d), the solutions converge to a stable equilibrium.
Conversely, for values below the critical thresholds (γ = µ = 10−3 < µc in Figure 2(c),(e); and above
their critical thresholds β = 0.15 > βc in Figure 3(c),(e); τ1 = 5.5 > τ1c in Figure 4(c),(e), the
solutions converge to a stable limit cycle. The stability analysis of the endemic equilibrium is not
solely dependent on R0. The same value of R0 > 1 can lead to either a stable equilibrium or recurring
waves, depending on the specific combination of underlying biological parameters (β, τ1, µ).

Figures 2–4 show that the oscillation amplitude is highly sensitive to changes in the parameters β, τ1,
and µ near their critical bifurcation thresholds, but this sensitivity diminishes significantly when the
parameters are far from these critical values.

One of the fundamental methods of sensitivity analysis is based on computing derivatives of model
outputs with respect to input parameters. Considering the stationary values S ∗, I∗, and R∗ defined in
equalities (3.13)–(3.15), we find

∂S ∗

∂β
/S ∗ = −

1
β
,

∂I∗

∂β
/I∗ =

∂R∗

∂β
/R∗ =

µ

β
(
β(1 − e−µτ1) − µ

) .
Since ∂S ∗

∂β
/S ∗ is always negative, meaning S ∗ decreases as β increases, the magnitude of sensitivity

is inversely proportional to β. On the other hand, regarding I∗ and R∗, the sign depends on the term
β(1 − e−µτ1) − µ in the denominator. However, since R0 > 1 is the condition for the stationary values I∗

and R∗ to be positives, that is, β(1 − e−µτ1) − µ > 0, then both of I∗ and R∗ increase with β. An
analogous procedure, computing the normalized derivatives with respect to τ1 and µ, can be applied to
comprehensively assess the sensitivity of the system to all its key parameters.

4. Discussion

This work presents a comprehensive analysis of an extended SIR model incorporating vital
dynamics (birth and death rates) and discrete delays representing the infectious and immune periods.
The core contributions are structured as follows. First, a novel system of DDEs is constructed
to describe the dynamics of susceptible, infected, and recovered populations, generalizing previous
models by including the parameters γ, µ, and δ.

Second, for the foundational special case of a demographically stable population without disease-
induced mortality (γ = µ > 0, δ = 0), the work rigorously establishes the existence, nonnegativity, and
uniqueness of the system’s solutions. It further derives the disease-free equilibrium and a formula for
the basic reproduction number R0, providing the necessary threshold condition for an outbreak.

The disease-free equilibrium loses stability when R0 > 1, leading to the emergence of a
positive equilibrium. The stability of this endemic state, whether asymptotically stable or exhibiting
periodic oscillations, depends not only on the basic reproduction number but also critically on
the fertility/mortality rates. Specifically, within the demographically equilibrated system (3.2), the
instability of the endemic stationary solution is governed by critical values of the fertility/mortality
rate (µc), the disease transmission rate (βc), and the disease duration (τ1c), as visualized in Figures 2–4.

For the critical fertility/mortality rate µc, when R0 > 1, the endemic equilibrium is locally
asymptotically stable if µc < µ = γ, but becomes unstable if µ = γ < µc, resulting in oscillatory
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behavior. The critical value µc signifies a demographic tipping point. In populations with a high birth
rate (i.e., a young population where µ is effectively high), the model predicts a stable endemic state. In
contrast, populations with lower birth rates (e.g., aging populations where µ is lower) are more likely to
experience persistent epidemic waves if µ < µc. This underscores the need for public health planning to
account for demographic structure, suggesting that aging societies may need to prepare for long-term,
oscillatory epidemic patterns even for the same disease.

Regarding the critical transmission rate βc, stability exhibits a dual dependence, that is, if
µ = γ < µc, the endemic equilibrium remains locally asymptotically stable when β < βc, yet loses
stability and induces oscillations when β > βc. That is, reducing transmission (β) through vaccination
or social distancing does more than lower case numbers; it can prevent the onset of destabilizing
oscillations. The target is not just to push R0 below 1, but in vulnerable demographics, to push β

below βc to ensure predictability.
The critical duration τ1c highlights that measures which shorten the infectious period—such as

test-to-isolate policies and effective treatments—are not just beneficial; they are essential tools for
shifting the system from an unstable, oscillatory regime into a stable one, thereby simplifying long-
term health planning.

5. Conclusions

The delay models developed here are generic but slightly more complex than the epidemic
components of models in [33, 34] due to additional terms accounting for fertility and mortality. Those
works, in which γ = µ = 0, demonstrate that the stability analysis of the endemic solution depends
completely on the basic reproduction number, namely, if R0 exceeds some critical value Rc > 1, the
endemic solution is unstable leading to periodic oscillations. Otherwise, if 1 < R0 < Rc, then the
endemic solution is stable with damped oscillations. However as mentioned above, the case is different
in the present work, in which the models characterize epidemic progression using six parameters
β, τ1, τ2 γ, µ, and δ, which can be estimabled from the literature. This approach enables applications
to research more complex multi-compartment models (involving distinct susceptible/infected groups)
and immuno-epidemic models, particularly concerning infection-induced mortality. Investigating the
model’s applicability to transmissible diseases also presents a promising avenue for future research.
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