This paper presents a geometric study of three types of ruled surfaces generated from the tangent, normal, and binormal unit vectors of unit speed space curves. Using the T-pedal curve construction as a foundation, we analyze these surfaces through their fundamental geometric forms, including curvature properties, the striction curve geometry, and the distribution parameter. The theoretical framework is used to analyze problems in computational geometry and shape modeling, with results relevant to both mathematical research and engineering applications. The work establishes fundamental geometric insights while providing tools for applied shape modeling and analysis.
Citation: A. Elsharkawy, H. K. Elsayied, M. E. Desouky, C. Cesarano. T-pedal ruled surface with the Frenet frame of the original curve in $ E^3 $[J]. AIMS Mathematics, 2025, 10(11): 25606-25623. doi: 10.3934/math.20251134
This paper presents a geometric study of three types of ruled surfaces generated from the tangent, normal, and binormal unit vectors of unit speed space curves. Using the T-pedal curve construction as a foundation, we analyze these surfaces through their fundamental geometric forms, including curvature properties, the striction curve geometry, and the distribution parameter. The theoretical framework is used to analyze problems in computational geometry and shape modeling, with results relevant to both mathematical research and engineering applications. The work establishes fundamental geometric insights while providing tools for applied shape modeling and analysis.
| [1] |
B. Bukcu, M. K. Karakus, Normal forms for singularities of pedal curves produced by non-singular dual curve germs in $S^n$, Geom. Dedicata, 133 (2008), 59–66. https://doi.org/10.1007/s10711-008-9233-5 doi: 10.1007/s10711-008-9233-5
|
| [2] |
D. Canli, S. Şenyurt, F. E. Kaya, Pedal curves obtained from Frenet vector of a space curve and Smarandache curves belonging to these curves, AIMS Math., 9 (2024), 20136–20162. https://doi.org/10.3934/math.2024981 doi: 10.3934/math.2024981
|
| [3] |
D. Canli, S. Şenyurt, F. E. Kaya, L. Grilli, The pedal curves generated by alternative frame vectors and their Smarandache curves, Symmetry, 16 (2024), 1012. https://doi.org/10.3390/sym16081012 doi: 10.3390/sym16081012
|
| [4] | M. P. D. Carmo, Differential geometry of curves and surfaces, Prentice Hall, Englewood Cliffs, NJ, 1976. |
| [5] |
A. Elsharkawy, H. K. Elsayied, A. Refaat, Quasi ruled surfaces in Euclidean 3-space, Eur. J. Pure Appl. Math., 18 (2025), 5710–5710. https://doi.org/10.29020/nybg.ejpam.v18i1.5710 doi: 10.29020/nybg.ejpam.v18i1.5710
|
| [6] |
A. Elsharkawy, H. Hamdani, C. Cesarano, N. Elsharkawy, Geometric properties of Smarandache ruled surfaces generated by integral binormal curves in Euclidean 3-space, Part. Differ. Equ. Appl. Math., 15 (2025), 101298. https://doi.org/10.1016/j.padiff.2025.101298 doi: 10.1016/j.padiff.2025.101298
|
| [7] |
V. N. Ivanov, Geometry of the normal ruled surfaces, Struct. Mech. Eng. Constr. Build., 17 (2021), 562–575. https://doi.org/10.22363/1815-5235-2021-17-6-562-575 doi: 10.22363/1815-5235-2021-17-6-562-575
|
| [8] |
F. E. Kaya, Differential geometric aspects of pedal curves on surfaces, J. Math., 2024 (2024), 6237091. https://doi.org/10.1155/2024/6237091 doi: 10.1155/2024/6237091
|
| [9] |
M. Li, K. Yao, P. Li, D. Pei, Pedal curves of non-lightlike curves in Minkowski 3-space, Symmetry, 14 (2022), 59. https://doi.org/10.3390/sym14010059 doi: 10.3390/sym14010059
|
| [10] | E. H. Lockwood, A book of curves, Cambridge University Press, Cambridge, 1961. https://doi.org/10.1017/CBO9780511569340 |
| [11] |
M. Masal, A. Z. Azak, Ruled surfaces according to Bishop frame in the Euclidean 3-space, P. Natl. A. Sci. India A, 89 (2019), 415–424. https://doi.org/10.1007/s40010-018-0546-y doi: 10.1007/s40010-018-0546-y
|
| [12] |
B. Pal, S. Kumar, Ruled-like surfaces in three-dimensional Euclidean space, Ann. Math. Inform., 59 (2023), 83–101. https://doi.org/10.33039/ami.2022.12.011 doi: 10.33039/ami.2022.12.011
|
| [13] |
Y. Pan, Z. Xu, B. Wang, B. Deng, Piecewise ruled approximation for freeform mesh surfaces, ACM T. Graphic., 44 (2025), 1–18. https://doi.org/10.1145/3730866 doi: 10.1145/3730866
|
| [14] | T. Shifrin, Differential geometry: A first course in curves and surfaces, University of Georgia, 2015. |
| [15] |
O. O. Tuncer, H. Ceyhan, İ. Gök, F. N. Ekmekci, Notes on pedal and contrapedal curves of fronts in the Euclidean plane, Math. Method. Appl. Sci., 41 (2018), 5096–5111. https://doi.org/10.1002/mma.5056 doi: 10.1002/mma.5056
|