We study decomposable $ \mathbb N^d $-indexed persistence modules via higher dimensional partitions. Their barcodes are defined in terms of the extended interior of the corresponding Young diagrams. For two decomposable $ \mathbb N^d $-indexed persistence modules, we present a necessary and sufficient condition, in terms of the partitions, for their rank invariants to be the same. This generalizes the well-known fact that for an $ \mathbb N $-indexed persistence module, its barcode and its rank invariant determine each other, i.e., the rank invariant is a complete invariant.
Citation: Mehdi Nategh, Zhenbo Qin, Shuguang Wang. $ \mathbb N^d $-Indexed persistence modules, higher dimensional partitions and rank invariants[J]. AIMS Mathematics, 2025, 10(11): 25589-25605. doi: 10.3934/math.20251133
We study decomposable $ \mathbb N^d $-indexed persistence modules via higher dimensional partitions. Their barcodes are defined in terms of the extended interior of the corresponding Young diagrams. For two decomposable $ \mathbb N^d $-indexed persistence modules, we present a necessary and sufficient condition, in terms of the partitions, for their rank invariants to be the same. This generalizes the well-known fact that for an $ \mathbb N $-indexed persistence module, its barcode and its rank invariant determine each other, i.e., the rank invariant is a complete invariant.
| [1] | G. E. Andrews, The theory of partitions, Cambridge: Cambridge University Press, 1976. https://doi.org/10.1017/CBO9780511608650 |
| [2] | H. Asashiba, E. Liu, Interval multiplicities of persistence modules, 2025, arXiv: 2411.11594. https://doi.org/10.48550/arXiv.2411.11594 |
| [3] |
G. Azumaya, Corrections and supplementaries to my paper concerning Krull-Remak-Schmidt's theorem, Nagoya Math. J., 1 (1950), 117–124. https://doi.org/10.1017/S002776300002290X doi: 10.1017/S002776300002290X
|
| [4] | P. Bubenik, Z. Ross, A schauder basis for multiparameter persistence, 2025, arXiv: 2510.10347. https://doi.org/10.48550/arXiv.2510.10347 |
| [5] | G. Carlsson, M. Vejdemo-Johansson, Topological data analysis with applications, Cambridge: Cambridge University Press, 2021. https://doi.org/10.1017/9781108975704 |
| [6] |
G. Carlsson, A. Zomorodian, The theory of multidimensional persistence, Discrete Comput. Geom., 42 (2009), 71–93. http://doi.org/10.1007/s00454-009-9176-0 doi: 10.1007/s00454-009-9176-0
|
| [7] | H. Edelsbrunner, J. L. Harer, Computational topology: An introduction, Providence: American Mathematical Society, 2010. https://doi.org/10.1090/mbk/069 |
| [8] | C. Korkmaz, B. Nuwagira, B. Coşkunuzer, T. Birdal, CuMPerLay: Learning Cubical Multiparameter Persistence Vectorizations, 2025, arXiv: 2510.12795. https://doi.org/10.48550/arXiv.2510.12795 |
| [9] | M. Lesnick, Notes on multiparameter persistence (for AMAT 840), University at Albany, 2023. |
| [10] |
D. Loiseaux, H. Schreiber, Multipers: Multiparameter Persistence for Machine Learning, Journal of Open Source Software, 9 (2024), 6773. http://doi.org/10.21105/joss.06773 doi: 10.21105/joss.06773
|
| [11] | M. Nategh, Multiparameter persistence modules, PhD Thesis, University of Missouri, 2025. Available from: https://mospace.umsystem.edu/xmlui/bitstream/handle/10355/109491/NateghMehdiResearch.pdf. |
| [12] | Z. B. Qin, Hilbert schemes of points and infinite dimensional Lie algebras, In: Mathematical Surveys and Monographs, Providence: American Mathematical Society, 2018, 228. https://doi.org/10.1090/surv/228 |
| [13] |
O. Vipond, Multiparameter persistence landscapes, J. Mach. Learn. Res., 21 (2020), 1–38. https://doi.org/10.48550/arXiv.1812.09935 doi: 10.48550/arXiv.1812.09935
|