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1. Introduction

A fundamental structure theorem asserts that every one-dimensional persistence module admits a
unique decomposition up to isomorphisms [5, 7]. This gives rise to the concept of barcodes which
plays a pivotal role in topological data analysis. It is known from the pioneering work [6] that such
structure theorem is no longer true for higher dimensional persistence modules. Extensive research has
been devoted to higher dimensional persistence modules in recent years (see [2,4,9] and the references
therein). Higher dimensional persistence modules have found important applications in the study of
noisy point cloud data and time-varying data [8, 10, 13].

In this paper, we study N“-indexed persistence modules over a field k via d-dimensional partitions,
where N denotes the set of nonnegative integers. To motivate our concepts to be introduced below, let
us look at the case d = 1. It is well-known that the barcode of an N-indexed persistence module over &
is a multiset consisting of some intervals of the form [a, b) = T,[0,b — a) where a € N, b € N LI {+00},
and T, : N — N is the translation by a. The closed interval [0, b — a] is precisely the Young diagram
of the 1-dimensional partition (b — a)o corresponding to b — a where O € N° = {0}, while the interval
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[0, b — a) may be regarded as the extended interior of the Young diagram [0, b — a].
For a general integer d > 1, a d-dimensional partition A is an array

A= (/lil ..... idfl)l'l ,,,,, ig-1
of Aiy,..i,., € N U {+00} indexed by (iy, ..., is-1) € N*"! such that

A > 2

Loewosld=1 = /Y J1seerJd=17

if iy < ji,...,i4-1 < jyu-1. For a d-dimensional partition A, the extended interior of its Young diagram
D, c (R*) is the region
Dil = D,{ - (8D,1) N (R+)d.

Set D' = D% N N¥, which is the set of integral points in D%. Geometrically, D% is obtained from the
Young diagram D, by removing its boundary in (R*)?, and D' consists of all the integral points in D

Example 1.1. For the 2-dimensional partitions 4 = (3,3, 1), the extended interior Dji of D, is
illustrated by Figure 1 below. Note that

D™ = {(0,0), (1,0),(2,0),(0, 1),(1,1),(0,2),(1,2)},

which consists of all the integral points in Dji.

Figure 1. D¢ for a 2-dimensional partition of n = 7.

Define the N?-indexed persistence module k; by

k, if x e D™
(k/l)x = . 4
0, otherwise.

For x,y € N¢ with x < y, the morphism (K)xy : (Ky)x — (Ky)y is the identity map Id, if x,y € D;’“, and
0 otherwise.
We define that an N“-indexed persistence module M admits a barcode if

M = @ Ta(i)k/l(i),

ieA

where the index set A is finite, and for each i € A, a® € N¢, T,» : N — N is the translation associated
to a”, and A? is a d-dimensional partition with nonzero size |[1”| # 0. In this case, the barcode B, of
M is defined to be the multiset whose elements are

To(DSy), i€A.
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Criterions and algorithms for determining whether an N“-indexed persistence module admits a barcode
were investigated in [11].

Since a general higher dimensional persistence module may not admit a barcode, the rank invariant
was introduced in [6] as an alternative discrete invariant. The rank invariant of an N¢-indexed
persistence module M is the function Rank™ : (N?)s — N given by

Rank™(x,y) = Rank(M, ),

where (N9)* = {(x,y) € N x N?x < y}. Indeed, Carlsson and Zomorodian [6, Theorem 12] proved
that when d = 1, the barcode and the rank invariant determine each other, i.e., the rank invariant
is a complete invariant. However, when d > 1, no prior necessary and sufficient conditions for
determining the rank invariant are known. Our main result in this paper provides a necessary and
sufficient condition (in terms of the parts in the partition) for determining the rank invariant when the
N¢-indexed persistence module admits a barcode. When d = 1, our necessary and sufficient condition
exactly says that the barcode and the rank invariant determine each other.

Theorem 1.2. Letd > 1. Let M and N be N%-indexed persistence modules admitting the barcodes

M = @ T, 0k o and N = @ Tyok,o,
ieA e,
where [A?] # 0 and |u©| # 0 for all i € A, and £ € A,. Then, Rank = Rank” if and only if for every
(i1, ...,i4-1) € N1 the two multisets

{(a(z’)’ (/l(i))il ..... id,l)li € A; and (/l(i))i1 .... i > ()}’ (1.1)
and
(0O, @i I € Ay and (O i, , > 0] (1.2)

are equal.

The main idea in the proof of Theorem 1.2 is to use induction on the sizes of M and N. We remark
that when d > 1, under the conditions of Theorem 1.2, Rank™ = Rank" does not imply that M and
N have the same barcode. In other words, when d > 1, the rank invariant is not a complete invariant
for decomposable N“-indexed persistence modules. It would be interesting to see how to strengthen
the assumption Rank” = Rank” in Theorem 1.2 so that the decomposable N¢-indexed persistence
modules M and N are guaranteed to have the same barcode.

The paper is organized as follows: In Section 2, higher dimensional partitions and Young diagrams
are reviewed. We define d-dimensional barcodes via the extended interiors of Young diagrams.
Section 3 is devoted to N-indexed persistence modules. In Section 4, we prove Theorem 1.2 (=
Theorem 4.7).

2. Higher dimensional partitions and barcodes
Definition 2.1. Let N be the set of nonnegative integers. Let d > 1 be an integer.
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(1) When d > 2, a d-dimensional partition A is an array

A= (/lil ..... idfl)il ..... ig-1
of /lily...,id—l e N L {+Oo} indexed by (il’ teeo id—l) = Nd_l such that

A >4

1 5eeerld—1 J1seeesJd—12

if iy < ji,...,i4-1 < jg-1. For n € N U {+0c0}, define the unique 1-dimensional partition of n to be
A = (n)p indexed by O € N? = R’ = {0}.

(ii) The size |A| of a partition A is defined to be [A] = >}; . Ai i, If [A4] = n € N U {+0c0}, then A is
called a partition of n and denoted by A F n.

(iii)) For n € N LI {+00}, the set of d-dimensional partitions of »n is denoted by #,(n). Define P,(n) to
be the number of d-dimensional partitions of n.

Remark 2.2. The ordinary partitions are 2-dimensional partitions (of nonnegative integers) in our sense.

One immediately sees that the generating function for P,(n) is given by

+00 +0o0 1
2, Png' = | = - 2.1)
n=0 n=1
where ¢ is a formal variable. A well-known result of McMahon [1] states that
+00 +oo 1
Pi(n)q" = P 2.2)
Z; R 1—1[ (I-q"y

There is no analogous formula for P,;(n) when d > 3.
Fix n € N and the field k = C. The group (k*) acts on k[ty, ..., ;] via

(ki,....k))(t1, ... tg) = (kity, ..., katg),

where k* = k — {0} and (ki,...,k,) € (k*)?. It induces a (k*)?-action on the Hilbert scheme Hilb"(A¢)
parametrizing length-n 0-dimensional closed subschemes of AZ = Specklty,...,t;] (see [12]). A d-
dimensional partition A = (4;,__;, ,)i,....,., of n determines a (k*)?-invariant ideal

i g1 Aieig_1 /s . d—1
I:<llll"'t;d_lltdl Ny, ..., ig-1) EN >

of k[ty,...,t;] with co-length n (i.e, dimy k[t,...,7;]/I = n). In this way, the set of d-dimensional
partitions of 7 is in one-to-one correspondence with the set of (k*)¢-invariant ideals of [z, ..., ;] with
co-length n, which in turn is in one-to-one correspondence with the set of (k*)?-invariant points in
Hilb”(AZ).

Definition 2.3. Let A be a d-dimensional partition, and a = (a,, ..., ay) € N

(i) The Young diagram D, of A is the subset of R¢ obtained by stacking Ai,....i,., d-dimensional unit
boxes over the (d — 1)-dimensional rectangular region in R?~! ¢ R¢ spanned by the vertices

@sevsigo1), @s e osigm) €1, 00, (g, ey igo1) T €4,

where {e,, ..., e,_;} denotes the standard basis of R?"! and R¢"! is embedded in R¢ by taking the
last coordinate to be 0.
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(i) The set of integral points inside D, is defined by
D™ ={(iy,...,iq-1,h) e N < A, .} C D, (2.3)
The extended interior of D, is defined to be
D% = Dy - (0D,) N (R (24)

(iii) Define T, : RY — R to be the translation of R by a.

Remark 2.4. For a d-dimensional partition 4, we have D = D% N N,

Whend = 2and 4 + n € N, D, is the usual Young diagram (up to some rotation) of the 2-
dimensional (i.e, usual) partition 4. When A = (+o0);, ;. , (i.e., 4, i, , = +oo forevery (iy,...,iz-1) €
N9 we have D, = R?.

Example 2.5. Recall from Definition 2.1 (i) the notation (1) for n € N U {+oc0}. In Figures 2 and 3
below, we present two sets of examples of T,(D,) for d = 1 and d = 2, respectively.

0123456 0123456 0123456

Figure 2. For the 1-dimensional partitions 4 = (3)p and p = (+00)p,
the left is D,, the middle is T»(D,), and the right is T>(D,).

6 1 6 6
54 5 5
4 4 4
3 3 3
2 2 2
1 1 1
0 123456 0 0 123456

Figure 3. For the 2-dimensional partitions 4 = (3, 1) and g = (+00,4,2,1,1,...),
the left is D,, the middle is D, and the right is T, ,(D,,).

Example 2.6. Figure 4 illustrates the Young diagram of a 3-dimensional partition of n = 29 as A =
(Aap)), (@, b) € N*, where A, is defined by

(a,b) = (0,0);

(a,b) € {(0, 1), (1,0), (1, 1), (2, 0)};

(a,b) €1(0,2),(1,2),(2, 1), (3,0), 3, D;
(a,b) € {(4,0),(1,3),(0,3)}.

-

Aap) = (2.5)

-

— N L Bk

-
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X

Figure 4. D, for a 3-dimensional partition of n = 29.

Definition 2.7. (i) A multiset is defined to be an ordered pair (A, m), where Aisasetandm : A — Z*
is a function from A to the set of positive integers. Informally, a multiset is a set where elements
are allowed to have multiple copies.

(i1) For d > 1, a d-dimensional barcode is a multiset consisting of

Ta(i)(Dii(i))a i €A,

where A is an index set, and for each i € A, a” € N and A% is a d-dimensional partition.
3. N%indexed persistence modules

Definition 3.1. (i) A partially ordered set (or poset for short) is a set P together with a partial
ordering < satisfying
e a < aforall a € P (reflexivity);
e a < bandb < aimply a = b (anti-symmetry);
e a < band b < cimply a < c (transitivity).
(i) The poset category associated to a poset P is the category whose objects are the elements of P,

and for a,b € P, Hom(a, b) consists of one element if @ < b and is the empty set if a £ b. By
abusing notations, we also use P to denote the poset category associated to a poset P.

Definition 3.2. (i) Fix a field k and a poset (P, <). A P-indexed persistence module over k is a functor
M : P — Vecy,

where Vec, is the category of finite dimensional vector spaces over k (and P denotes the poset
category associated to P).

(i1) The image of p € P is denoted by M,,. For p,q € P with p < g, the unique morphism from M, to
M, corresponding to p < g is denoted by M, ,.
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(ii1) Define gr(m) = pif m € M,,.

In the rest of the paper, we will assume P = N and the field k will be implicit. A persistence
module is meant to be a N“-indexed persistence module over k.

Theorem 3.3. ( [6, Theorem 1]) (Correspondence) The category of N%-indexed persistence modules
over k is equivalent to the category of N-graded k[t,, . . ., t;]-modules.

Theorem 3.4. ( [6, Theorem 2]) (Realization) Let k = F, for some prime p, let q be a positive integer,
and let M be an N?-graded k[ x,, . .., x;]-module. Then there is an N?-filtered finite simplicial complex
X so that H(X, k) = M as N9-persistence modules.

Denote the standard basis of R? by

{er,...,ez}. (3.1
Given an N%indexed persistence module M : NY — Vec,, the associated N¢-graded k[t,...,#,]-
module is
P m.. (3.2)
ZENd
on which k[t,,...,t;] acts viat; - m = M ,,,(m) foreverym e M, and 1 <i <d.

Morphisms between persistence modules, their kernels and images, submodules, and quotient
modules are defined component-wise in the usual way.

Definition 3.5. Let M be an N“-indexed persistence module.

(1) Let S € U,quM, be a subset. The submodule (S) of M generated by S is the submodule such
that for each z € N, (S), consists of all the elements

n

Z Ci- Mgr(s,'),z(si)a

i=1

where ¢y,...,c, € kand sy,...,s, € S with gr(s;) < z for each i. If gr(s) £ z for every s € S, then
we put (§), = 0.
(i) A subset S C U,qwM, is a set of generators for M if M = (S).
(iii) The persistence module M is finitely generated if there exists a finite set of generators for M.
(iv) Fix a € N¥. The translation T, M of M by a is the persistence module given by
M., ifx>a, M 4y fa<x<y,

0, otherwise, 0, otherwise,

(TaM)x = { (TaM)x,y = {

for x,y € N¥ with x < y.

For a d-dimensional partition A, recall from Definition 2.3 (ii) the set Di/{“ of integral points inside
the Young diagram D,.

AIMS Mathematics Volume 10, Issue 11, 25589-25605.
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Definition 3.6. (i) For a d-dimensional partition A, define the N?-indexed persistence module k, by

k, ifxe Diﬁm, Id;, ifx,ye DiﬂIlt and x <y,
(k/l)x = . (k/l)xy = .
0, otherwise, 0, otherwise,

where x,y € NY with x < y. When 1 = (+00);,
1, € (k))p = k to be the multiplicative identity.
(ii) An N“-indexed persistence module F is free if there exists a multiset A of elements in N¢ such

that
F = @ T.k.

(i11) A presentation of a persistence module M is a morphism f : F — F’ of free modules such that
M = F’/im(f).

we set K; = K. When [1] # 0, define

..... ig-1°

The following combines [9, Proposition 6.40] and [9, Proposition 6.43].

Proposition 3.7. Every persistence module M has a presentation. Moreover, if M is finitely generated,
then there exists a presentation f : F — F’ of M such that both the free modules F and F’ are finitely
generated.

Next, we study the case F’ = T,k where a € N¢,

Lemma 3.8. Let a € N. Then, every quotient of the persistence module T K is equal to Tk, for some
d-dimensional partition A.

Proof. 1t suffices to prove that every quotient of the persistence module k is equal to k, for some d-
dimensional partition A. Let Q be a quotient of k. Let 7 be the submodule of k such that Q = k/Z. By
(3.2), the persistence module k corresponds to the N¢-graded k[t,, ..., ¢;]-module k[t,...,1,] itself.
Thus, the submodule 1 of k corresponds to an Nd—graded ideal I of k[1y,...,1,]. Being Nd—graded, the

ideal I of k[ty, .. .,1,] is generated by monomials. Define a d-dimensional partition A = (A, i, )iy...is
as follows: _ ‘
min{p|f! - £ b e Iy, if - "’ ~115 € I for some b € N,
Aig iy =
+00, otherw1se.
Indeed, note that if t’f t;d € I, then t{l ---tff € I whenever i; < ji,...,ig < ju. It follows that

Airooigy = Ajyje, Whenever iy < ji,... 001 < Jao1.

We have
= & B kendind (3.3)
(i1 seenrig-))ENTL D2y iy
Ai gy FH
As a vector space, the quotient k[z,,...,#;]/I is equal to

GB @ kol fitgh, (3.4)

(l ld 1)€Nd 1 b</lzl wig_q

Via the correspondence (3.2), the quotient Q of k, which corresponds to the quotient k[t,,...,#;]/I of
klty,...,t4], is equal to k. O
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Definition 3.9. An N%-indexed persistence module M admits a barcode if

M = @Tamkm, (3.5

ieA

where for each i € A, a € N and A? is a d-dimensional partition with |[1?)] # 0. In this case, the
barcode B, of M is defined to be the multiset whose elements are

T,o (Dji(l)), i €A

Lemma 3.10. Assume that an N%-indexed persistence module M admits a barcode B,;. Then,

Rank(M,,) = [{S € Bylx,y € S} (3.6)

for all x,y € N satisfying x < y.

Proof. We may assume M = ., T,k so that

ieA
By = (T (D)} ien
as multisets. Let x,y € N satisfying x < y. Then,

Rank(M,) = " Rank((Tok o)) 3.7)

ieA

Set
Ar = {i € Alx,y € T,o(D™)).

A0
By Definition 3.6 (i) and Definition 3.5 (iv),

I, ifx,y € To(D™);

Rank((T,0kq0)xy) =
(T, ok o) ,y) {0’ otherwise.

Therefore, Rank(M,,) = |A4] = I{Tam(Di/{}}))lx, y € Ty (Dg}}) }|. By Remark 2.4,
D' = DYy NN’
for every d-dimensional partition A. Hence,
Rank(M.,,) = {T,0(D%,) € Bylx,y € Tao(D5)}l. u
The following theorem has been proved in [11].

Theorem 3.11. ( [11]) Let M be an N%-indexed persistence module. Assume that there are two
isomorphisms

M = @ T, oK and M = @ Tpok,o

€Ay teh;

AIMS Mathematics Volume 10, Issue 11, 25589-25605.
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with |[A9] # 0 and |u®| # 0 for all i € A, and € € A,. Then, as multisets,

{(/1(1'), a(i))}ieAl — {('u(t’), b(f))}feAz- (3.8)

In particular, the barcode B, of M in Definition 3.9 is well-defined.

Lemma 3.10 indicates that if an N“-indexed persistence module M admits a barcode B,,, then B,
is a good barcode in the sense of [9, Definition 10.11]; moreover, by Theorem 3.11, the barcode B, of
M is well-defined.

Example 3.12. Consider the N?-indexed persistence module M defined by

M=Kk, ®k,» @k o,

where AV = (3,2,2), A? = (2, 1), and A® = (3, 3) are 2-dimensional partitions. By Definition 3.9, the

barcode B, of M is the multiset consisting of Dii“),

D%, and D%, which are illustrated in Figure 5.

Figure 5. From left to right, D¢ for AV = (3,2,2), A? = (2, 1), and 2® = (3,3).
Note that the three Young diagrams D, D2, and D,s are the three shaded regions in Figure 5
together with their respective dashed boundaries.

4. The rank invariant

In this section, we study the relation between the rank invariant which is defined in [6] and the N¢-
indexed persistence modules which admit barcodes. We will prove a necessary and sufficient condition
for two N“-indexed persistence modules admitting barcodes to have the same rank invariant.

The following definitions are adopted from [6] (see also [9]).

Definition 4.1. (i) Given a poset P, define
P= ={(x,y) € Px P|x < y}.

(ii) The rank invariant of an N“-indexed persistence module M is the function Rank™ : (N¢)* — N
given by
Rank¥(x,y) = Rank(M, ).

Lemma 4.2. Assume that an N%-indexed persistence module M admits a barcode By,. Then,
Rank”(x,y) = |{S € Bylx,y € S} 4.1)
for every (x,y) € (N9)=,

Proof. The proof follows directly from Definition 4.1 (ii) and Lemma 3.10. m|
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25599

Lemma 4.3. Let d > 1. Let M and N be N“-indexed persistence modules admitting the barcodes

M = @kﬁ(i} and N = @kﬂ(t’)

€A teN,

with |A?], |u©@| # 0. If Rank™ = Rank”, then for every (i, ..., i,;) € N%°!, the two multisets

(Y lie Ayand A"
15eesld—1 Iy

ld-1

>0}, 4.2)
and

W . lteAyand ) . >0) (4.3)

15eesld—1
are equal.

Proof. Fix (iy,...,i;-1) € N Leta,...,a, be the distinct values in the multiset (4.2) witha; > ... >
as, and let my, ..., m; be the multiplicities of ay, ..., a,, respectively, in the multiset (4.2). Similarly,
let by,...,b, be the distinct values in the multiset (4.3) with b; > ... > b,, and let ny,...,n, be the
multiplicities of by, ..., b;, respectively, in the multiset (4.3).

Without loss of generality, assume a; > by. By (4.1),

my, ifa, <h<a;

Rank™((iy, ..., i4-1,0), (i1, ... 041, h)) =
an ((ll ig-1,0), (i la-1 )) {0, ifh>a.

Since Rank™ = Rank”, we conclude that

my, ifa, <h<ay;

Rank™((iy,....i51,0), (i1y... 04 1,h)) =
(@ a-1,0), (i1 d-1, 1)) {0’ ithsa.

It follows that b; = a; and n; = m;.
Next, without loss of generality, assume a, > b,. By (4.1) again,

my+my, ifas <h<ay;
My, - . . . .
Rank ((l],...,ld_l,()),(ll,...,ld_l,h)): mp, lfCZQSh<Cl1;

0, ifh>a.
Since Rank™ = Rank”, we conclude that

my+mp, ifaz <h<a;
RankN((il, .. .,id_l,O), (il, .. .,id_l,h)) =4qmy, ifaz <h< a,
0, ifh > aj.

It follows that b, = a, and n, = m,.

Repeating the above arguments, we see that s = ¢, a; = b;, and m; = n; forall 1 < i < s = 1.
Therefore, the two multisets (4.2) and (4.3) are equal. O
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Unfortunately, under the conditions in Lemma 4.3, the two multisets {A?]i € A} and {u©|¢ € A}
may not be the same. An example is given below.

Example 4.4. Let M, N : N> — Vec; be persistence modules given by
M=Kk,ndk,» and N = k#u) (&) kﬂ(z)

where AV = (2), A? = (1%), 'V = (1), and u® = (2, 1) are 2-dimensional partitions. Intuitively, M
and N can be illustrated by

~

S —> O

~

=~ — O

~
~

<
Il
~—> x> — O

L]

S — O —> O
D
~—r O

and

=
Il
>~ — 0
o —> O

o —> O
>~ —x — O
x~— O —> O

~
~

where all the nontrivial maps are the identity maps. Then,

1, ifx=(0,0)andy = (1,0);
Rank”(x,y) = Rank"(x,y) =<1, ifx=(0,0)and y = (0, 1);

0, otherwise .

So, Rank™ = Rank” as asserted by Lemma 4.3. However, the two multisets {1V, A?} and {uV, u®}
are not equal. By Theorem 3.11, the two N*-indexed persistence modules M and N are not isomorphic.

Our next goal is to present a necessary and sufficient condition for two N?-indexed persistence
modules admitting barcodes to have the same rank invariants. We start with the projections p and g.

Definition 4.5. For d > 2, we define p : N — N! by
p(X1, .. Xg) = (X1, .0, Xa-1),

and define q : NY — N by
q(x1s .. Xa) = Xg-
For d = 1, we define p : N — N° = {0} by p(x) = O.
Lemma 4.6. Let a € N? and A be a d-dimensional partition with || # 0. Let (x,y) € (N)=. Then,
x,y € T(DY) if and only if a < x and o(y — a) < Ayy-a).

AIMS Mathematics Volume 10, Issue 11, 25589-25605.



25601

Proof. Recall the maps p and q from Definition 4.5. By (2.4), z € D% if and only if O < z and
(z) < Ap). Since (x,y) € (NY)=, we have x < y. Thus,

x,y € T,(DY) ifand onlyif x-a,y—ae DY,
ifandonlyif a<xandy-ac€ DS
if and only if a < xand q(y — a) < Apy-a)-
This completes the proof of the lemma. m|
The following is the main result of the paper.

Theorem 4.7. Letd > 1. Let M and N be N?-indexed persistence modules admitting the barcodes

M = @ T, 0K o and N = @ Thok,o

ieA; teh,

where [A?] £ 0 and |4©| # 0 for all i € A, and £ € A,. Then, Rank = Rank” if and only if for every
(i1,...,0z1) € N9 the two multisets

(@A) li € Ay and ()i, > O, 9

,,,,,

and
(0O, W) I € Ay and (W, > O} (4.5)

are equal.

Proof. First of all, assume that the two multisets (4.4) and (4.5) are equal. Fix (x,y) € (N9)*. By
Lemma 4.2,
Rank"(x,y) = [{S € Bylx,y € S}

Since By, = {T,0 (Deli(,.))}l.e A,» We see from Lemma 4.6 that Rank(x, y) is equal to the cardinality of the
multiset

(@, (AD),—a0))li € Ar,a® < x and a(y = a?) < (A)_g0)). (4.6)
Similarly, Rank" (x, y) is equal to the cardinality of the multiset
{0, U)ot € Mg, b© < x and a(y — b) < (D) yypi0) ). S

Since the two multisets (4.4) and (4.5) are equal, so are the two multisets (4.6) and (4.7). Hence,
Rank™(x, y) = Rank” (x, y) for every (x,y) € (N9)=. It follows that Rank” = Rank”.

Conversely, assume that Rank™ = Rank”. Without loss of generality, assume that a‘" is a minimal
element in the multiset

{aP%i e A} U DO € Ay). (4.8)

Then, Rank™ (@, aV) = Rank™(a",aV) > 0. By Lemma 4.2, a € B,. Since By is the multiset

consisting of all T (Dzim) with £ € A,, we have a'V € T,o (Dzi ) for some £ € A,. By Lemma 4.6,

()
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b < a for some £ € A,. Since a'V is a minimal element in the multiset (4.8), we must have

b9 = a'V. Without loss of generality, we may let £ = 1 so that bV = aV. Set

A =fie Ala® =), M= @kw,

€A}

M = @Ta(i)k/l(i) =T, oM, M’ = @ T, 0K o,

iEA’1 ieA.—/\’1
and
Ay ={te A" =bP =aD}), N=Hko,
len]

N = @wa)ky(z) =T,oN, N’= EB Trok,o.

leN) teAr—A]

Wehave M =M e&M” and N =N & N”".

Claim. Ralnk"7 = Rankﬁ and Rank™” = Rank"".

Proof. Let (x,y) € (N9)=. Since M is generated at the origin O,

Rank”(x, y) = Rank™(0, y) = Rank™™(a", y + a®) = Rank™ (a®, y + a™V).

Since a' is a minimal element in the multiset {a|i € A}, we have M, ., = 0and Rank™ (a®,y +

Rankﬂ(x, y) = Rank™(aV, y + a'V).

4.9)

Similarly, Bankﬁ (x,y) = Rank"(a", y+a'"). Combining with Rank" = Rank" and (4.9), we conclude

that Rank™ (x, y) = Rank™(x, y) for every (x,y) € (N9)<. Therefore, we obtain
RankM = Rankﬁ .
Next, we prove that Rank™” = Rank"". We have

RankM(O,y —a)y LifaV <x;

Rank™ (x,y) = RankTﬂ“)M(X, y) = .
0, otherwise.

Similarly,

, Rank”(0,y —aV,) ifa® < x;
Rank" () = ank™ (0,y—a'",) ifa ' X
0, otherwise.

By (4.10), Rank™ (x, y) = Rank" (x, y). Since
Rank™(x, y) = Rank™ (x,y) + Rank™" (x, y),

Rank”(x, y) = Rank" (x, y) + Rank"" (x, y),

(4.10)

and Rank™(x,y) = Rank"(x,y), we get Rank™ (x,y) = Rank" (x,y) for every (x,y) € (N%=.

Therefore, Rank™” = Rank"".

O
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We continue the proof of the theorem. Fix (i, ..., is-1) € N“-!. Applying Lemma 4.3 to M and N
with Rank™ = Rank”, we see that the two multisets

.....

and
{(l’l(e))il»m»id—l |€ € A,Z and (/J(f))il ~~~~~ il > 0}

are equal, i.e., the two multisets
(@, A9yl € A7 and A9, > O, (4.11)

and

(0O, WO i N € Ay and 1Oy, > O) *.12)

are equal. Applying induction to M” and N” with Rank™" = Rank"", we conclude that

(@, (A0, )l € Ay = A} and (A7), > O), @15
and

(B0, @i I € Mg = Ay and Oy, > O] (4.14)
are equal. Combining (4.11)—(4.14), we see that the two multisets (4.4) and (4.5) are equal. O

Corollary 4.8. Letd > 1. Let M and N be N-indexed persistence modules admitting the barcodes

M = EB Ta(i)k/l(i) and N = EB Tb(z)kﬂ(e),

e\ fEAz

where |1?] # 0 and |[u©] # 0 for all i € A; and € € A,. If Rank" = Rank”, then the two multisets
(@, Dy, iy s ig-) € N i€ Ay and (A7), 4, > 0}, (4.15)
and

{(b(e)’ (ll(f))il,...,i,/_l)l(ilv R id—l) € Nd_l’ te A2 and (/J([))il,---,id—l > O} (416)

are equal, and Y;cp, 1171 = Xpen, Il
Proof. Follows immediately from Theorem 4.7. O

Remark 4.9. Recall from Definition 2.1 that a 1-dimensional partition is of the form A = (n), for some
n € N LI {+oc0}. Moreover, every N-indexed persistence module admits a barcode. Therefore, when
d = 1, Theorem 4.7 recovers the well-known result that the rank invariant and the barcode determine
each other uniquely. Unfortunately, when d > 1, Example 4.4 shows that the rank invariant of a
decomposable N-indexed persistence modules does not determine the barcode.
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