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1. Introduction

A fundamental structure theorem asserts that every one-dimensional persistence module admits a
unique decomposition up to isomorphisms [5, 7]. This gives rise to the concept of barcodes which
plays a pivotal role in topological data analysis. It is known from the pioneering work [6] that such
structure theorem is no longer true for higher dimensional persistence modules. Extensive research has
been devoted to higher dimensional persistence modules in recent years (see [2,4,9] and the references
therein). Higher dimensional persistence modules have found important applications in the study of
noisy point cloud data and time-varying data [8, 10, 13].

In this paper, we study Nd-indexed persistence modules over a field k via d-dimensional partitions,
where N denotes the set of nonnegative integers. To motivate our concepts to be introduced below, let
us look at the case d = 1. It is well-known that the barcode of an N-indexed persistence module over k
is a multiset consisting of some intervals of the form [a, b) = Ta[0, b − a) where a ∈ N, b ∈ N ⊔ {+∞},
and Ta : N → N is the translation by a. The closed interval [0, b − a] is precisely the Young diagram
of the 1-dimensional partition (b − a)O corresponding to b − a where O ∈ N0 = {O}, while the interval
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[0, b − a) may be regarded as the extended interior of the Young diagram [0, b − a].
For a general integer d ≥ 1, a d-dimensional partition λ is an array

λ = (λi1,...,id−1)i1,...,id−1

of λi1,...,id−1 ∈ N ⊔ {+∞} indexed by (i1, . . . , id−1) ∈ Nd−1 such that

λi1,...,id−1 ≥ λ j1,..., jd−1 ,

if i1 ≤ j1, . . . , id−1 ≤ jd−1. For a d-dimensional partition λ, the extended interior of its Young diagram
Dλ ⊂ (R+)d is the region

Dei
λ = Dλ − (∂Dλ) ∩ (R+)d.

Set Dint
λ = Dei

λ ∩ N
d, which is the set of integral points in Dei

λ . Geometrically, Dei
λ is obtained from the

Young diagram Dλ by removing its boundary in (R+)d, and Dint
λ consists of all the integral points in Dei

λ .

Example 1.1. For the 2-dimensional partitions λ = (3, 3, 1), the extended interior Dei
λ of Dλ is

illustrated by Figure 1 below. Note that

Dint
λ = {(0, 0), (1, 0), (2, 0), (0, 1), (1, 1), (0, 2), (1, 2)},

which consists of all the integral points in Dei
λ .

0 1

1

2

2
3

3

Figure 1. Dei
λ for a 2-dimensional partition of n = 7.

Define the Nd-indexed persistence module kλ by

(kλ)x =

k, if x ∈ Dint
λ ;

0, otherwise.

For x, y ∈ Nd with x ≤ y, the morphism (kλ)x,y : (kλ)x → (kλ)y is the identity map Idk if x, y ∈ Dint
λ , and

0 otherwise.
We define that an Nd-indexed persistence module M admits a barcode if

M �
⊕

i∈Λ

Ta(i)kλ(i) ,

where the index setΛ is finite, and for each i ∈ Λ, a(i) ∈ Nd, Ta(i) : Nd → Nd is the translation associated
to a(i), and λ(i) is a d-dimensional partition with nonzero size |λ(i)| , 0. In this case, the barcode BM of
M is defined to be the multiset whose elements are

Ta(i)(Dei
λ(i)), i ∈ Λ.
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Criterions and algorithms for determining whether anNd-indexed persistence module admits a barcode
were investigated in [11].

Since a general higher dimensional persistence module may not admit a barcode, the rank invariant
was introduced in [6] as an alternative discrete invariant. The rank invariant of an Nd-indexed
persistence module M is the function RankM : (Nd)≤ → N given by

RankM(x, y) = Rank(Mx,y),

where (Nd)≤ = {(x, y) ∈ Nd × Nd|x ≤ y}. Indeed, Carlsson and Zomorodian [6, Theorem 12] proved
that when d = 1, the barcode and the rank invariant determine each other, i.e., the rank invariant
is a complete invariant. However, when d > 1, no prior necessary and sufficient conditions for
determining the rank invariant are known. Our main result in this paper provides a necessary and
sufficient condition (in terms of the parts in the partition) for determining the rank invariant when the
Nd-indexed persistence module admits a barcode. When d = 1, our necessary and sufficient condition
exactly says that the barcode and the rank invariant determine each other.

Theorem 1.2. Let d ≥ 1. Let M and N be Nd-indexed persistence modules admitting the barcodes

M =
⊕
i∈Λ1

Ta(i)kλ(i) and N =
⊕
ℓ∈Λ2

Tb(ℓ)kµ(ℓ) ,

where |λ(i)| , 0 and |µ(ℓ)| , 0 for all i ∈ Λ1 and ℓ ∈ Λ2. Then, RankM = RankN if and only if for every
(i1, . . . , id−1) ∈ Nd−1, the two multisets{(

a(i), (λ(i))i1,...,id−1

)
|i ∈ Λ1 and (λ(i))i1,...,id−1 > 0

}
, (1.1)

and {(
b(ℓ), (µ(ℓ))i1,...,id−1

)
|ℓ ∈ Λ2 and (µ(ℓ))i1,...,id−1 > 0

}
(1.2)

are equal.
The main idea in the proof of Theorem 1.2 is to use induction on the sizes of M and N. We remark

that when d > 1, under the conditions of Theorem 1.2, RankM = RankN does not imply that M and
N have the same barcode. In other words, when d > 1, the rank invariant is not a complete invariant
for decomposable Nd-indexed persistence modules. It would be interesting to see how to strengthen
the assumption RankM = RankN in Theorem 1.2 so that the decomposable Nd-indexed persistence
modules M and N are guaranteed to have the same barcode.

The paper is organized as follows: In Section 2, higher dimensional partitions and Young diagrams
are reviewed. We define d-dimensional barcodes via the extended interiors of Young diagrams.
Section 3 is devoted to Nd-indexed persistence modules. In Section 4, we prove Theorem 1.2 (=
Theorem 4.7).

2. Higher dimensional partitions and barcodes

Definition 2.1. Let N be the set of nonnegative integers. Let d ≥ 1 be an integer.
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(i) When d ≥ 2, a d-dimensional partition λ is an array

λ = (λi1,...,id−1)i1,...,id−1

of λi1,...,id−1 ∈ N ⊔ {+∞} indexed by (i1, . . . , id−1) ∈ Nd−1 such that

λi1,...,id−1 ≥ λ j1,..., jd−1 ,

if i1 ≤ j1, . . . , id−1 ≤ jd−1. For n ∈ N ⊔ {+∞}, define the unique 1-dimensional partition of n to be
λ = (n)O indexed by O ∈ N0 = R0 = {O}.

(ii) The size |λ| of a partition λ is defined to be |λ| =
∑

i1,...,id−1
λi1,...,id−1 . If |λ| = n ∈ N ⊔ {+∞}, then λ is

called a partition of n and denoted by λ ⊢ n.
(iii) For n ∈ N ⊔ {+∞}, the set of d-dimensional partitions of n is denoted by Pd(n). Define Pd(n) to

be the number of d-dimensional partitions of n.

Remark 2.2. The ordinary partitions are 2-dimensional partitions (of nonnegative integers) in our sense.
One immediately sees that the generating function for P2(n) is given by

+∞∑
n=0

P2(n)qn =

+∞∏
n=1

1
1 − qn , (2.1)

where q is a formal variable. A well-known result of McMahon [1] states that
+∞∑
n=0

P3(n)qn =

+∞∏
n=1

1
(1 − qn)n . (2.2)

There is no analogous formula for Pd(n) when d > 3.
Fix n ∈ N and the field k = C. The group (k∗)d acts on k[t1, . . . , td] via

(k1, . . . , kd)(t1, . . . , td) = (k1t1, . . . , kdtd),

where k∗ = k − {0} and (k1, . . . , kd) ∈ (k∗)d. It induces a (k∗)d-action on the Hilbert scheme Hilbn(Ad
k)

parametrizing length-n 0-dimensional closed subschemes of Ad
k = Spec k[t1, . . . , td] (see [12]). A d-

dimensional partition λ = (λi1,...,id−1)i1,...,id−1 of n determines a (k∗)d-invariant ideal

I =
〈
ti1
1 · · · t

id−1
d−1t

λi1 ,...,id−1
d |(i1, . . . , id−1) ∈ Nd−1〉

of k[t1, . . . , td] with co-length n (i.e, dimk k[t1, . . . , td]/I = n). In this way, the set of d-dimensional
partitions of n is in one-to-one correspondence with the set of (k∗)d-invariant ideals of k[t1, . . . , td] with
co-length n, which in turn is in one-to-one correspondence with the set of (k∗)d-invariant points in
Hilbn(Ad

k).

Definition 2.3. Let λ be a d-dimensional partition, and a = (a1, . . . , ad) ∈ Nd.

(i) The Young diagram Dλ of λ is the subset of Rd obtained by stacking λi1,...,id−1 d-dimensional unit
boxes over the (d − 1)-dimensional rectangular region in Rd−1 ⊂ Rd spanned by the vertices

(i1, . . . , id−1), (i1, . . . , id−1) + e1, . . . , (i1, . . . , id−1) + ed−1,

where {e1, . . . , ed−1} denotes the standard basis of Rd−1 and Rd−1 is embedded in Rd by taking the
last coordinate to be 0.
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(ii) The set of integral points inside Dλ is defined by

Dint
λ = {(i1, . . . , id−1, h) ∈ Nd|h < λi1,...,id−1} ⊂ Dλ. (2.3)

The extended interior of Dλ is defined to be

Dei
λ = Dλ − (∂Dλ) ∩ (R+)d. (2.4)

(iii) Define Ta : Rd → Rd to be the translation of Rd by a.

Remark 2.4. For a d-dimensional partition λ, we have Dint
λ = Dei

λ ∩ N
d.

When d = 2 and λ ⊢ n ∈ N, Dλ is the usual Young diagram (up to some rotation) of the 2-
dimensional (i.e, usual) partition λ. When λ = (+∞)i1,...,id−1 (i.e., λi1,...,id−1 = +∞ for every (i1, . . . , id−1) ∈
Nd−1), we have Dλ = Rd.

Example 2.5. Recall from Definition 2.1 (i) the notation (n)O for n ∈ N ⊔ {+∞}. In Figures 2 and 3
below, we present two sets of examples of Ta(Dλ) for d = 1 and d = 2, respectively.

0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6

Figure 2. For the 1-dimensional partitions λ = (3)O and µ = (+∞)O,
the left is Dλ, the middle is T2(Dλ), and the right is T2(Dµ).
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Figure 3. For the 2-dimensional partitions λ = (3, 1) and µ = (+∞, 4, 2, 1, 1, . . .),
the left is Dλ, the middle is Dµ, and the right is T(2,1)(Dµ).

Example 2.6. Figure 4 illustrates the Young diagram of a 3-dimensional partition of n = 29 as λ =
(λ(a,b)), (a, b) ∈ N3, where λ(a,b) is defined by

λ(a,b) =


4, (a, b) = (0, 0);
3, (a, b) ∈ {(0, 1), (1, 0), (1, 1), (2, 0)};
2, (a, b) ∈ {(0, 2), (1, 2), (2, 1), (3, 0), (3, 1)};
1, (a, b) ∈ {(4, 0), (1, 3), (0, 3)}.

(2.5)
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Figure 4. Dλ for a 3-dimensional partition of n = 29.

Definition 2.7. (i) A multiset is defined to be an ordered pair (A,m), where A is a set and m : A→ Z+

is a function from A to the set of positive integers. Informally, a multiset is a set where elements
are allowed to have multiple copies.

(ii) For d ≥ 1, a d-dimensional barcode is a multiset consisting of

Ta(i)(Dei
λ(i)), i ∈ Λ,

where Λ is an index set, and for each i ∈ Λ, a(i) ∈ Nd and λ(i) is a d-dimensional partition.

3. Nd-indexed persistence modules

Definition 3.1. (i) A partially ordered set (or poset for short) is a set P together with a partial
ordering ≤ satisfying

• a ≤ a for all a ∈ P (reflexivity);
• a ≤ b and b ≤ a imply a = b (anti-symmetry);
• a ≤ b and b ≤ c imply a ≤ c (transitivity).

(ii) The poset category associated to a poset P is the category whose objects are the elements of P,
and for a, b ∈ P, Hom(a, b) consists of one element if a ≤ b and is the empty set if a ̸≤ b. By
abusing notations, we also use P to denote the poset category associated to a poset P.

Definition 3.2. (i) Fix a field k and a poset (P,≤). A P-indexed persistence module over k is a functor

M : P→ Veck,

where Veck is the category of finite dimensional vector spaces over k (and P denotes the poset
category associated to P).

(ii) The image of p ∈ P is denoted by Mp. For p, q ∈ P with p ≤ q, the unique morphism from Mp to
Mq corresponding to p ≤ q is denoted by Mp,q.

AIMS Mathematics Volume 10, Issue 11, 25589–25605.
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(iii) Define gr(m) = p if m ∈ Mp.

In the rest of the paper, we will assume P = Nd and the field k will be implicit. A persistence
module is meant to be a Nd-indexed persistence module over k.

Theorem 3.3. ( [6, Theorem 1]) (Correspondence) The category of Nd-indexed persistence modules
over k is equivalent to the category of Nd-graded k[t1, . . . , td]-modules.

Theorem 3.4. ( [6, Theorem 2]) (Realization) Let k = Fp for some prime p, let q be a positive integer,
and let M be an Nd-graded k[x1, . . . , xd]-module. Then there is an Nd-filtered finite simplicial complex
X so that Hq(X, k) � M as Nd-persistence modules.

Denote the standard basis of Rd by

{e1, . . . , ed}. (3.1)

Given an Nd-indexed persistence module M : Nd → Veck, the associated Nd-graded k[t1, . . . , td]-
module is ⊕

z∈Nd

Mz, (3.2)

on which k[t1, . . . , td] acts via ti · m = Mz,z+ei(m) for every m ∈ Mz and 1 ≤ i ≤ d.
Morphisms between persistence modules, their kernels and images, submodules, and quotient

modules are defined component-wise in the usual way.

Definition 3.5. Let M be an Nd-indexed persistence module.

(i) Let S ⊂ ∪z∈Nd Mz be a subset. The submodule ⟨S ⟩ of M generated by S is the submodule such
that for each z ∈ Nd, ⟨S ⟩z consists of all the elements

n∑
i=1

ci · Mgr(si),z(si),

where c1, . . . , cn ∈ k and s1, . . . , sn ∈ S with gr(si) ≤ z for each i. If gr(s) ̸≤ z for every s ∈ S , then
we put ⟨S ⟩z = 0.

(ii) A subset S ⊂ ∪z∈Nd Mz is a set of generators for M if M = ⟨S ⟩.
(iii) The persistence module M is finitely generated if there exists a finite set of generators for M.
(iv) Fix a ∈ Nd. The translation TaM of M by a is the persistence module given by

(TaM)x =

Mx−a, if x ≥ a,

0, otherwise,
(TaM)x,y =

Mx−a,y−a, if a ≤ x ≤ y,

0, otherwise,

for x, y ∈ Nd with x ≤ y.

For a d-dimensional partition λ, recall from Definition 2.3 (ii) the set Dint
λ of integral points inside

the Young diagram Dλ.
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Definition 3.6. (i) For a d-dimensional partition λ, define the Nd-indexed persistence module kλ by

(kλ)x =

k, if x ∈ Dint
λ ,

0, otherwise,
(kλ)x,y =

Idk, if x, y ∈ Dint
λ and x ≤ y,

0, otherwise,

where x, y ∈ Nd with x ≤ y. When λ = (+∞)i1,...,id−1 , we set kλ = k. When |λ| , 0, define
1λ ∈ (kλ)O = k to be the multiplicative identity.

(ii) An Nd-indexed persistence module F is free if there exists a multiset A of elements in Nd such
that

F �
⊕
a∈A

Tak.

(iii) A presentation of a persistence module M is a morphism f : F → F′ of free modules such that
M � F′/im( f ).

The following combines [9, Proposition 6.40] and [9, Proposition 6.43].

Proposition 3.7. Every persistence module M has a presentation. Moreover, if M is finitely generated,
then there exists a presentation f : F → F′ of M such that both the free modules F and F′ are finitely
generated.

Next, we study the case F′ = Tak where a ∈ Nd.

Lemma 3.8. Let a ∈ Nd. Then, every quotient of the persistence module Tak is equal to Takλ for some
d-dimensional partition λ.

Proof. It suffices to prove that every quotient of the persistence module k is equal to kλ for some d-
dimensional partition λ. Let Q be a quotient of k. Let I be the submodule of k such that Q = k/I. By
(3.2), the persistence module k corresponds to the Nd-graded k[t1, . . . , td]-module k[t1, . . . , td] itself.
Thus, the submodule I of k corresponds to an Nd-graded ideal I of k[t1, . . . , td]. Being Nd-graded, the
ideal I of k[t1, . . . , td] is generated by monomials. Define a d-dimensional partition λ = (λi1,...,id−1)i1,...,id−1

as follows:

λi1,...,id−1 =

min{b|ti1
1 · · · t

id−1
d−1tb

d ∈ I}, if ti1
1 · · · t

id−1
d−1tb

d ∈ I for some b ∈ N,

+∞, otherwise.

Indeed, note that if ti1
1 · · · t

id
d ∈ I, then t j1

1 · · · t
jd
d ∈ I whenever i1 ≤ j1, . . . , id ≤ jd. It follows that

λi1,...,id−1 ≥ λ j1,..., jd−1 whenever i1 ≤ j1, . . . , id−1 ≤ jd−1.
We have

I =
⊕

(i1,...,id−1)∈Nd−1

λi1 ,...,id−1,+∞

⊕
b≥λi1 ,...,id−1

k · ti1
1 · · · t

id−1
d−1tb

d. (3.3)

As a vector space, the quotient k[t1, . . . , td]/I is equal to⊕
(i1,...,id−1)∈Nd−1

⊕
b<λi1 ,...,id−1

k · ti1
1 · · · t

id−1
d−1tb

d. (3.4)

Via the correspondence (3.2), the quotient Q of k, which corresponds to the quotient k[t1, . . . , td]/I of
k[t1, . . . , td], is equal to kλ. □
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Definition 3.9. An Nd-indexed persistence module M admits a barcode if

M �
⊕

i∈Λ

Ta(i)kλ(i) , (3.5)

where for each i ∈ Λ, a(i) ∈ Nd and λ(i) is a d-dimensional partition with |λ(i)| , 0. In this case, the
barcode BM of M is defined to be the multiset whose elements are

Ta(i)(Dei
λ(i)), i ∈ Λ.

Lemma 3.10. Assume that an Nd-indexed persistence module M admits a barcode BM. Then,

Rank(Mx,y) = |{S ∈ BM |x, y ∈ S }| (3.6)

for all x, y ∈ Nd satisfying x ≤ y.
Proof. We may assume M =

⊕
i∈Λ Ta(i)kλ(i) so that

BM =
{
Ta(i)(Dei

λ(i))
}
i∈Λ

as multisets. Let x, y ∈ Nd satisfying x ≤ y. Then,

Rank(Mx,y) =
∑
i∈Λ

Rank
(
(Ta(i)kλ(i))x,y

)
. (3.7)

Set
Λ1 = {i ∈ Λ|x, y ∈ Ta(i)(Dint

λ(i))}.

By Definition 3.6 (i) and Definition 3.5 (iv),

Rank
(
(Ta(i)kλ(i))x,y

)
=

1, if x, y ∈ Ta(i)(Dint
λ(i));

0, otherwise.

Therefore, Rank(Mx,y) = |Λ1| = |{Ta(i)(Dint
λ(i))|x, y ∈ Ta(i)(Dint

λ(i))}|. By Remark 2.4,

Dint
λ = Dei

λ ∩ N
d

for every d-dimensional partition λ. Hence,

Rank(Mx,y) = |{Ta(i)(Dei
λ(i)) ∈ BM |x, y ∈ Ta(i)(Dei

λ(i))}|. □

The following theorem has been proved in [11].

Theorem 3.11. ( [11]) Let M be an Nd-indexed persistence module. Assume that there are two
isomorphisms

M �
⊕
i∈Λ1

Ta(i)kλ(i) and M �
⊕
ℓ∈Λ2

Tb(ℓ)kµ(ℓ)
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with |λ(i)| , 0 and |µ(ℓ)| , 0 for all i ∈ Λ1 and ℓ ∈ Λ2. Then, as multisets,

{(λ(i), a(i))}i∈Λ1 = {(µ
(ℓ), b(ℓ))}ℓ∈Λ2 . (3.8)

In particular, the barcode BM of M in Definition 3.9 is well-defined.
Lemma 3.10 indicates that if an Nd-indexed persistence module M admits a barcode BM, then BM

is a good barcode in the sense of [9, Definition 10.11]; moreover, by Theorem 3.11, the barcode BM of
M is well-defined.

Example 3.12. Consider the N2-indexed persistence module M defined by

M = kλ(1) ⊕ kλ(2) ⊕ kλ(3) ,

where λ(1) = (3, 2, 2), λ(2) = (2, 1), and λ(3) = (3, 3) are 2-dimensional partitions. By Definition 3.9, the
barcode BM of M is the multiset consisting of Dei

λ(1) ,Dei
λ(2) , and Dei

λ(3) , which are illustrated in Figure 5.

0 1

1

2

2
3

3 0 1

1
2

2 0

1
2

1

3

2

Figure 5. From left to right, Dei
λ for λ(1) = (3, 2, 2), λ(2) = (2, 1), and λ(3) = (3, 3).

Note that the three Young diagrams Dλ(1) ,Dλ(2) , and Dλ(3) are the three shaded regions in Figure 5
together with their respective dashed boundaries.

4. The rank invariant

In this section, we study the relation between the rank invariant which is defined in [6] and the Nd-
indexed persistence modules which admit barcodes. We will prove a necessary and sufficient condition
for two Nd-indexed persistence modules admitting barcodes to have the same rank invariant.

The following definitions are adopted from [6] (see also [9]).

Definition 4.1. (i) Given a poset P, define

P≤ = {(x, y) ∈ P × P|x ≤ y}.

(ii) The rank invariant of an Nd-indexed persistence module M is the function RankM : (Nd)≤ → N
given by

RankM(x, y) = Rank(Mx,y).

Lemma 4.2. Assume that an Nd-indexed persistence module M admits a barcode BM. Then,

RankM(x, y) = |{S ∈ BM |x, y ∈ S }| (4.1)

for every (x, y) ∈ (Nd)≤.

Proof. The proof follows directly from Definition 4.1 (ii) and Lemma 3.10. □
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Lemma 4.3. Let d ≥ 1. Let M and N be Nd-indexed persistence modules admitting the barcodes

M =
⊕
i∈Λ1

kλ(i) and N =
⊕
ℓ∈Λ2

kµ(ℓ)

with |λ(i)|, |µ(ℓ)| , 0. If RankM = RankN , then for every (i1, . . . , id−1) ∈ Nd−1, the two multisets{
λ(i)

i1,...,id−1
|i ∈ Λ1 and λ(i)

i1,...,id−1
> 0
}
, (4.2)

and {
µ(ℓ)

i1,...,id−1
|ℓ ∈ Λ2 and µ(ℓ)

i1,...,id−1
> 0
}

(4.3)

are equal.

Proof. Fix (i1, . . . , id−1) ∈ Nd−1. Let a1, . . . , as be the distinct values in the multiset (4.2) with a1 > . . . >

as, and let m1, . . . ,ms be the multiplicities of a1, . . . , as, respectively, in the multiset (4.2). Similarly,
let b1, . . . , bt be the distinct values in the multiset (4.3) with b1 > . . . > bt, and let n1, . . . , nt be the
multiplicities of b1, . . . , bt, respectively, in the multiset (4.3).

Without loss of generality, assume a1 ≥ b1. By (4.1),

RankM((i1, . . . , id−1, 0), (i1, . . . , id−1, h)
)
=

m1, if a2 ≤ h < a1;
0, if h ≥ a1.

Since RankM = RankN , we conclude that

RankN((i1, . . . , id−1, 0), (i1, . . . , id−1, h)
)
=

m1, if a2 ≤ h < a1;
0, if h ≥ a1.

It follows that b1 = a1 and n1 = m1.
Next, without loss of generality, assume a2 ≥ b2. By (4.1) again,

RankM((i1, . . . , id−1, 0), (i1, . . . , id−1, h)
)
=


m1 + m2, if a3 ≤ h < a2;
m1, if a2 ≤ h < a1;
0, if h ≥ a1.

Since RankM = RankN , we conclude that

RankN((i1, . . . , id−1, 0), (i1, . . . , id−1, h)
)
=


m1 + m2, if a3 ≤ h < a2;
m1, if a2 ≤ h < a1;
0, if h ≥ a1.

It follows that b2 = a2 and n2 = m2.
Repeating the above arguments, we see that s = t, ai = bi, and mi = ni for all 1 ≤ i ≤ s = t.

Therefore, the two multisets (4.2) and (4.3) are equal. □
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Unfortunately, under the conditions in Lemma 4.3, the two multisets
{
λ(i)|i ∈ Λ1

}
and
{
µ(ℓ)|ℓ ∈ Λ2

}
may not be the same. An example is given below.

Example 4.4. Let M,N : N2 → Veck be persistence modules given by

M = kλ(1) ⊕ kλ(2) and N = kµ(1) ⊕ kµ(2)

where λ(1) = (2), λ(2) = (12), µ(1) = (1), and µ(2) = (2, 1) are 2-dimensional partitions. Intuitively, M
and N can be illustrated by

M =

0 0

k 0

k 0

⊕ 0 0 0

k k 0

and

N =

0 0

k 0

⊕
0 0

k 0 0

k k 0

where all the nontrivial maps are the identity maps. Then,

RankM(x, y) = RankN(x, y) =


1, if x = (0, 0) and y = (1, 0);
1, if x = (0, 0) and y = (0, 1);
0, otherwise .

So, RankM = RankN as asserted by Lemma 4.3. However, the two multisets {λ(1), λ(2)} and {µ(1), µ(2)}

are not equal. By Theorem 3.11, the two N2-indexed persistence modules M and N are not isomorphic.

Our next goal is to present a necessary and sufficient condition for two Nd-indexed persistence
modules admitting barcodes to have the same rank invariants. We start with the projections p and q.

Definition 4.5. For d ≥ 2, we define p : Nd → Nd−1 by

p(x1, . . . , xd) = (x1, . . . , xd−1),

and define q : Nd → N by
q(x1, . . . , xd) = xd.

For d = 1, we define p : N→ N0 = {O} by p(x) = O.

Lemma 4.6. Let a ∈ Nd and λ be a d-dimensional partition with |λ| , 0. Let (x, y) ∈ (Nd)≤. Then,
x, y ∈ Ta(Dei

λ ) if and only if a ≤ x and q(y − a) < λp(y−a).
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Proof. Recall the maps p and q from Definition 4.5. By (2.4), z ∈ Dei
λ if and only if O ≤ z and

q(z) < λp(z). Since (x, y) ∈ (Nd)≤, we have x ≤ y. Thus,

x, y ∈ Ta(Dei
λ ) if and only if x − a, y − a ∈ Dei

λ ,

if and only if a ≤ x and y − a ∈ Dei
λ ,

if and only if a ≤ x and q(y − a) < λp(y−a).

This completes the proof of the lemma. □

The following is the main result of the paper.

Theorem 4.7. Let d ≥ 1. Let M and N be Nd-indexed persistence modules admitting the barcodes

M =
⊕
i∈Λ1

Ta(i)kλ(i) and N =
⊕
ℓ∈Λ2

Tb(ℓ)kµ(ℓ)

where |λ(i)| , 0 and |µ(ℓ)| , 0 for all i ∈ Λ1 and ℓ ∈ Λ2. Then, RankM = RankN if and only if for every
(i1, . . . , id−1) ∈ Nd−1, the two multisets{(

a(i), (λ(i))i1,...,id−1

)
|i ∈ Λ1 and (λ(i))i1,...,id−1 > 0

}
, (4.4)

and {(
b(ℓ), (µ(ℓ))i1,...,id−1

)
|ℓ ∈ Λ2 and (µ(ℓ))i1,...,id−1 > 0

}
(4.5)

are equal.

Proof. First of all, assume that the two multisets (4.4) and (4.5) are equal. Fix (x, y) ∈ (Nd)≤. By
Lemma 4.2,

RankM(x, y) = |{S ∈ BM |x, y ∈ S }|.

Since BM =
{
Ta(i)(Dei

λ(i))
}
i∈Λ1

, we see from Lemma 4.6 that RankM(x, y) is equal to the cardinality of the
multiset {(

a(i), (λ(i))p(y−a(i))
)
|i ∈ Λ1, a(i) ≤ x and q(y − a(i)) < (λ(i))p(y−a(i))

}
. (4.6)

Similarly, RankN(x, y) is equal to the cardinality of the multiset{(
b(ℓ), (µ(ℓ))p(y−b(ℓ))

)
|ℓ ∈ Λ2, b(ℓ) ≤ x and q(y − b(ℓ)) < (µ(ℓ))p(y−b(ℓ))

}
. (4.7)

Since the two multisets (4.4) and (4.5) are equal, so are the two multisets (4.6) and (4.7). Hence,
RankM(x, y) = RankN(x, y) for every (x, y) ∈ (Nd)≤. It follows that RankM = RankN .

Conversely, assume that RankM = RankN . Without loss of generality, assume that a(1) is a minimal
element in the multiset

{a(i)|i ∈ Λ1} ∪ {b(ℓ)|ℓ ∈ Λ2}. (4.8)

Then, RankN(a(1), a(1)) = RankM(a(1), a(1)) > 0. By Lemma 4.2, a(1) ∈ BN . Since BN is the multiset
consisting of all Tb(ℓ)

(
Dei
µ(ℓ)

)
with ℓ ∈ Λ2, we have a(1) ∈ Tb(ℓ)

(
Dei
µ(ℓ)

)
for some ℓ ∈ Λ2. By Lemma 4.6,
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b(ℓ) ≤ a(1) for some ℓ ∈ Λ2. Since a(1) is a minimal element in the multiset (4.8), we must have
b(ℓ) = a(1). Without loss of generality, we may let ℓ = 1 so that b(1) = a(1). Set

Λ′1 = {i ∈ Λ1|a(i) = a(1)}, M̃ =
⊕
i∈Λ′1

kλ(i) ,

M′ =
⊕
i∈Λ′1

Ta(i)kλ(i) = Ta(1) M̃, M′′ =
⊕

i∈Λ1−Λ
′
1

Ta(i)kλ(i) ,

and
Λ′2 = {ℓ ∈ Λ2|b(ℓ) = b(1) = a(1)}, Ñ =

⊕
ℓ∈Λ′2

kµ(ℓ) ,

N′ =
⊕
ℓ∈Λ′2

Tb(ℓ)kµ(ℓ) = Ta(1) Ñ, N′′ =
⊕
ℓ∈Λ2−Λ

′
2

Tb(ℓ)kµ(ℓ) .

We have M = M′ ⊕ M′′ and N = N′ ⊕ N′′.

Claim. RankM̃ = RankÑ and RankM′′ = RankN′′ .

Proof. Let (x, y) ∈ (Nd)≤. Since M̃ is generated at the origin O,

RankM̃(x, y) = RankM̃(O, y) = RankTa(1) M̃(a(1), y + a(1)) = RankM′(a(1), y + a(1)).

Since a(1) is a minimal element in the multiset {a(i)|i ∈ Λ1}, we have M′′a(1),y+a(1) = 0 and RankM′(a(1), y +
a(1)) = RankM(a(1), y + a(1)). Thus,

RankM̃(x, y) = RankM(a(1), y + a(1)). (4.9)

Similarly, RankÑ(x, y) = RankN(a(1), y+a(1)). Combining with RankM = RankN and (4.9), we conclude
that RankM̃(x, y) = RankÑ(x, y) for every (x, y) ∈ (Nd)≤. Therefore, we obtain

RankM̃ = RankÑ . (4.10)

Next, we prove that RankM′′ = RankN′′ . We have

RankM′(x, y) = RankTa(1) M̃(x, y) =

RankM̃(O, y − a(1)) , if a(1) ≤ x;
0, otherwise.

Similarly,

RankN′(x, y) =

RankÑ(O, y − a(1), ) if a(1) ≤ x;
0, otherwise.

By (4.10), RankM′(x, y) = RankN′(x, y). Since

RankM(x, y) = RankM′(x, y) + RankM′′(x, y),

RankN(x, y) = RankN′(x, y) + RankN′′(x, y),

and RankM(x, y) = RankN(x, y), we get RankM′′(x, y) = RankN′′(x, y) for every (x, y) ∈ (Nd)≤.
Therefore, RankM′′ = RankN′′ . □
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We continue the proof of the theorem. Fix (i1, . . . , id−1) ∈ Nd−1. Applying Lemma 4.3 to M̃ and Ñ
with RankM̃ = RankÑ , we see that the two multisets{

(λ(i))i1,...,id−1 |i ∈ Λ
′
1 and (λ(i))i1,...,id−1 > 0

}
,

and {
(µ(ℓ))i1,...,id−1 |ℓ ∈ Λ

′
2 and (µ(ℓ))i1,...,id−1 > 0

}
are equal, i.e., the two multisets{(

a(i), (λ(i))i1,...,id−1

)
|i ∈ Λ′1 and (λ(i))i1,...,id−1 > 0

}
, (4.11)

and {(
b(ℓ), (µ(ℓ))i1,...,id−1

)
|ℓ ∈ Λ′2 and (µ(ℓ))i1,...,id−1 > 0

}
(4.12)

are equal. Applying induction to M′′ and N′′ with RankM′′ = RankN′′ , we conclude that{(
a(i), (λ(i))i1,...,id−1

)
|i ∈ Λ1 − Λ

′
1 and (λ(i))i1,...,id−1 > 0

}
, (4.13)

and {(
b(ℓ), (µ(ℓ))i1,...,id−1

)
|ℓ ∈ Λ2 − Λ

′
2 and (µ(ℓ))i1,...,id−1 > 0

}
(4.14)

are equal. Combining (4.11)–(4.14), we see that the two multisets (4.4) and (4.5) are equal. □

Corollary 4.8. Let d ≥ 1. Let M and N be Nd-indexed persistence modules admitting the barcodes

M =
⊕
i∈Λ1

Ta(i)kλ(i) and N =
⊕
ℓ∈Λ2

Tb(ℓ)kµ(ℓ) ,

where |λ(i)| , 0 and |µ(ℓ)| , 0 for all i ∈ Λ1 and ℓ ∈ Λ2. If RankM = RankN , then the two multisets{(
a(i), (λ(i))i1,...,id−1

)
|(i1, . . . , id−1) ∈ Nd−1, i ∈ Λ1 and (λ(i))i1,...,id−1 > 0

}
, (4.15)

and {(
b(ℓ), (µ(ℓ))i1,...,id−1

)
|(i1, . . . , id−1) ∈ Nd−1, ℓ ∈ Λ2 and (µ(ℓ))i1,...,id−1 > 0

}
(4.16)

are equal, and
∑

i∈Λ1
|λ(i)| =

∑
ℓ∈Λ2
|µ(ℓ)|.

Proof. Follows immediately from Theorem 4.7. □

Remark 4.9. Recall from Definition 2.1 that a 1-dimensional partition is of the form λ = (n)O for some
n ∈ N ⊔ {+∞}. Moreover, every N-indexed persistence module admits a barcode. Therefore, when
d = 1, Theorem 4.7 recovers the well-known result that the rank invariant and the barcode determine
each other uniquely. Unfortunately, when d > 1, Example 4.4 shows that the rank invariant of a
decomposable Nd-indexed persistence modules does not determine the barcode.
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8. C. Korkmaz, B. Nuwagira, B. Coşkunuzer, T. Birdal, CuMPerLay: Learning
Cubical Multiparameter Persistence Vectorizations, 2025, arXiv:2510.12795.
https://doi.org/10.48550/arXiv.2510.12795

9. M. Lesnick, Notes on multiparameter persistence (for AMAT 840), University at Albany, 2023.

10. D. Loiseaux, H. Schreiber, Multipers: Multiparameter Persistence for Machine Learning, Journal
of Open Source Software, 9 (2024), 6773. http://doi.org/10.21105/joss.06773

AIMS Mathematics Volume 10, Issue 11, 25589–25605.

https://dx.doi.org/https://doi.org/10.1017/CBO9780511608650
https://dx.doi.org/https://doi.org/10.48550/arXiv.2411.11594
https://dx.doi.org/https://doi.org/10.1017/S002776300002290X
https://dx.doi.org/https://doi.org/10.48550/arXiv.2510.10347
https://dx.doi.org/https://doi.org/10.1017/9781108975704
https://dx.doi.org/http://doi.org/10.1007/s00454-009-9176-0
https://dx.doi.org/https://doi.org/10.1090/mbk/069
https://dx.doi.org/https://doi.org/10.48550/arXiv.2510.12795
https://dx.doi.org/http://doi.org/10.21105/joss.06773


25605

11. M. Nategh, Multiparameter persistence modules, PhD Thesis, University of Missouri, 2025.
Available from: https://mospace.umsystem.edu/xmlui/bitstream/handle/10355/

109491/NateghMehdiResearch.pdf.

12. Z. B. Qin, Hilbert schemes of points and infinite dimensional Lie algebras, In: Mathematical
Surveys and Monographs, Providence: American Mathematical Society, 2018, 228.
https://doi.org/10.1090/surv/228

13. O. Vipond, Multiparameter persistence landscapes, J. Mach. Learn. Res., 21 (2020), 1–38.
https://doi.org/10.48550/arXiv.1812.09935

© 2025 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(https://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 10, Issue 11, 25589–25605.

https://mospace.umsystem.edu/xmlui/bitstream/handle/10355/109491/NateghMehdiResearch.pdf
https://mospace.umsystem.edu/xmlui/bitstream/handle/10355/109491/NateghMehdiResearch.pdf
https://dx.doi.org/https://doi.org/10.1090/surv/228
https://dx.doi.org/https://doi.org/10.48550/arXiv.1812.09935
https://creativecommons.org/licenses/by/4.0

	Introduction
	Higher dimensional partitions and barcodes
	 Nd-indexed persistence modules
	The rank invariant

