We study a fast second-order PDE approach for solving the space-time parabolic equations with fractional diffusion and Caputo fractional time derivative. To localize the space fractional elliptic operator, we map a Dirichlet boundary condition to a Neumann condition via an extension problem on the semi-infinite cylinder. For the equivalent extension problem, we use the fast L2-1$ _{\sigma} $ method based on the sum-of-exponentials to speed up the evaluation of the time fractional Caputo derivative, and the tensor product finite element method to discretize the spatial direction on the truncated cylinder domain. Then, the stability and $ \alpha $-robust error estimates of the fully discrete scheme are derived. Finally, the numerical experiments are presented to demonstrate the effectiveness of our scheme.
Citation: Qingfeng Li, Jia Xie. A fast second order PDE approach for the space-time fractional parabolic problems[J]. AIMS Mathematics, 2025, 10(11): 25568-25588. doi: 10.3934/math.20251132
We study a fast second-order PDE approach for solving the space-time parabolic equations with fractional diffusion and Caputo fractional time derivative. To localize the space fractional elliptic operator, we map a Dirichlet boundary condition to a Neumann condition via an extension problem on the semi-infinite cylinder. For the equivalent extension problem, we use the fast L2-1$ _{\sigma} $ method based on the sum-of-exponentials to speed up the evaluation of the time fractional Caputo derivative, and the tensor product finite element method to discretize the spatial direction on the truncated cylinder domain. Then, the stability and $ \alpha $-robust error estimates of the fully discrete scheme are derived. Finally, the numerical experiments are presented to demonstrate the effectiveness of our scheme.
| [1] |
L. Caffarelli, L. Silvestre. An extension problem related to the fractional Laplacian, Commun. Part. Diff. Eq., 32 (2007), 1245–1260. https://doi.org/10.1080/03605300600987306 doi: 10.1080/03605300600987306
|
| [2] |
R. H. Nochetto, E. Otárola, A. J. Salgado, A PDE approach to space-time fractional parabolic problems, SIAM J. Numer. Anal., 54 (2016), 848–873. https://doi.org/10.1137/14096308x doi: 10.1137/14096308x
|
| [3] |
Y. Lin, C. Xu, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225 (2007), 1533–1552. https://doi.org/10.1016/j.jcp.2007.02.001 doi: 10.1016/j.jcp.2007.02.001
|
| [4] |
A. A. Alikhanov, A new difference scheme for the time fractional diffusion equation, J. Comput. Phys., 280 (2015), 424–438. https://doi.org/10.1016/j.jcp.2014.09.031 doi: 10.1016/j.jcp.2014.09.031
|
| [5] |
G. Gao, Z. Sun, H. Zhang, A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications, J. Comput. Phys., 259 (2014), 33–50. https://doi.org/10.5555/2799695.2799911 doi: 10.5555/2799695.2799911
|
| [6] |
B. Jin, B. Li, Z. Zhou, Correction of high-order BDF convolution quadrature for fractional evolution equations, SIAM J. Sci. Comput., 39 (2017), A3129–A3152. https://doi.org/10.1137/17m1118816 doi: 10.1137/17m1118816
|
| [7] |
M. Stynes, E. O'Riordan, J. L. Gracia, Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation, SIAM J. Numer. Anal., 55 (2017), 1057–1079. https://doi.org/10.1137/16m1082329 doi: 10.1137/16m1082329
|
| [8] |
H. Chen, M. Stynes, Error analysis of a second-order method on fitted meshes for a time-fractional diffusion problem, J. Sci. Comput., 79 (2019), 624–647. https://doi.org/10.1007/s10915-018-0863-y doi: 10.1007/s10915-018-0863-y
|
| [9] |
S. Jiang, J. Zhang, Q. Zhang, Z. Zhang, Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations, Commun. Comput. Phys., 21 (2017), 650–678. https://doi.org/10.4208/cicp.oa-2016-0136 doi: 10.4208/cicp.oa-2016-0136
|
| [10] |
H. Zhu, C. Xu, A fast high order method for the time-fractional diffusion equation, SIAM J. Numer. Anal., 57 (2019), 2829–2849. https://doi.org/10.1137/18m1231225 doi: 10.1137/18m1231225
|
| [11] |
Y. Yan, Z. Sun, J. Zhang, Fast evaluation of the Caputo fractional derivative and its applications to fractional diffusion equations: A second-order scheme, Commun. Comput. Phys., 22 (2017), 1028–1048. https://doi.org/10.4208/cicp.oa-2017-0019 doi: 10.4208/cicp.oa-2017-0019
|
| [12] |
H. Liao, Y. Yan, J. Zhang, Unconditional convergence of a fast two-level linearized algorithm for semilinear subdiffusion equations, J. Sci. Comput., 80 (2019), 1–25. https://doi.org/10.1007/s10915-019-00927-0 doi: 10.1007/s10915-019-00927-0
|
| [13] |
N. Liu, Y. Chen, J. Zhang, Y. Zhao, Unconditionally optimal H1-error estimate of a fast nonuniform L2-1$_{\sigma}$ scheme for nonlinear subdiffusion equations, Numer. Algorithms, 92 (2022), 1655–1677. https://doi.org/10.1007/s11075-022-01359-y doi: 10.1007/s11075-022-01359-y
|
| [14] |
Y. Wang, N. An, C. Huang, Unconditional optimal error bounds of the fast nonuniform Alikhanov scheme for a nonlinear time-fractional biharmonic equation, J. Appl. Math. Comput., 70 (2024), 4053-4071. https://doi.org/10.1007/s12190-024-02120-5 doi: 10.1007/s12190-024-02120-5
|
| [15] |
C. Quan, X. Wu, and J. Yang, Long time H1-stability of fast L2-1$\sigma$ method on general nonuniform meshes for subdiffusion equations, J. Comput. Appl. Math., 440 (2024), 115647. https://doi.org/10.1016/j.cam.2023.115647 doi: 10.1016/j.cam.2023.115647
|
| [16] | R. H. Nochetto, E. Otárola, A. J. Salgado, A PDE approach to fractional diffusion in general domains: A priori error analysis, . Found. Comput. Math., 15 (2014), 733–791. https://doi.org/10.1007/s10208-014-9208-x |
| [17] |
L. Chen, R. H. Nochetto, E. Otárola, A. J. Salgado, A PDE approach to fractional diffusion: A posteriori error analysis, J. Comput. Phys., 293 (2015), 339–358. https://doi.org/10.1016/j.jcp.2015.01.001 doi: 10.1016/j.jcp.2015.01.001
|
| [18] |
F. Teso, Finite difference method for a fractional porous medium equation, Calcolo, 51 (2014), 615–638. https://doi.org/10.1007/s10092-013-0103-7 doi: 10.1007/s10092-013-0103-7
|
| [19] |
L. Banjai, J. M. Melenk, R. H. Nochetto, E. Otárola, A. J. Salgado, C. Schwab, Tensor FEM for spectral fractional diffusion, Found. Comput. Math., 19 (2019), 901–962. https://doi.org/10.1007/s10208-018-9402-3 doi: 10.1007/s10208-018-9402-3
|
| [20] |
S. Chen, J. Shen, An efficient and accurate numerical method for the spectral fractional Laplacian equation, J. Sci. Comput., 82 (2020), 17. https://doi.org/10.1007/s10915-019-01122-x doi: 10.1007/s10915-019-01122-x
|
| [21] |
Y. Hu, C. Li, H. Li, The finite difference method for Caputo-type parabolic equation with fractional laplacian: more than one space dimension, Int. J. Comput. Math., 95 (2018), 1114–1130. https://doi.org/10.1080/00207160.2017.1378810 doi: 10.1080/00207160.2017.1378810
|
| [22] |
Y. Hu, C. Li, H. Li, The finite difference method for Caputo-type parabolic equation with fractional laplacian: One-dimension case, Chaos Soliton. Fract., 102 (2017), 319–326. https://doi.org/10.1016/j.chaos.2017.03.038 doi: 10.1016/j.chaos.2017.03.038
|
| [23] |
H. Chen, M. Stynes, Blow-up of error estimates in time-fractional initial-boundary value problems, IMA J. Numer. Anal., 41 (2021), 974–997. https://doi.org/10.1093/imanum/draa015 doi: 10.1093/imanum/draa015
|
| [24] |
C. Huang, M. Stynes, A sharp $\alpha$-robust L$^{\infty}$($H^{1}$) error bound for a time-fractional Allen-Cahn problem discretised by the Alikhanov L2-1$_\sigma$ scheme and a standard FEM, J. Sci. Comput., 91 (2022), 43. https://doi.org/10.1007/s10915-022-01810-1 doi: 10.1007/s10915-022-01810-1
|
| [25] | B. O. Turesson, Nonlinear potential theory and weighted Sobolev spaces, Springer Science & Business Media, 1736 (2000). |
| [26] |
D. Meidner, J. Pfefferer, K. Schürholz, B. Vexler, hp-finite elements for fractional diffusion, SIAM J. Numer. Anal., 56 (2018), 2345–2374. https://doi.org/10.1137/17m1135517 doi: 10.1137/17m1135517
|