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Abstract: We study a fast second-order PDE approach for solving the space-time parabolic equations
with fractional diffusion and Caputo fractional time derivative. To localize the space fractional elliptic
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the semi-infinite cylinder. For the equivalent extension problem, we use the fast L2-1, method based
on the sum-of-exponentials to speed up the evaluation of the time fractional Caputo derivative, and
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1. Introduction

Let Q be an open and bounded domain of R (d > 1), with the boundary dQ, given s € (0, 1), we
shall consider the following space-time fractional parabolic problem

o'u+ (-A)'u=f, inQx(O,T],
u=0, on 0Q x (0, T], (1.1)
u(0) = uy, in Q,

where 0¢ stands for the left-sided Caputo fractional derivative of order @ with respect to the time ¢,
which is defined by

o) = f Wi—o(®—sN'(s)ds, O0<a<]1, (1.2)
0
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where I is the Gamma function and wy_,(f) = “/I'(1 — @). Here (—A)’ is the fractional power of the
second-order elliptic operator. Moreover, the left Riemann—Liouville fractional integral is defined by

Iu(r) = f Wo(t — su(s)ds,
0

Then, we have 02u(r) = (I'"du)(1).

To address the nonlocality of the fractional Laplace operator (—A)*, our method is to transform
the problem (1.1) into an equivalent Caffarelli-Silvestre extension problem as follows based on the
following equivalent reformulation of problem (1.1):

—div(y'"™*Vu) =0, inCx(0,T),

du+ 70 u=f, on(Qx{0})x(0,7),
u=0, on d;C % (0,7),

uli=o = U, on Q) x {0}.

(1.3)

Here C = Q X (0, 00) is the semi-infinite cylinder, 9;C = 90Q X [0, o) is the boundary of C and
dy, = 21‘2S%. When y is defined as the extended variable in the extended dimension R¢*! of
problem (1.3), we have the external normal derivative of u at Q X {0}

A u=— lim ¥ Hu, = d(-A)u. (1.4)
v
For the detailed process of transforming the problem (1.1) into the problem (1.3), please refer to
references [1,2]. Then, the trace u(x, ) = u(-, 0, ) is the solution of the space-time fractional parabolic
problem (1.1). The main objective of this work is to find the solution of (1.1) by using the extension
problem (1.3).

Additionally, the design of an efficient skill to deal numerically with the Caputo fractional
derivative 97 is not an easy task. In the past decade, there have been several well-known schemes
that have been developed and analyzed via finite difference methods under the assumption that the
solution is sufficiently smooth, such as the L1 and L2-1, schemes [3, 4], L2 scheme [5], and the
convolution quadrature methods [6]. However, the solutions to the time-fractional problems are weak
singularities at + — 0. This inspires researchers to design improved finite difference schemes on
the graded meshes to overcome the singularity of time, but this theoretical analysis is very difficult;
see [7,8]. Another important feature is the storage problem due to the nonlocality of the time
fractional derivatives. To be precise, all of the aforementioned works require O(N) storage and O(N?)
computational cost when the time step is N, which is too costly. Jiang et al. [9] introduced the sum-
of-exponentials (SOE) approximation to accelerate the efficient evaluation of the Caputo derivative.
This reduces the computational cost of the L1 format to N and the storage capacity to N7 under a
consistent grid, while maintaining the same accuracy as the L1 format, which reduces the storage and
computational cost of the L1 scheme on the uniform meshes to O(N,,), or O(N,N), here (N, < N),
while maintaining almost the same accuracy as the L1 scheme. Along this way, the fast L2 and L2-1,,
schemes are present and analyzed under the uniform meshes [10, 11]. Furthermore, Liao et al. [12]
study the fast L1 scheme on the grade meshes for solving the nonlinear time fractional diffusion
equations. Based on the fast L2-1, on the nonuniform meshes, Liu et al. [13] proposed a fast scheme
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for solving the nonlinear time fractional diffusion equations. Wang et al. [14] obtain the unconditional
optimal bounds of the fast scheme for the time fractional biharmonic equations. Quan et al. [15]
prove that a bilinear form associated with the fast L2-1, formula is positive semidefinite for all
time, and derive the uniform global-in-time Hl—stability of the fast scheme for the time fractional
diffusion equations.

Noting that the expansion direction of problem (1.3) is a semi-infinite domain, a direct application of
a numerical approximation to the extended problem is not feasible. As a remedy, the exponential decay
of u in direction y — 400 can be applied such that a truncation of the semi-infinite cylinder to Q2x (0, Y)
becomes possible, and the height Y of the truncated cylinder needs to be chosen dependent on the mesh
parameter to ensure the convergence of the numerical scheme, see [16, 17]. By the aforementioned
results, numerical schemes such as finite difference methods [18], finite element methods [16, 19],
and spectral methods [20] have been developed for the Caffarelli-Silvestre extension problem of
the fractional diffusion equation. However, only a small amount of work has been done on the
problem (1.3). Nochetto et al. [2] propose and analyze an implicit fully-discrete scheme via the tensor
product finite elements in space and an implicit finite difference discretization in time, and the stability
and error estimates of this scheme are proved. Hu et al. [21,22] studied the finite difference methods
to approximate the temporal and spatial directions discretization for the 1D and 2D problems, and the
convergence and error estimate of this scheme are shown. The above work has low accuracy in terms
of time and does not consider the computational storage for time discretization. To our knowledge,
there is no work on the second-order time numerical format for the problem (1.3). However, the
expansion problem is a high-dimensional space problem, which is expensive for computational cost of
the numerical scheme. Therefore, designing an efficient numerical scheme is crucial.

In order to improve the computational efficiency of numerical approximation for the extended
problem (1.3), we use the sum-of-exponentials (SOE) technique to speed up the evaluation of the
nonuniform L2-1, scheme in the temporal direction and the tensor product finite element method for
the spatial direction. It is worth noting that when we use the nonuniform L2-1, scheme to discretize the
Caputo fractional derivative, the error results may blow up at @ — 17 [23], so we adopt an improved
fractional Gronwall inequality from [14] to obtain an a-robust error estimate. Due to the space elliptic
operator of the expansion problem (1.3) being degenerative, the height Y of the truncated cylinder
needs to be chosen depending on the mesh parameter to obtain an optimally convergent error. This
technique was already pursued in [17,19] using a discretization with the tensor product finite elements
in the extended direction. Here, we shall adapt this approach to the parabolic case.

The main contributions of our work are as follows:

1. The numerical solution of the space-time fractional parabolic equations is obtained by
constructing a fast nonuniform L2-1, scheme with the tensor product finite element method for
the equivalent extended problem. This numerical scheme has the advantages of high accuracy
and low computational storage, and can effectively handle the singularity of the solution at t — 0.

2. We prove the stability of the numerical scheme both in the H 1(»*,Cy) and L*(Q) norms under
some constraints on the time step ratio, and obtain an a-robust error estimate by the fractional
Gronwall inequality. We note that this theoretical analysis framework is also applicable to the
nonlinear space-time fractional equations [13, 14].

The outline of this paper is as follows. In Section 2, we introduce the fast L2-1, scheme for the
Caputo derivative and its basic lemmas. In Section 3, we establish a fast L2-1,, fully discrete scheme
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for the Caffarelli-Silvestre extension problem. In Section 4, the stability and error estimates of the
fully discrete scheme are proved. In Section 5, we present a numerical experiment to support our
theoretical results.

2. Fast L2-1, scheme for the Caputo derivative

In this section, we shall introduce a fast L2-1, scheme to approximate the time Caputo derivative.
Firstly, let us review the L2-1,, scheme. This numerical scheme was first proposed by Alikhanov [4],
so it is also known as the Alikhanov scheme. Let N be a positive integer, we consider a nonuniform
time mesh

k r
ty = (—) T, k=0,1,2---,N,
N
where the mesh parameter r > 1 is chosen by the user. For 0 < o < 1, we define the off-set time level
as t,_, = (1 — o)t, + ot,_;. For simplicity, we shall write "~ := u(t,_,) and u™" := (1 — o)u" + ou"!

for any function u. Giving o = /2 here and after and set the time step 7, = # — #;_, the time Caputo
derivative (1.2) can be approximated by L2-1, scheme.

In—o
a:jlu(tn—a') = f Wi—q (th-o — S) u'(s)ds
0

n—1 1
=, f Wia (- = 5 (s)ds + f
k=1 Y lk-1 th-1

n—1 fe
~ Z f Wi-a (tn—(r - S) (HZ,ku), (S)dS
k=1 Y-

In—o
+ f Wi—q (tneo — ) (Il yu) (s)ds =: DYu"™7,
t

-1

In—o
Wi-a (tn—a' - S) M/(S)dS

2.1)

where

-t )t —tir1) o E—t)E—ts1)

H2 K = u
(te—1 = 1) (te—1 — tes1) (te — i)tk — tis1)
(=t — 1) P
(tk+1 — Be—1) Tk — 1)
t—1t t—t,_
O u=—"u"+ —" Ly
z‘n—l - z‘n tn - z‘n—l

Let the step size ratio be p, = 7¢/7rs and Vb = uf — u*! for k = 0,1,2,--- , N, the discrete
fractional derivative in (2.1) can be reformulated as

Dyu"™ = (aff_)kVTuk + pkb;”_)kVTukJr1 — b;"_)kVTuk) + aoV.u"

N
—_

S
—_ =

(2.2)

(n) k (n) n
A® Vb + AV u
k=1

AIMS Mathematics Volume 10, Issue 11, 25568-25588.



25572

with
pOR. e w L[
n n
4 f Wi-o(ln-o — S)dS, Ay v = — f Wi—o(lpg — S)dSa
Ty ta-1 Tk fe
) 2 t
b, = —f (s = tre12)Wi—o (g — $)ds,
nk Te(Tk + Ths1) fot e
and
(n) +pn lb(n), k= n,
) _ ) (n)
A, =14 +Pk b, —b, 2<k<n-1,
(n) () _
n 1 bn 1° k = 1

It is known that the computational complexity of the L2-1, scheme is huge, so we consider the
fast L2-1, scheme based on the sum-of-exponentials technique to approximate the kernel ™. Its idea
mainly adopts the following lemmas.

Lemma 2.1. For the given parameters a,€,T and T, there exists a family of points s; and weight
w; (i=1,2,---,N,) such that

NP
- E wie "

i=1

<e Vtelr,T], (2.3)

where

1 1 T 1 1 1
N, = O(log E(log log s log ;) + log ;(log log s log ;)) .

Therefore, the history part in (2.1) can be written as

n—1 fe
Z f Wi-« (tn—O' - S) (HZ,ku)/ (S)ds
k=1

N, 2.4
’ o Sillne=8) 7 . _
F(l - ) Z f (o) ()wie ds = Z; Hi(ty-1),
where H;(ty) = 0 and
—S8T, 1 fn-1 ’ —s(t —Y)
H(t,-1) = e """ Hi(ty2) + = (Mo )" (S)wie™ """V ds. (2.5)
F(l - ) Ih-2
Combining (2.1) and (2.4), the fast L.2-1,, scheme can be represented as
Du'™" = a"Vu" +ZH(tn 1), (2.6)

where H;(t,-1) can be calculated by the recurrence formula (2.5). Obviously, the fast L2-1, format (2.5)
is more computationally efficient than the standard L2-1,, format (2.2) and has reduced the storage and
computational cost from O(N) and O(N?) to O(N,) and O(NN,,).
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For subsequent theoretical analysis, we equivalently reformulate (2.6) into the following
convolution form

(1) (1) (1) i (n) 0
D™ = B + Z(B” ~B" i — B" i, 2.7)
where
(n) + an lb(n)a k = n,
BSln)k = Z e_si(tnf(r_tlwlfcr)(a(k+1) + e_slTk+l a'pk 1b§1k)k+1 — Elek_-;(]))’ 2 S k S n— 1’

=

lN” @ _ 7@

i_zl e_si(tn—o'_tZ—zr)(an_l _ bn—l , k=1,
with

. Tk
Zl’(,lk_-;]) = —wl f e_si(’k+1—rr—S)ds’
oI(l-a) J,

i

2w;

P& = l f (s — tr_ype”Sitrt-=D) g,
ke (et el —a) J,

Now, we define a sequence of discrete complementary convolution kernels {Pi.")};f: , by

1
(n) _ pP™ — B~ k) p-k)\ p) < B
Fo = B("), J B(" ) z : j—k—1 Bj—k )Pn—k’ l<j<n-1

By the theoretical basis provided in [23], we shall obtain that the kernel PE.") satisfies the following
three properties [14]:

EZE”ﬂ“— for1 <n<N. (2.8)
L plraa-ngrdN (] 4 [y — @)

P™ e < N , Iy=1/InN. 2.9
Z i T+ 1y =1/ &9
prxs_ﬁi_, (2.10)
LT Z T+ a)

An important feature of the solution u to the problem (1.3) is singularity near the initial time ¢ = 0,
which usually satisfies the following properties in terms of time ¢:

0u) < C(1 + " forl=0,1,2,3. 2.11)

We point out that the C generally means a constant in this paper. Then, we can get the following error
estimates [14,24]:

10 u("") — D%u"7| < C(£,%, N~ mn-erel 4 ) (2.12)
|u(tn—0') _ un,(rl < Cf;ita.N_ min{2,ra} (213)

forn=1,2,---,N.
We shall introduce two useful lemmas, which play a significant role in the subsequent theory.
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Lemma 2.2. [14] For any sequence {u}"_,, it holds:

n=1’
@ n—-o . n,o 1 |, n—o|2
(D™ u") 2 5 D™ (2.14)

Here (-,-) represents the inner product, which is defined as (u,v)q = fQ uvdx; we shall adopt this
definition in this paper.

Lemma 2.3. [14] Let A; be the nonnegative constants with 0 < >, A; < A, where A is a positive

i=1
constant. Assume that the nonnegative sequences {wk}szo, {f"}ivzl,and {7]"}2’21 satisfy

D' < ) W+ EW 4 (") forn > 1. (2.15)
i=1

If the maximum time step satisfies T < [2I'(2 — a)A]"V?, we can get

k
W' < Eq(2A1") |w° + max Z PY(& + 7)) + max{n’}| forl<n<N. (2.16)
I<ksn — J 1<j<n
=

3. Fully discrete FE scheme for the Caffarelli-Silvestre extension problem

In this section, we shall state the fully discrete scheme for the Caffarelli-Silvestre extension
problem. To deal with the nonuniformly elliptic operator, we consider the weighted Sobolev spaces
with [y|™, a € (=1,1). Let D c R? x (0, +c0) be an open region, we then denote L*(|y|%, D) to be the
space of all measurable functions defined on D such that

||W||§,2(|y|“,D) = f |Y|aW2 < oo,
D
In a similar way, we also define space
H'(,D) = {w e L*()",D) : |Vwl € L*()", D))

and its equipped norm is
2
2 2
Wl .0y = (W12 + VW) (3.1)

Due to a € (-1, 1), we have that |y|* belong to the so-called Muckenhoupt class [25].
To study the problem (1.3), we introduce the space

H(%C) = {w e H'("C):w=0o0n 3LC}. (3.2)
The following weighted Poincaré inequality holds
IWllzzgec) S IVWlgecy, ¥ we Hj (4, C). (3.3)

Thus, the seminorm on H z(y“, C) is equivalent to (3.1). For any w € foli(y“, C), trow stands for its trace
onto X {0}, i.e., trow(?) = w(:, 0, 1), which holds [16,26]

1
toH (v, C) = H(Q),  lltrawllas@) < CuolWllg1 e o)
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with a = 1 — 2s, and a is uniformly set to 1 — 2s in the subsequent theoretical analysis.
Define
W= {we L0, T; L*(Q) N L*0,T; H(Q)) : 0"w € L*(0,T; H'(Q))}.
V= {weL*0,T;H(y*,C)) : trqw € L*(0,T; H*(Q))}.
As a result, given f € L*(0,T; H*(Q)), a function u € W solves problem (1.1) if and only if the

function u € V solves (1.3) [2]. At the same time, there is uniqueness in the problem (1.1) and (1.3)
as follows:

Lemma 3.1. [2] Let s € (0,1), € (0,1), f € L*(0, T; H*(Q)), and 1y € L*(Q). Then, problem (1.1)
and (1.3) have a unique solution.

A weak form of (1.3) reads: If each r € (0, T'], find u € V such that

(Z‘I’Qa?u, trQ¢) + a(u’ ¢) = (f7 trQ¢)’ v ¢ € ﬁi(ya’ C) (3 4)
trqu(0) = 1. '
Here the bilinear form is .
a(u, §) = - f y'"5Vuy - Vodxdy. (3.5)
s JC

Remark 3.1. [2] The initial datum vy of problem (1.1)determines only u(0) on Q x (0,00) in a
trace sense.

Since the fact that the solution u(¢) in the problem (3.4) is located in the infinite region C, we cannot
directly calculate it using the finite element method. However, the solution u(¢) of the problem (3.4)
decays exponentially in y [2], that is

—-VA1Y/2
IVl 220,7:1200 05 (v0)y) < Ce N ,

where Y > 1, A, is the first eigenvalue of the Dirichlet Laplace operator, and the constant C depends
only on the initial value u, and the right-hand side f.

As per the above proposition of u, we can truncate C to Cy = Qx(0, Y) for a suitable Y, and consider
the following problem

~div(y'">Vv) =0, inCy x(0,T),
v+ 70,7v = f, on(Qx{0})x(0,7),

(3.6)
v=0, on (0;Cy U Qy) X (0,7),
Vlt:O = Uy, on Q X {O},
where Qy = Q X Y and Y > 1 is sufficiently large.
Now, we define
H}(,Cy) = {w e H'(0",Cy) : w = 00n 9,Cy UQy}.
Vy = {w e L0, T; H (y°,Cy)) : d%trqw € L*(0,T; H*(Q))}.
Then the weak form of problem (3.6) can read: If each # € (0, T'], seeking v € Vy such that
(0 trqv, trag) + ay(v, §) = (f, trag), (3.7)
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forall ¢ € H 1(»*,Cy) and trov(0) = 1y. Here

1
ay(v, @) = 7 f yIEVy - Vodxdy.
A Cy

The following exponential decay result is given in [2, Lemma 4.3]; it provides us with a basis for
numerical discretization.

Lemma 3.2. (Truncation error) For every a@ € (0,1), Y > 1 and A, are the first eigenvalue of the
Dirichlet Laplace operator. Then we have

< Ce_ \//TIY,

1- 2 2
1 a”trﬂ(u - v”LZ(Q)(T) + ”V(l/l - V)”LZ(O,T;LZ()‘”,C)/)) =

where the constant C depends only on the initial value 1y and the right-hand side f.

Let 7o = {K} be a uniform mesh of Q into cell K, and we consider a graded partition Iy = {I} of the
interval [0, Y] with node

k H
yk:(ﬁ) Y’ k:0’]".."M’

where u = u(a) > 3/(2s). Then, we define a partition 7y of Cy into cells of the form T = K xI. The set
of all triangulations 7 is denoted by T. Assume that #7 ~ M; thus, we have #7y = M#7T o ~ M4,
If 7 is shape regular and quasi-uniform, the element size hq, satisfies hqg =~ (#7¢ Y

For 7y € T, we define the finite element space as

V(Ty) = (W e C’Cy): Wy € PLK)QP()V T € Ty, Wir, = 0}, (3.8)

where I'p = 0,Cy U Q X Y is the Dirichlet boundary.
The projection operator plays a crucial role in error analysis. Without a doubt, we also a weight
elliptic projector: Gy, : H)(y*,Cy) — V(Ty) such that, for w € H} (¥, Cy), is given by

aY(G'TyW’ W) = aY(W’ W)9 Y We V(TY)’ (39)
and the following error estimates hold [2]
lw — GTy)”b“Q(y“,Cy) < C|log #TYP(#TY)—I/(MI)’ (3.10)

ltra(w — G, W)ll2q) < Cllog BTy [P (HT y) /0D, (3.11)

where the constant C depends only on 1 and f.
Suppose that
Vg = If]“yll(),

where 77, = G, o H, and H, is the a-harmonic extension onto Cy. Thus, the fast L2-1,, fully discrete
scheme of problem (3.7) reads: If n = 1,2,--- , N, find v, € V(7y) such that

(treDpvy ™7, tradn) + ay(v, 7, én) = (f"77, tragn), (3.12)

for all ¢, € V(Ty) and trqV)) = traGr, v(0).
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4. Stability and error estimates of fully discrete scheme

In this section, let us begin the discussion on the stability and error estimates of the full discrete
scheme (3.12). Firstly, we present the stability of the numerical scheme (3.12) in the L?(Q) norm, as
detailed in the following theorem.

Theorem 4.1. Assume that the v}, is the fully-discrete solution, if the maximum time step T < [2I'(2 —
)7V, then we have

21% .
n (04 e
ltravillizg) < Eq(21,) |1 + (1 —F(l " a)) {Efquf ], 4.1)
foreachn=1,2,--- ,N.
Proof. By taking ¢, = v;”, we have
(tro Dy eV ) + ay (v 7, Vi) = ("7, trov)). 4.2)

Applying the Cauchy-Schwartz inequality, we can see that
(e Dpvy, ™7, travy, ) < IV, - (4.3)
By (2.14) and Young’s inequality, we obtain
1Da n—(72< 1 n—o |2 n,0 2 4.4
S DIy I < S A+ 171 (4.4)

Based on the fractional Gronwall inequality (2.10), (2.15), and (2.16), we have

1<k<n 1<j<n

IVl < Eo(26%) | v) + max Z P(k) fJ 7 + max f/~ ‘T]

< E,(21)) vh + max(max f/7) Z P(") + max fj—rr]

1<k<n 1<j<k 1<j<n (45)
< E, 2t (VW) + (max /- U)L + max f/77
< Eu20)(v, 1<k<n I'l+a) Isjzn
E (2t“)> +(1+ 21, fie
=E, u ———|m .
M T(1+a)) 12
This concludes the proof. O

Next, we shall introduce the following lemma to derive the stability of the fully discrete scheme in
the H (¥, Cy) norm.

Lemma 4.1. [15, Theorem 3.2] If the nonuniform mesh {1} satisfies that

1
> 0475329, e<min—mm——
Px k2l 5(1 — a)(oT)® (4.6)

At <minot,, T > max(oTi. + Tr),
k>2 k>2
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for k > 2, then for any function w on [0, c0) X Cr, such that

Z(D‘,ﬁw" 7 Vowh) > Z F(l VI > 0, (4.7)

where n > 1 and B is defined in [15].
By making above assumption about the ratio of the time step, we can obtain the following results.

Theorem 4.2. Assume that the v} is the fully discrete solution, if {t;} satisfies the condition in
Lemma 4.1, then we have

0
”Vleﬁ]Il‘(ya,cy) < ”Vh”[f]i(ya,cy) + CrCry, (4.8)

foreachn = 1,2,--- N, where Cy is a constant depending on the right-hand f, C,,, is the Sobolev
embedding constant depending on Q and the spatial dimension d.

Proof. Forn > 1, taking ¢;, = VTVZ in (3.12) and summing up the derived equations over k, we have

D (oD Vo) + " ay(h 7, Vak) = > (f7, Vo). (4.9)
k=1 k=1 k=1
Duo to .
- 1-y
D a7, V) = || Vil o) = || Vil ey * Z VA ogyy  (410)
k=1
and

DUFNVA) = ) = (P = D FT = A
k=1 k=2

<Cy max lItravhllzs@ (4.11)
< CyCyq max ||Vl;z||1f11(ya,cy)~
Then, we have
OIEaX ”Vh”m(ya o S ||vh||H 1gecy) T 2CfCtrQ max ”Vh”H‘(yu Cr) 4.12)
which indicates
max 1V;lye.c,) < CrCuq + \[(CrCua)® + IR, o Wi
< ”Vh”[fli(ya,cy) +2CCl,.
The proof is completed. O

Analogously, we assume that solution v of the extended problem (3.6) satisfies the
following condition

lovll < cd + 7, 1=0,1,2,3. (4.14)
trov(t) € L¥(0, T H(Q)),  87v € L™(0,T; H{ (", Cy)). (4.15)

Then, we have the following error results:
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Theorem 4.3. Let v be the solution of problem (3.7) and v} be the finite element solution of (3.12),
Then, there exists constant C > 0 such that

ltra(v = Villzg < C(|Tog #7y [ (#7y) (1+9/0h o N=mini2ral 4 ¢), (4.16)

v = Villirgecyy < C(1Tog #TyI Ty~ 10D 4+ N=minre) 4 ¢), 4.17)
where C is a constant depends only on the initial value 1 and the right-hand side f.
Proof. Firstly, we split the error into the interpolation and approximation error
Vo=V, =V' =GV + GV = v, = p" + 6, (4.18)

n

where p" = V"' = GrV", 0" = G, V" — V).
From (3.7) and (2.14) can lead to

(tro D07 trady) + ay(0™7, ¢p)
= (tro(DEG V'™ = 07V"77), trady) — ay(V'™7 = V"7, ¢y)

= Cly(Vn’O— — vn—a’ ¢h) + (trQ(D(:—GTYVn_O- — D(:—Vn_o-), trgth) (419)
+ (tro(DEv"™7 = 0/v"™7), trady)
= Cly(V -y ¢h) + (tI'QDa A tl‘g(bh) + (tI'Q(Da i afv"_”),trggbh).
Also, we have
ay(V"7 =V, ) = dy(tra(0F (VT = V), trady) + d(f7 — 177, tradn). (4.20)

Taking ¢, = 8™ and the Cauchy-Schwartz inequality, we get

(tro D07, tra0™7) + ay(8™7,0"7)
< dltra(@ " =Vl | + dl ™ = £ et 421)
+ trll D" e + ltra(Dy™ = 67"l ||

From (3.11) and (2.7), we can derive
trall D" 7| = tra| B " + Z(BW - B et = B

= By lltrop" || + Z(Bf;”k | = B lltra | + B, litrgp’|

(4.22)

n < n n n s =(ts)
S (S Y IR RN [T s

—(1+s)
n+1 )

| log #T3 [>T 7 ).

2s

= 2By (

—

-
T2 - )(

<C;
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27,

where the fact that Bg’) <
@)
j= 1,2,--- ,nsuch that

dlra@ (77 = Vi) + dlLf37 — F7 + (D™ = 31|
< f (N min{2,ra} +N- min{3—a,ra} + E)
< Czt—a (N—mln {2,ra} + E) '

Therefore, from (2.14), (4.22), and (4.23), we get
e

'T2-0a)
+C2f (N min{2,ra} 6)]”911,0'”

tro D"~ < | log #75> (#T7) 7 )

Using the Gronwall inequality can yield

—a

47,
a 0 2s (1+s)/(n+1) (k)
Itraffll <Eo(e)|tratl| + Crr s log #731 (#77)” lngg;E P

— min{2,ra} (k) —a
+C, (N g&ﬁZPk jt] <

It from (2.9) and (2.10) that
8T,

1 HT 2s H#T —(1+s)/(n+1)
T+l —a) C8*EHTY)

el <Eo(22)(lltrat’ll + C

plrae-lverdNp (] 4 [y — @)
+C N N—mm{Z,ra} +€)
2 T+ ) ‘)

Choosing trq1?) = 119, we derive ||tro6”|| = 0. Thus, we have

”trgg;ll” < C(l log#TylZS(#TY)—(1+s)/(n+l) +N—min{2,r(r} + 6),

where

81T plreralverINT(1 + Iy — a)
C=E,Q c nn .C .
( ")max{ TA+alf2-a) > T+ Ly)

Finally, by (3.11) and the triangle inequality, we can derive (4.34).
According to the definition (2.7), we rewrite the D%ll@"“’”2 as

n—-1
DI 1P = B lltra |2 + > (BY, = BY,_litradI” — BY,lltra6’P.
i=1

Due to BEIO) B™.

n—i—1

< 0and 6y = 0, we have

n—1

B ltrad|” + Z(B“” B, DlitradIP — B, lltra6°|

(n) (n) (n) i2
> BY ol +Z(B =B 5 e,

~ By 10",

_ 104 o2
= DI, .

(1) 7112
111 4.Cy) + BO [|tra6"||".

s used. Together the condition (4.15), (2.12), and (2.13), for

(4.23)

(4.24)

(4.25)

(4.26)

4.27)

(4.28)

(4.29)

(4.30)
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This equation combined with (4.21)—(4.23) yields

—Q

2 Ty 2s —(1+8)/(n+1)
Hoeen S(Crom— Gy g # T T)

—a — min{2,ra} ) o (n) 2
+ Caty (V1 )+ BN

D"

—

4t _ 4.31)
<(c n log #7725 (#F)~(1+9)/ 1) 4.
( T oy 108 # T #TY)

- —min{2,ra} T
+ Cztj_ (N + 6))”0’1 ||H£(ya,cy)

(o

(m))1 g0 12
+ CoB 10 I

—Q

where the imposed constant Cy > 0 is obtained through Taylor expansion in #,. Also Bf)") <

Thus, we can get the following result by the Gronwall inequality S
16111y <EaCoB (161110,
+C To—a éri"a) | log #T 3| (#Ty)~ 1 +9/m+D max ]Z: Pﬁ("_)j 432)
+C, (N —min{2ra} 4 e) {ggl Zk: Pl({li)jt;f’a].
j=1
Similar to (4.26), there is
||9"||1:’1;(ya,cy) < C(I log BT [ (T +9/(n4 D) - min(2ra) 4 6). (4.33)

Here the constant C is consistent with the constant defined in (4.28). Thus, conclusion (4.35) can be
obtained through the estimation in (3.10). O

Remark 4.1. In the framework of Theorem 4.3 and in view of the Lemma 3.2, we have the following
error estimates forw",n =0,1,2,--- ,N:

I = travll) < C(|log #Ty P (#Ty) (/D 4 N=mint2ral 4 o= VA o ¢), (4.34)

" = travilla@ < C(|Tog #Ty | (#Ty) ™/ 4 N=minrel 4 o= VIY 4 ), (4.35)

where C is a constant that depends only on the initial value v, and the right-hand side f.
5. Numerical experiments

To demonstrate the effectiveness of our proposed numerical scheme, here we present the following
numerical example, and the implementation was carried out with the help of the MATLAB software
library iFEM. In our computation, we adopt the tensor product element defined in (3.8) for the spatial

direction. In addition, we choose € = 1072 and r = 3/« in the fast L2-1, scheme for the time direction.
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Example 5.1. Assume that the domain Q = [0,1]%, and the initial time T = 1; we consider the
following space-time fractional parabolic problem

o'u+ (=A)'u= f(x1,x,1), x€Q, te(0,1] (5.1

Let A, and ¢, be the eigenvalues and eigenfunctions of the 2 D Laplacian with homogeneous
Dirichlet boundary conditions. If f € L*(0, T; H™*(Q)) and 1, € L*(Q), we have

(s8] [se]
u(xl » X2, t) = Z Z um,n(t)‘pm,n-
m=1 n=1

Since u(x,0) = vy, yields the fractional initial value problem for u,, ,

a;lum,n(t) + ﬂ;,num,n(t) = fm,n(t), umn(o) = Uo,m,n»

With W, = (Mo, Qmn) and fr, = (fs @mn)- For the solution of the problem (1.3), we can be written as

M(Xl, X2,Y, t) = Z Z um,n(t)‘pm,n(x)wm,n(y)7

m=1 n=1

where s
wm,n(y) = ﬁ( V/lm,ny)sKs( Vﬂm,ny)-

Here K(-) denotes the modified Bessel function of the second kind [16]. Once u in the problem (1.3) is
solved, we can obtain the solution to problem (1.1) as

U(Xl » X2, l) = Z Z um,n(t)‘pm,n(x)wm,n(o) = u(-xl » X2, Os t)-

m=1 n=1

In our example, we take the following configuration from [16, Section 6.1], let the eigenvalues and
eigenfunctions of Laplace operator A := % + % be
1 2

Amp = 7r2(m2 + nz), Oman(X1, X2) = sin(mmx;) sin(nmwx,), m,n € N.

If we take u(xy, x5, 1) = 17255 sin(2zrx;) sin(27x,) in problem (1.1), we have

1-s

%7 sin(27xy) sin(27x,)y* Ko(\/A22Y)

2 2 ’t = t(I
u(xl X2,Y ) F(S) 22

in extend problem (1.3). The right-hand sides f in (1.1) is determined from the choice for n. That is
f =T + a)A;5 sin(2rrxy) sin(27x;) + 1 sin(27xy) sin(27x;).
To balance the approximation and truncation errors, we choose the truncation parameter as

1, s=1/2,

I
Y=1+ =-log(#7Tq), and =
3108(#7 ) K {3/(2 +5)+0.01, otherwise.

AIMS Mathematics Volume 10, Issue 11, 25568-25588.



25583

This detail can be found in [17]. By the above techniques and taking s = @ = 0.5, the time step
N = 100, we show in Tables 1 and 2 that the attenuation value and the truncation error of the extended
direction are very small, which indicates that truncating the expansion direction is reasonable.

Table 1. The different attenuation values of the extend direction when s = @ = 0.5.

h #T o Y max |u(xy, x», Y, t)|
1/4 25 2.7295 1.1264e-09
1/8 81 2.4648 3.4632e-11
1/16 289 2.8889 8.0035e-13
1/32 1089 3.3310 1.5734e-14

Table 2. The truncation error of the extended direction when s = a = 0.5.

h Y—>o0 max |u(xy, xo, ) — u(xy, x2, Y, t)|
1/16 1e-03 9.9557e-04
1/16 1e-06 9.9999¢-07
1/16 1e-09 9.9999¢-10
1/16 le-12 9.9998e-13

It can be seen from Figure 1 that the graphs of the numerical solution trqv; and the exact solution

u" are consistent, which indicates that our numerical scheme is feasible. For simplicity, we use

“L%-error” to represent “max |[u" — trovy |l )" and “H*-error” to represent “max |[u" — trov)|lgs@)”,
1<n<N 1<n<N

respectively. We define “Rate 17 and “Rate 2” as the L>- error convergence rate and H°-error
convergence rate, respectively. Fixed the time step N = 100 and s = 0.5, taking the mesh size
h=1/4,1/8,1/16,1/32, the L*-error and H*-error are given in the Table 3, and the spatial convergence
orders are shown in Figure 2 and Table 4. It can be seen from them that the L?-error convergence order
is approximately (#77y)"%® and the H*-error convergence order is approximately (#7y)~'/3, which is
consistent with the results of theoretical in Remark 4.1.

0.15

A
T
N

GDAAN
W
l\‘igﬁgg’?gf_f@»
N 7

W

-0.05

-0.1 4

-0.15 -

(a) The exact solution u". (b) The FEM solution trov).

Figure 1. The exact solution, FEM solution for s = a = 0.50.
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Table 3. The error estimates of space directions with N = 100 and s = 0.5.

e a=0.25 a = 0.50 a=0.75
Y L2-error H*-error L2-error H*-error L2-error H*-error
225 5.669e-03 6.067e-02 5.677e-03  6.069e-02 5.579e-03 6.014e-02

1620 4.304e-04 1.818e-02 4.271e-04 1.811e-02  4.366e-04  1.820e-02
12716 1.682e-04 1.171e-02  1.682e-04  1.169e-02  1.750e-04  1.194e-02
104544  3.161e-05 4.975e-03  3.351e-05 5.217e-03  3.723e-05  5.590e-03

\ —6—gamma=0.25 —6—gamma=0.25
\ 77777 c, NOB AN e c, N039
_ \\\;?\~ —A— gamma=0.50 _ —&— gamma=0.50
:3 108 ~. |7 Cero's i :i 7777 CzN-Olas
2 gamma=0.75 B gamma=0.75
5 CSN—OJS s CSN-0.37
]
i

nen flu”

x104

4.8 0.0162

4.6

maxo<.
maxg<
S)
o

S
IS

44

\
~,
~,
~
\ N,
\ A
W S
- 8,
S,
5S
2| 0.016
0.0158
0.0156

10.0154

4.2
1550 16‘00 1650 1700 1750 3000 3100 3200 3300 3400

108 10* 10° 10° 10* 10°
Number of unknowns Number of unknowns
(a) The L2-error convergence order. (b) The H*-error convergence order.

Figure 2. The space convergence order of FEM solution.

Table 4. The convergence rates of space directions with N = 100 and s = 0.5.
a=0.25 a = 0.50 a=0.75

#Ty Rate 1 Rate2  Rate 1 Rate2 Rate 1 Rate 2
225 - - - - - -

1620 1.3060 0.6104 1.3105 0.6126 1.2906 0.6055
12716 0.4561 0.2134 0.4524 0.2123 0.4436 0.2045
104544 0.7934 04065 0.7657 0.3831 0.7347 0.3602
Expected result  2/3 1/3 2/3 1/3 2/3 1/3

Meanwhile, the unconditional convergence of the numerical scheme can be confirmed by taking
the time step N = 10,20, 40, 80 in Figure 3, we can know that the errors tend to be constant. The
numerical results imply that the error estimates hold without certain time-step restrictions dependent
on the spatial mesh sizes. Fixed the space mesh size &7 = 1/36, and the corresponding total degrees of
freedom are #7y = 150590, Table 5 presents the L2-errors and error convergence orders under different
time step sizes. It can be clearly seen that the time error order is close to 2, which is consistent with
our theoretical analysis.
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(a) The L2-error convergence order.

DOFs

(b) The H*-error convergence order.

Figure 3. The convergence order of FEM solution with @ = s = 0.5.

Table 5. The error estimates and convergence of time directions with #7, = 150590 and

s =0.5.

N a=0.25 a =0.50 a=0.75

L?-error Order L?-error Rate L*-error Order
4 1.997e-03 - 1.900e-03 - 9.715e-04 -
8 7.138e-04 1.484 5.379e-04 1.821 2.379e-04 1.970
16 1.880e-04 1.925 1.260e-04 2.093 5.982e-05 2.051
32 3.068e-05 2.615 2.700e-05 2.223 1.560e-05 1.939
Expected result - 2 - 2 - 2

6. Conclusions

We develop fast high-order PDE techniques for solving the space-time parabolic problems with the
fractional Laplacian. By transforming the original problem into an equivalent extended problem, we
then construct a fast L2-1,, scheme for the time direction and adopt the tensor finite element method for
the spatial direction, thereby obtaining a fully discrete numerical scheme. Subsequently, we analyze
the stability and error estimates of the numerical scheme. Finally, a numerical example is used to verify
the efficiency of the numerical scheme and the correctness of the theoretical analysis. In the future, we
will further apply this technique to solve the nonlinear or variable-order fractional PDEs and consider
the a posteriori error estimation for the space fractional diffusion equations.
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