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1. Introduction

Let Ω be an open and bounded domain of Rd (d ≥ 1), with the boundary ∂Ω, given s ∈ (0, 1), we
shall consider the following space-time fractional parabolic problem

∂αt u + (−∆)su = f , in Ω × (0,T ],
u = 0, on ∂Ω × (0,T ],
u(0) = u0, in Ω,

(1.1)

where ∂αt stands for the left-sided Caputo fractional derivative of order α with respect to the time t,
which is defined by

∂αt u(t) =

∫ t

0
w1−α(t − s)u′(s)ds, 0 < α < 1, (1.2)
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where Γ is the Gamma function and w1−α(t) = t−α/Γ(1 − α). Here (−∆)s is the fractional power of the
second-order elliptic operator. Moreover, the left Riemann–Liouville fractional integral is defined by

Iαu(t) =

∫ t

0
wα(t − s)u(s)ds,

Then, we have ∂αt u(t) = (I1−α∂tu)(t).
To address the nonlocality of the fractional Laplace operator (−∆)s, our method is to transform

the problem (1.1) into an equivalent Caffarelli-Silvestre extension problem as follows based on the
following equivalent reformulation of problem (1.1):

−div(y1−2s∇u) = 0, in C × (0,T ),
∂αt u + 1

ds
∂1−2s
ν u = f , on (Ω × {0}) × (0,T ),

u = 0, on ∂LC × (0,T ),
u|t=0 = u0, on Ω × {0}.

(1.3)

Here C = Ω × (0,∞) is the semi-infinite cylinder, ∂LC = ∂Ω × [0,∞) is the boundary of C and
ds = 21−2s Γ(1−s)

Γ(s) . When y is defined as the extended variable in the extended dimension Rd+1 of
problem (1.3), we have the external normal derivative of u at Ω × {0}

∂1−2s
ν u = − lim

y→0+
y1−2suy = ds(−∆)s

u. (1.4)

For the detailed process of transforming the problem (1.1) into the problem (1.3), please refer to
references [1,2]. Then, the trace u(x, t) = u(·, 0, t) is the solution of the space-time fractional parabolic
problem (1.1). The main objective of this work is to find the solution of (1.1) by using the extension
problem (1.3).

Additionally, the design of an efficient skill to deal numerically with the Caputo fractional
derivative ∂αt is not an easy task. In the past decade, there have been several well-known schemes
that have been developed and analyzed via finite difference methods under the assumption that the
solution is sufficiently smooth, such as the L1 and L2-1σ schemes [3, 4], L2 scheme [5], and the
convolution quadrature methods [6]. However, the solutions to the time-fractional problems are weak
singularities at t → 0. This inspires researchers to design improved finite difference schemes on
the graded meshes to overcome the singularity of time, but this theoretical analysis is very difficult;
see [7, 8]. Another important feature is the storage problem due to the nonlocality of the time
fractional derivatives. To be precise, all of the aforementioned works require O(N) storage and O(N2)
computational cost when the time step is N, which is too costly. Jiang et al. [9] introduced the sum-
of-exponentials (SOE) approximation to accelerate the efficient evaluation of the Caputo derivative.
This reduces the computational cost of the L1 format to N and the storage capacity to NT under a
consistent grid, while maintaining the same accuracy as the L1 format, which reduces the storage and
computational cost of the L1 scheme on the uniform meshes to O(Np), or O(NpN), here (Np � N),
while maintaining almost the same accuracy as the L1 scheme. Along this way, the fast L2 and L2-1σ
schemes are present and analyzed under the uniform meshes [10, 11]. Furthermore, Liao et al. [12]
study the fast L1 scheme on the grade meshes for solving the nonlinear time fractional diffusion
equations. Based on the fast L2-1σ on the nonuniform meshes, Liu et al. [13] proposed a fast scheme
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for solving the nonlinear time fractional diffusion equations. Wang et al. [14] obtain the unconditional
optimal bounds of the fast scheme for the time fractional biharmonic equations. Quan et al. [15]
prove that a bilinear form associated with the fast L2-1σ formula is positive semidefinite for all
time, and derive the uniform global-in-time H1-stability of the fast scheme for the time fractional
diffusion equations.

Noting that the expansion direction of problem (1.3) is a semi-infinite domain, a direct application of
a numerical approximation to the extended problem is not feasible. As a remedy, the exponential decay
of u in direction y→ +∞ can be applied such that a truncation of the semi-infinite cylinder to Ω×(0,Y)
becomes possible, and the height Y of the truncated cylinder needs to be chosen dependent on the mesh
parameter to ensure the convergence of the numerical scheme, see [16, 17]. By the aforementioned
results, numerical schemes such as finite difference methods [18], finite element methods [16, 19],
and spectral methods [20] have been developed for the Caffarelli-Silvestre extension problem of
the fractional diffusion equation. However, only a small amount of work has been done on the
problem (1.3). Nochetto et al. [2] propose and analyze an implicit fully-discrete scheme via the tensor
product finite elements in space and an implicit finite difference discretization in time, and the stability
and error estimates of this scheme are proved. Hu et al. [21, 22] studied the finite difference methods
to approximate the temporal and spatial directions discretization for the 1D and 2D problems, and the
convergence and error estimate of this scheme are shown. The above work has low accuracy in terms
of time and does not consider the computational storage for time discretization. To our knowledge,
there is no work on the second-order time numerical format for the problem (1.3). However, the
expansion problem is a high-dimensional space problem, which is expensive for computational cost of
the numerical scheme. Therefore, designing an efficient numerical scheme is crucial.

In order to improve the computational efficiency of numerical approximation for the extended
problem (1.3), we use the sum-of-exponentials (SOE) technique to speed up the evaluation of the
nonuniform L2-1σ scheme in the temporal direction and the tensor product finite element method for
the spatial direction. It is worth noting that when we use the nonuniform L2-1σ scheme to discretize the
Caputo fractional derivative, the error results may blow up at α → 1− [23], so we adopt an improved
fractional Grönwall inequality from [14] to obtain an α-robust error estimate. Due to the space elliptic
operator of the expansion problem (1.3) being degenerative, the height Y of the truncated cylinder
needs to be chosen depending on the mesh parameter to obtain an optimally convergent error. This
technique was already pursued in [17,19] using a discretization with the tensor product finite elements
in the extended direction. Here, we shall adapt this approach to the parabolic case.

The main contributions of our work are as follows:

1. The numerical solution of the space-time fractional parabolic equations is obtained by
constructing a fast nonuniform L2-1σ scheme with the tensor product finite element method for
the equivalent extended problem. This numerical scheme has the advantages of high accuracy
and low computational storage, and can effectively handle the singularity of the solution at t → 0.

2. We prove the stability of the numerical scheme both in the H̊1
L(ya,CY) and L2(Ω) norms under

some constraints on the time step ratio, and obtain an α-robust error estimate by the fractional
Grönwall inequality. We note that this theoretical analysis framework is also applicable to the
nonlinear space-time fractional equations [13, 14].

The outline of this paper is as follows. In Section 2, we introduce the fast L2-1σ scheme for the
Caputo derivative and its basic lemmas. In Section 3, we establish a fast L2-1σ fully discrete scheme
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for the Caffarelli-Silvestre extension problem. In Section 4, the stability and error estimates of the
fully discrete scheme are proved. In Section 5, we present a numerical experiment to support our
theoretical results.

2. Fast L2-1σ scheme for the Caputo derivative

In this section, we shall introduce a fast L2-1σ scheme to approximate the time Caputo derivative.
Firstly, let us review the L2-1σ scheme. This numerical scheme was first proposed by Alikhanov [4],
so it is also known as the Alikhanov scheme. Let N be a positive integer, we consider a nonuniform
time mesh

tk =

(
k
N

)r

T, k = 0, 1, 2 · · · ,N,

where the mesh parameter r ≥ 1 is chosen by the user. For 0 ≤ σ ≤ 1, we define the off-set time level
as tn−σ = (1 −σ)tn +σtn−1. For simplicity, we shall write un−σ := u(tn−σ) and un,σ := (1 −σ)un +σun−1

for any function u. Giving σ = α/2 here and after and set the time step τk = tk − tk−1, the time Caputo
derivative (1.2) can be approximated by L2-1σ scheme.

∂αt u(tn−σ) =

∫ tn−σ

0
w1−α (tn−σ − s) u′(s)ds

=

n−1∑
k=1

∫ tk

tk−1

w1−α (tn−σ − s) u′(s)ds +

∫ tn−σ

tn−1

w1−α (tn−σ − s) u′(s)ds

≈

n−1∑
k=1

∫ tk

tk−1

w1−α (tn−σ − s)
(
Π2,ku

)′ (s)ds

+

∫ tn−σ

tn−1

w1−α (tn−σ − s)
(
Π1,nu

)′ (s)ds =: Dα
Nun−σ,

(2.1)

where

Π2,ku =
(t − tk)(t − tk+1)

(tk−1 − tk)(tk−1 − tk+1)
uk−1 +

(t − tk−1)(t − tk+1)
(tk − tk−1)(tk − tk+1)

uk

+
(t − tk−1)(t − tk)

(tk+1 − tk−1)(tk+1 − tk)
uk+1.

Π1,nu =
t − tn

tn−1 − tn
un−1 +

t − tn−1

tn − tn−1
un.

Let the step size ratio be ρk = τk/τk+1 and ∇τuk = uk − uk−1 for k = 0, 1, 2, · · · ,N, the discrete
fractional derivative in (2.1) can be reformulated as

Dα
Nun−σ =

n−1∑
k=1

(a(n)
n−k∇τu

k + ρkb
(n)
n−k∇τu

k+1 − b(n)
n−k∇τu

k) + a0∇τun

=

n−1∑
k=1

A(n)
n−k∇τu

k + A(n)
0 ∇τu

n

(2.2)
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with

a(n)
0 =

1
τn

∫ tn−σ

tn−1

w1−α(tn−σ − s)ds, a(n)
n−k =

1
τk

∫ tk

tk−1

w1−α(tn−σ − s)ds,

b(n)
n−k =

2
τk(τk + τk+1)

∫ tk

tk−1

(s − tk−1/2)w1−α(tn−σ − s)ds,

and

A(n)
n−k =


a(n)

0 + ρn−1b(n)
1 , k = n,

a(n)
n−k + ρk−1b(n)

n−k+1 − b(n)
n−k, 2 ≤ k ≤ n − 1,

a(n)
n−1 − b(n)

n−1, k = 1.

It is known that the computational complexity of the L2-1σ scheme is huge, so we consider the
fast L2-1σ scheme based on the sum-of-exponentials technique to approximate the kernel t−α. Its idea
mainly adopts the following lemmas.

Lemma 2.1. For the given parameters α, ε, τ̂ and T , there exists a family of points si and weight
ωi (i = 1, 2, · · · ,Np) such that ∣∣∣∣∣∣∣t−α −

Np∑
i=1

ωie−sit

∣∣∣∣∣∣∣ ≤ ε, ∀ t ∈ [τ̂,T ], (2.3)

where

Np = O

(
log

1
ε

(log log
1
ε

+ log
T
τ̂

) + log
1
τ̂

(log log
1
ε

+ log
1
τ̂

)
)
.

Therefore, the history part in (2.1) can be written as

n−1∑
k=1

∫ tk

tk−1

w1−α (tn−σ − s)
(
Π2,ku

)′ (s)ds

≈
1

Γ(1 − α)

Np∑
i=1

∫ tn−1

0

(
Π2,ku

)′ (s)ωie−si(tn−σ−s)ds :=
Np∑
i=1

Hi(tn−1),

(2.4)

where Hi(t0) = 0 and

Hi(tn−1) = e−siτn−σHi(tn−2) +
1

Γ(1 − α)

∫ tn−1

tn−2

(
Π2,ku

)′ (s)ωie−si(tn−σ−s)ds. (2.5)

Combining (2.1) and (2.4), the fast L2-1σ scheme can be represented as

Dα
Fun−σ = a(n)

0 ∇τu
n +

Np∑
i=1

Hi(tn−1), (2.6)

where Hi(tn−1) can be calculated by the recurrence formula (2.5). Obviously, the fast L2-1σ format (2.5)
is more computationally efficient than the standard L2-1σ format (2.2) and has reduced the storage and
computational cost from O(N) and O(N2) to O(Np) and O(NNp).

AIMS Mathematics Volume 10, Issue 11, 25568–25588.



25573

For subsequent theoretical analysis, we equivalently reformulate (2.6) into the following
convolution form

Dα
Fun−σ = B(n)

0 un +

n−1∑
i=1

(B(n)
n−i − B(n)

n−i−1)ui − B(n)
n−1u0, (2.7)

where

B(n)
n−k =



a(n)
0 +

Np∑
i=1
ρn−1b̃(n)

1 , k = n,
Np∑
i=1

e−si(tn−σ−tk+1−σ)(ã(k+1)
n−k + e−siτk+1−σρk−1b̃(k)

n−k+1 − b̃(k+1)
n−k ), 2 ≤ k ≤ n − 1,

Np∑
i=1

e−si(tn−σ−t2−σ)(ã(2)
n−1 − b̃(2)

n−1), k = 1,

with

ã(k+1)
n−k =

ωi

τkΓ(1 − α)

∫ tk

tk−1

e−si(tk+1−σ−s)ds,

b̃(k+1)
n−k =

2ωi

τk(τk + τk+1)Γ(1 − α)

∫ tk

tk−1

(s − tk−1/2e−si(tk+1−σ−s))ds.

Now, we define a sequence of discrete complementary convolution kernels {P(n)
j }

n
j=1 by

P(n)
0 =

1

B(n)
0

, P(n)
j =

1

B(n− j)
0

j−1∑
k=0

(
B(n−k)

j−k−1 − B(n−k)
j−k

)
P(n)

n−k, 1 ≤ j ≤ n − 1.

By the theoretical basis provided in [23], we shall obtain that the kernel P(n)
j satisfies the following

three properties [14]:
n∑

j=k

B( j)
j−kP(n)

n− j = 1 for 1 ≤ n ≤ N. (2.8)

n∑
j=1

P(n)
n− jt

−α
j−σ ≤

21+rαTα−lN ertlN
N Γ(1 + lN − α)

Γ(1 + lN)
, lN = 1/ ln N. (2.9)

n∑
j=1

P(n)
n− j ≤

2tαn
Γ(1 + α)

. (2.10)

An important feature of the solution u to the problem (1.3) is singularity near the initial time t = 0,
which usually satisfies the following properties in terms of time t:

|∂l
tu(t)| ≤ C(1 + tα−l) for l = 0, 1, 2, 3. (2.11)

We point out that the C generally means a constant in this paper. Then, we can get the following error
estimates [14, 24]:

|∂αt u(tn−σ) − Dα
Fun−σ| ≤ C(t−αn−σN−min{3−α,rα} + ε), (2.12)

|u(tn−σ) − un,σ| ≤ Ct−αn−σN−min{2,rα} (2.13)

for n = 1, 2, · · · ,N.
We shall introduce two useful lemmas, which play a significant role in the subsequent theory.
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Lemma 2.2. [14] For any sequence {u}Nn=1, it holds:

(Dα
Fun−σ, un,σ) ≥

1
2

Dα
F‖u

n−σ‖2. (2.14)

Here (·, ·) represents the inner product, which is defined as (u, v)Ω =
∫

Ω
uvdx; we shall adopt this

definition in this paper.

Lemma 2.3. [14] Let λi be the nonnegative constants with 0 ≤
n∑

i=1
λi ≤ Λ, where Λ is a positive

constant. Assume that the nonnegative sequences {wk}Nk=0, {ξ
n}Nn=1,and {ηn}Nn=1 satisfy

Dα
F(wn−σ)2 ≤

n∑
i=1

λi(wi,σ)2 + ξnwn,σ + (ηn)2 for n ≥ 1. (2.15)

If the maximum time step satisfies τ ≤ [2Γ(2 − α)Λ]−1/α, we can get

wn ≤ Eα(2Λtαn )

w0 + max
1≤k≤n

k∑
j=1

P(k)
k− j(ξ

j + η j) + max
1≤ j≤n
{η j}

 for 1 ≤ n ≤ N. (2.16)

3. Fully discrete FE scheme for the Caffarelli-Silvestre extension problem

In this section, we shall state the fully discrete scheme for the Caffarelli-Silvestre extension
problem. To deal with the nonuniformly elliptic operator, we consider the weighted Sobolev spaces
with |y|−a, a ∈ (−1, 1). Let D ⊂ Rd × (0,+∞) be an open region, we then denote L2(|y|a,D) to be the
space of all measurable functions defined on D such that

‖w‖2L2(|y|a,D) =

∫
D
|y|aw2 < ∞.

In a similar way, we also define space

H1(ya,D) := {w ∈ L2(ya,D) : |∇w| ∈ L2(ya,D)}

and its equipped norm is
‖w‖H1(ya,D) =

(
‖w‖2L2(ya,D) + ‖∇w‖2L2(ya,D)

)2
. (3.1)

Due to a ∈ (−1, 1), we have that |y|a belong to the so-called Muckenhoupt class [25].
To study the problem (1.3), we introduce the space

H̊1
L(ya,C) :=

{
w ∈ H1(ya,C) : w = 0 on ∂LC

}
. (3.2)

The following weighted Poincaré inequality holds

‖w‖L2(ya,C) . ‖∇w‖L2(ya,C), ∀ w ∈ H̊1
L(ya,C). (3.3)

Thus, the seminorm on H̊1
L(ya,C) is equivalent to (3.1). For any w ∈ H̊1

L(ya,C), trΩw stands for its trace
onto Ω × {0}, i.e., trΩw(t) = w(·, 0, t), which holds [16, 26]

trΩH̊1
L(ya,C) = H s(Ω), ‖trΩw‖Hs(Ω) ≤ CtrΩ

‖w‖H̊1
L(ya,C)
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with a = 1 − 2s, and a is uniformly set to 1 − 2s in the subsequent theoretical analysis.
Define

W := {w ∈ L∞(0,T ; L2(Ω)) ∩ L2(0,T ; H s(Ω)) : ∂αt w ∈ L2(0,T ; H s(Ω))}.

V := {w ∈ L2(0,T ; H̊1
L(ya,C)) : ∂αt trΩw ∈ L2(0,T ; H−s(Ω))}.

As a result, given f ∈ L2(0,T ; H−s(Ω)), a function u ∈ W solves problem (1.1) if and only if the
function u ∈ V solves (1.3) [2]. At the same time, there is uniqueness in the problem (1.1) and (1.3)
as follows:

Lemma 3.1. [2] Let s ∈ (0, 1), α ∈ (0, 1), f ∈ L2(0,T ; H−s(Ω)), and u0 ∈ L2(Ω). Then, problem (1.1)
and (1.3) have a unique solution.

A weak form of (1.3) reads: If each t ∈ (0,T ], find u ∈ V such that(trΩ∂
α
t u, trΩφ) + a(u, φ) = ( f , trΩφ), ∀ φ ∈ H̊1

L(ya,C).
trΩu(0) = u0.

(3.4)

Here the bilinear form is
a(u, φ) =

1
ds

∫
C

y1−2s∇u · ∇φdxdy. (3.5)

Remark 3.1. [2] The initial datum u0 of problem (1.1)determines only u(0) on Ω × (0,∞) in a
trace sense.

Since the fact that the solution u(t) in the problem (3.4) is located in the infinite region C, we cannot
directly calculate it using the finite element method. However, the solution u(t) of the problem (3.4)
decays exponentially in y [2], that is

‖∇u‖L2(0,T ;L2(ya,Ω×(Y,∞))) ≤ Ce−
√
λ1Y/2,

where Y > 1, λ1 is the first eigenvalue of the Dirichlet Laplace operator, and the constant C depends
only on the initial value u0 and the right-hand side f .

As per the above proposition of u, we can truncate C to CY = Ω×(0,Y) for a suitable Y , and consider
the following problem 

−div(y1−2s∇v) = 0, in CY × (0,T ),
∂αt v + 1

ds
∂1−2s
ν v = f , on (Ω × {0}) × (0,T ),

v = 0, on (∂LCY ∪ΩY) × (0,T ),
v|t=0 = u0, on Ω × {0},

(3.6)

where ΩY = Ω × Y and Y ≥ 1 is sufficiently large.
Now, we define

H̊1
L(ya,CY) :=

{
w ∈ H1(ya,CY) : w = 0 on ∂LCY ∪ΩY

}
.

VY := {w ∈ L2(0,T ; H̊1
L(ya,CY)) : ∂αt trΩw ∈ L2(0,T ; H−s(Ω))}.

Then the weak form of problem (3.6) can read: If each t ∈ (0,T ], seeking v ∈ VY such that

(∂αt trΩv, trΩφ) + aY(v, φ) = ( f , trΩφ), (3.7)
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for all φ ∈ H̊1
L(ya,CY) and trΩv(0) = u0. Here

aY(v, φ) =
1
ds

∫
CY

y1−2s∇v · ∇φdxdy.

The following exponential decay result is given in [2, Lemma 4.3]; it provides us with a basis for
numerical discretization.

Lemma 3.2. (Truncation error) For every α ∈ (0, 1), Y ≥ 1 and λ1 are the first eigenvalue of the
Dirichlet Laplace operator. Then we have

I1−α‖trΩ(u − v‖2L2(Ω)(T ) + ‖∇(u − v)‖2L2(0,T ;L2(ya,CY )) ≤ Ce−
√
λ1Y ,

where the constant C depends only on the initial value u0 and the right-hand side f .

Let TΩ = {K} be a uniform mesh of Ω into cell K, and we consider a graded partition IY = {I} of the
interval [0,Y] with node

yk =

(
k
M

)µ
Y, k = 0, 1, · · · ,M,

where µ = µ(α) > 3/(2s). Then, we define a partition TY of CY into cells of the form T = K× I. The set
of all triangulations TY is denoted by T. Assume that #TΩ ≈ Md; thus, we have #TY = M#TΩ ≈ Md+1.
If TΩ is shape regular and quasi-uniform, the element size hΩ satisfies hΩ ≈ (#TΩ)−1/d.

For TY ∈ T, we define the finite element space as

V(TY) = {W ∈ C0(CY) : W |T ∈ P1(K) ⊗ P1(I) ∀ T ∈ TY , W |ΓD = 0}, (3.8)

where ΓD = ∂LCY ∪Ω × Y is the Dirichlet boundary.
The projection operator plays a crucial role in error analysis. Without a doubt, we also a weight

elliptic projector: GTY : H̊1
L(ya,CY)→ V(TY) such that, for w ∈ H̊1

L(ya,CY), is given by

aY(GTY w,W) = aY(w,W), ∀ W ∈ V(TY), (3.9)

and the following error estimates hold [2]

‖w −GTY )‖H̊1
L(ya,CY ) ≤ C| log #TY |

s(#TY)−1/(n+1), (3.10)

‖trΩ(w −GTY w)‖L2(Ω) ≤ C| log #TY |
2s(#TY)−(1+s)/(n+1), (3.11)

where the constant C depends only on u0 and f .
Suppose that

v0
h = ITYu0,

where ITY = GTY ◦Ha andHa is the a-harmonic extension onto CY . Thus, the fast L2-1σ fully discrete
scheme of problem (3.7) reads: If n = 1, 2, · · · ,N, find vn

h ∈ V(TY) such that

(trΩDα
Fvn−σ

h , trΩφh) + aY(vn,σ
h , φh) = ( f n−σ, trΩφh), (3.12)

for all φh ∈ V(TY) and trΩv0
h = trΩGTY v(0).
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4. Stability and error estimates of fully discrete scheme

In this section, let us begin the discussion on the stability and error estimates of the full discrete
scheme (3.12). Firstly, we present the stability of the numerical scheme (3.12) in the L2(Ω) norm, as
detailed in the following theorem.

Theorem 4.1. Assume that the vn
h is the fully-discrete solution, if the maximum time step τ ≤ [2Γ(2 −

α)]−1/α, then we have

‖trΩvn
h‖L2(Ω) ≤ Eα(2tαn )

[
u0 +

(
1 +

2tαn
Γ(1 + α)

)
max
1≤ j≤n

f j−σ

]
, (4.1)

for each n = 1, 2, · · · ,N.

Proof. By taking φh = vn,σ
h , we have

(trΩDα
Fvn−σ

h , trΩvn,σ
h ) + aY(vn,σ

h , vn,σ
h ) = ( f n−σ, trΩvn,σ

h ). (4.2)

Applying the Cauchy-Schwartz inequality, we can see that

(trΩDα
Fvn−σ

h , trΩvn,σ
h ) ≤ ‖ f n−σ‖‖vn,σ

h ‖. (4.3)

By (2.14) and Young’s inequality, we obtain

1
2

Dα
F‖v

n−σ
h ‖2 ≤

1
2

(‖ f n−σ‖2 + ‖vn,σ
h ‖

2). (4.4)

Based on the fractional Grönwall inequality (2.10), (2.15), and (2.16), we have

‖vn
h‖ ≤ Eα(2tαn )

v0
h + max

1≤k≤n

k∑
j=1

P(k)
k− j f j−σ + max

1≤ j≤n
f j−σ


≤ Eα(2tαn )

v0
h + max

1≤k≤n
(max
1≤ j≤k

f j−σ)
k∑

j=1

P(k)
k− j + max

1≤ j≤n
f j−σ


≤ Eα(2tαn )

(
v0

h + (max
1≤k≤n

f j−σ)
2tαn

Γ(1 + α)
+ max

1≤ j≤n
f j−σ

)
= Eα(2tαn )

[
u0 +

(
1 +

2tαn
Γ(1 + α)

)
max
1≤ j≤n

f j−σ

]
.

(4.5)

This concludes the proof. �

Next, we shall introduce the following lemma to derive the stability of the fully discrete scheme in
the H̊1

L(ya,CY) norm.

Lemma 4.1. [15, Theorem 3.2] If the nonuniform mesh {τk} satisfies that

ρk ≥ 0.475329, ε ≤ min
k≥1

1
5(1 − α)(στk)α

,

∆t ≤ min
k≥2

στk, T ≥ max
k≥2

(στk+1 + τk),
(4.6)
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for k ≥ 2, then for any function w on [0,∞) × CTY such that
n∑

k=1

(Dα
Fwk−σ,∇τwk) ≥

n∑
k=1

[B]kk

Γ(1 − α)
‖∇τwk‖2 > 0, (4.7)

where n ≥ 1 and B is defined in [15].

By making above assumption about the ratio of the time step, we can obtain the following results.

Theorem 4.2. Assume that the vn
h is the fully discrete solution, if {τk} satisfies the condition in

Lemma 4.1, then we have

‖vn
h‖H̊1

L(ya,CY ) ≤ ‖v
0
h‖H̊1

L(ya,CY ) + C f CtrΩ
, (4.8)

for each n = 1, 2, · · · ,N., where C f is a constant depending on the right-hand f , CtrΩ
is the Sobolev

embedding constant depending on Ω and the spatial dimension d.

Proof. For n ≥ 1, taking φh = ∇τvk
h in (3.12) and summing up the derived equations over k, we have

n∑
k=1

(trΩDα
Fvk−σ

h , trΩ∇τvk
h) +

n∑
k=1

aY(vk,σ
h ,∇τvk

h) =

n∑
k=1

( f k−σ,∇τvk
h). (4.9)

Duo to
n∑

k=1

aY(vk,σ
h ,∇τvk

h) =
1
2
‖vn

h‖
2
H̊1

L(ya,CY )
−

1
2
‖v0

h‖
2
H̊1

L(ya,CY )
+

1 − γ
2

n∑
k=1

‖∇τvk
h‖

2
H̊1

L(ya,CY )
, (4.10)

and
n∑

k=1

( f k−σ,∇τvk
h) = ( f n−σ, vn

h) − ( f 1, v0
h) −

n∑
k=2

( f k−σ − f k−1−σ, vk−1
h )

≤ C f max
0≤k≤n

‖trΩvk
h‖Hs(Ω)

≤ C f CtrΩ
max
0≤k≤n

‖vk
h‖H̊1

L(ya,CY ).

(4.11)

Then, we have
max
0≤n≤N

‖vn
h‖

2
H̊1

L(ya,CY )
≤ ‖v0

h‖H̊1
L(ya,CY ) + 2C f CtrΩ

max
0≤n≤N

‖vn
h‖H̊1

L(ya,CY ), (4.12)

which indicates

max
0≤n≤N

‖vn
h‖H̊1

L(ya,CY ) ≤ C f CtrΩ
+

√
(C f CtrΩ

)2 + ‖v0
h‖

2
H̊1

L(ya,CY )

≤ ‖v0
h‖H̊1

L(ya,CY ) + 2C f CtrΩ
.

(4.13)

The proof is completed. �

Analogously, we assume that solution v of the extended problem (3.6) satisfies the
following condition

‖∂l
tv‖ ≤ C(1 + tα−l), l = 0, 1, 2, 3. (4.14)

trΩv(t) ∈ L∞(0,T ; H s(Ω)), ∂αt v ∈ L∞(0,T ; H̊1
L(ya,CY)). (4.15)

Then, we have the following error results:
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Theorem 4.3. Let v be the solution of problem (3.7) and vn
h be the finite element solution of (3.12),

Then, there exists constant C > 0 such that

‖trΩ(v − vn
h)‖L2(Ω) ≤ C

(
| log #TY |

2s(#TY)−(1+s)/(n+1) + N−min{2,rα} + ε
)
, (4.16)

‖v − vn
h‖H̊1

L(ya,CY ) ≤ C
(
| log #TY |

s(#TY)−1/(n+1) + N−min{2,rα} + ε
)
, (4.17)

where C is a constant depends only on the initial value u0 and the right-hand side f .

Proof. Firstly, we split the error into the interpolation and approximation error

vn − vn
h = vn −GTY vn + GTY vn − vn

h = ρn + θn, (4.18)

where ρn = vn −GTY vn, θn = GTY vn − vn
h.

From (3.7) and (2.14) can lead to

(trΩDα
Fθ

n−σ, trΩφh) + aY(θn,σ, φh)
= (trΩ(Dα

FGTY vn−σ − ∂αt vn−σ), trΩφh) − aY(vn−σ − vn,σ, φh)
= aY(vn,σ − vn−σ, φh) + (trΩ(Dα

FGTY vn−σ − Dα
Fvn−σ), trΩφh)

+ (trΩ(Dα
Fvn−σ − ∂αt vn−σ), trΩφh)

= aY(vn,σ − vn−σ, φh) + (trΩDα
Fρ

n−σ, trΩφh) + (trΩ(Dα
Fvn−σ − ∂αt vn−σ), trΩφh).

(4.19)

Also, we have

aY(vn,σ − vn−σ, φh) = ds(trΩ(∂αt (vn−σ − vn,σ)), trΩφh) + ds( f n,σ − f n−σ, trΩφh). (4.20)

Taking φh = θn,σ and the Cauchy-Schwartz inequality, we get

(trΩDα
Fθ

n−σ, trΩθ
n,σ) + aY(θn,σ, θn,σ)

≤ ds‖trΩ(∂αt (vn−σ − vn,σ)‖‖trΩθ
n,σ‖ + ds‖ f n,σ − f n−σ‖‖trΩθ

n,σ‖

+ trΩ‖Dα
Fρ

n−σ‖‖trΩθ
n,σ‖ + ‖trΩ(Dα

Fvn−σ − ∂αt vn−σ)‖‖trΩθ
n,σ‖.

(4.21)

From (3.11) and (2.7), we can derive

trΩ‖Dα
Fρ

n−σ‖ = trΩ

∥∥∥∥B(n)
0 ρn +

n−1∑
k=1

(B(n)
n−k − B(n)

n−k−1)ρk − B(n)
n−1ρ

0
∥∥∥∥

= B(n)
0 ‖trΩρ

n‖ +

n−1∑
k=1

(B(n)
n−k−1 − B(n)

n−k)‖trΩρ
k‖ + B(n)

n−1‖trΩρ
0‖

≤

B(n)
0 +

n−1∑
k=1

(
B(n)

n−k−1 − B(n)
n−k

)
+ B(n)

n−1

 (C1| log #TY |
2s(#TY)

−(1+s)
n+1

)
= 2B(n)

0

(
C1| log #TY |

2s(#TY)
−(1+s)

n+1
)

≤ C1
4τ−αn

Γ(2 − α)

(
| log #TY |

2s(#TY)
−(1+s)

n+1
)
,

(4.22)
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where the fact that B(n)
0 ≤

2τ−αn
Γ(2−α) is used. Together the condition (4.15), (2.12), and (2.13), for

j = 1, 2, · · · , n such that

ds‖trΩ(∂αt (v j−σ − v j,σ)‖ + ds‖ f j,σ − f j−σ‖ + ‖trΩ(Dα
Fv j−σ − ∂αt v j−σ)‖

≤ t−αj−σ

(
N−min{2,rα} + N−min{3−α,rα} + ε

)
≤ C2t−αj−σ

(
N−min{2,rα} + ε

)
.

(4.23)

Therefore, from (2.14), (4.22), and (4.23), we get

trΩDα
F‖θ

n−σ‖2 ≤
[
C1

4τ−αn

Γ(2 − α)

(
| log #TY |

2s(#TY)
−(1+s)

n+1
)

+ C2t−αj−σ

(
N−min{2,rα} + ε

) ]
‖θn,σ‖.

(4.24)

Using the Grönwall inequality can yield

‖trΩθ
n
h‖ ≤Eα(2tαn )

[
‖trΩθ

0‖ + C1
4τ−αn

Γ(2 − α)
| log #TY |

2s(#TY)−(1+s)/(n+1) max
1≤k≤n

k∑
j=1

P(k)
k− j

+ C2

(
N−min{2,rα} + ε

)
max
1≤k≤n

k∑
j=1

P(k)
k− jt

−α
j−σ

]
.

(4.25)

It from (2.9) and (2.10) that

‖trΩθ
n
h‖ ≤Eα(2tαn )

(
‖trΩθ

0‖ + C1
8tαnτ

−α
n

Γ(1 + α)Γ(2 − α)
| log #TY |

2s(#TY)−(1+s)/(n+1)

+ C2
21+rαTα−lN ertlN

N Γ(1 + lN − α)
Γ(1 + lN)

N−min{2,rα} + ε
)
.

(4.26)

Choosing trΩv0
h = u0, we derive ‖trΩθ

0‖ = 0. Thus, we have

‖trΩθ
n
h‖ ≤ C

(
| log #TY |

2s(#TY)−(1+s)/(n+1) + N−min{2,rα} + ε
)
, (4.27)

where

C = Eα(2tαn ) max

C1
8tαnτ

−α
n

Γ(1 + α)Γ(2 − α)
,C2

21+rαTα−lN ertlN
N Γ(1 + lN − α)

Γ(1 + lN)

 . (4.28)

Finally, by (3.11) and the triangle inequality, we can derive (4.34).
According to the definition (2.7), we rewrite the Dα

F‖θ
n−σ‖2 as

trΩDα
F‖θ

n−σ‖2 = B(n)
0 ‖trΩθ

n‖2 +

n−1∑
i=1

(B(n)
n−i − B(n)

n−i−1)‖trΩθ
i‖2 − B(n)

n−1‖trΩθ
0‖2. (4.29)

Due to B(0)
n−i − B(n)

n−i−1 < 0 and θ0 = 0, we have

B(n)
0 ‖trΩθ

n‖2 +

n−1∑
i=1

(B(n)
n−i − B(n)

n−i−1)‖trΩθ
i‖2 − B(n)

n−1‖trΩθ
0‖2

≥ B(n)
0 ‖trΩθ

n‖2 +

n−1∑
i=1

(B(n)
n−i − B(n)

n−i−1)‖θi‖2
H̊1

L(ya,CY )

= Dα
F‖θ

n−σ‖2
H̊1

L(ya,CY )
− B(n)

0 ‖θ
n‖2

H̊1
L(ya,CY )

+ B(n)
0 ‖trΩθ

n‖2.

(4.30)
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This equation combined with (4.21)–(4.23) yields

Dα
F‖θ

n−σ‖2
H̊1

L(ya,CY )
≤
(
C1

4τ−αn

Γ(2 − α)
| log #TY |

2s(#TY)−(1+s)/(n+1)

+ C2t−αj−σ(N−min{2,rα} + ε)
)
‖θn,σ‖ + B(n)

0 ‖θ
n‖2

H̊1
L(ya,CY )

≤
(
C1

4τ−αn

Γ(2 − α)
| log #TY |

2s(#TY)−(1+s)/(n+1)

+ C2t−αj−σ(N−min{2,rα} + ε)
)
‖θn,σ‖H̊1

L(ya,CY )

+ CθB
(n)
0 ‖θ

n,σ‖2
H̊1

L(ya,CY )
,

(4.31)

where the imposed constant Cθ > 0 is obtained through Taylor expansion in tn. Also B(n)
0 ≤

τ−αn
Γ(2−α) .

Thus, we can get the following result by the Grönwall inequality

‖θn‖H̊1
L(ya,CY ) ≤Eα(2CθB

(n)
0 tαn )

[
‖θ0‖H̊1

L(ya,CY )

+ C1
4τ−αn

Γ(2 − α)
| log #TY |

2s(#TY)−(1+s)/(n+1) max
1≤k≤n

k∑
j=1

P(k)
k− j

+ C2

(
N−min{2,rα} + ε

)
max
1≤k≤n

k∑
j=1

P(k)
k− jt

−α
j−σ

]
.

(4.32)

Similar to (4.26), there is

‖θn‖H̊1
L(ya,CY ) ≤ C

(
| log #TY |

2s(#TY)−(1+s)/(n+1) + N−min{2,rα} + ε
)
. (4.33)

Here the constant C is consistent with the constant defined in (4.28). Thus, conclusion (4.35) can be
obtained through the estimation in (3.10). �

Remark 4.1. In the framework of Theorem 4.3 and in view of the Lemma 3.2, we have the following
error estimates for un, n = 0, 1, 2, · · · ,N:

‖un − trΩvn
h‖L2(Ω) ≤ C

(
| log #TY |

2s(#TY)−(1+s)/(n+1) + N−min{2,rα} + e−
√
λ1Y + ε

)
, (4.34)

‖un − trΩvn
h‖Hs(Ω) ≤ C

(
| log #TY |

s(#TY)−1/(n+1) + N−min{2,rα} + e−
√
λ1Y + ε

)
, (4.35)

where C is a constant that depends only on the initial value u0 and the right-hand side f .

5. Numerical experiments

To demonstrate the effectiveness of our proposed numerical scheme, here we present the following
numerical example, and the implementation was carried out with the help of the MATLAB software
library iFEM. In our computation, we adopt the tensor product element defined in (3.8) for the spatial
direction. In addition, we choose ε = 10−12 and r = 3/α in the fast L2-1σ scheme for the time direction.
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Example 5.1. Assume that the domain Ω = [0, 1]2, and the initial time T = 1; we consider the
following space-time fractional parabolic problem

∂αt u + (−∆)s
u = f (x1, x2, t), x ∈ Ω, t ∈ (0, 1]. (5.1)

Let λm,n and ϕm,n be the eigenvalues and eigenfunctions of the 2 D Laplacian with homogeneous
Dirichlet boundary conditions. If f ∈ L2(0,T ; H−s(Ω)) and u0 ∈ L2(Ω), we have

u(x1, x2, t) =

∞∑
m=1

∞∑
n=1

um,n(t)ϕm,n.

Since u(x, 0) = u0, yields the fractional initial value problem for um,n

∂αt um,n(t) + λs
m,num,n(t) = fm,n(t), um,n(0) = u0,m,n,

with u0,m,n = (u0, ϕm,n) and fm,n = ( f , ϕm,n). For the solution of the problem (1.3), we can be written as

u(x1, x2, y, t) =

∞∑
m=1

∞∑
n=1

um,n(t)ϕm,n(x)ψm,n(y),

where

ψm,n(y) =
21−s

Γ(s)
(
√
λm,ny)sKs(

√
λm,ny).

Here Ks(·) denotes the modified Bessel function of the second kind [16]. Once u in the problem (1.3) is
solved, we can obtain the solution to problem (1.1) as

u(x1, x2, t) =

∞∑
m=1

∞∑
n=1

um,n(t)ϕm,n(x)ψm,n(0) = u(x1, x2, 0, t).

In our example, we take the following configuration from [16, Section 6.1], let the eigenvalues and
eigenfunctions of Laplace operator ∆ := ∂2

∂x2
1

+ ∂2

∂x2
2

be

λm,n = π2(m2 + n2), ϕm,n(x1, x2) = sin(mπx1) sin(nπx2), m, n ∈ N.

If we take u(x1, x2, t) = tαλ−s
2,2 sin(2πx1) sin(2πx2) in problem (1.1), we have

u(x1, x2, y, t) = tα
21−s

Γ(s)
λ−s/2

2,2 sin(2πx1) sin(2πx2)ysKs(
√
λ2,2y)

in extend problem (1.3). The right-hand sides f in (1.1) is determined from the choice for u. That is

f = Γ(1 + α)λ−s
2,2 sin(2πx1) sin(2πx2) + tα sin(2πx1) sin(2πx2).

To balance the approximation and truncation errors, we choose the truncation parameter as

Y = 1 +
1
3

log(#TΩ), and µ =

1, s = 1/2,
3/(2 ∗ s) + 0.01, otherwise.
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This detail can be found in [17]. By the above techniques and taking s = α = 0.5, the time step
N = 100, we show in Tables 1 and 2 that the attenuation value and the truncation error of the extended
direction are very small, which indicates that truncating the expansion direction is reasonable.

Table 1. The different attenuation values of the extend direction when s = α = 0.5.

h #TΩ Y max |u(x1, x2,Y, t)|
1/4 25 2.7295 1.1264e-09
1/8 81 2.4648 3.4632e-11
1/16 289 2.8889 8.0035e-13
1/32 1089 3.3310 1.5734e-14

Table 2. The truncation error of the extended direction when s = α = 0.5.

h Y → 0 max |u(x1, x2, t) − u(x1, x2,Y, t)|
1/16 1e-03 9.9557e-04
1/16 1e-06 9.9999e-07
1/16 1e-09 9.9999e-10
1/16 1e-12 9.9998e-13

It can be seen from Figure 1 that the graphs of the numerical solution trΩvn
h and the exact solution

un are consistent, which indicates that our numerical scheme is feasible. For simplicity, we use
“L2-error” to represent “ max

1≤n≤N
‖un − trΩvn

h‖L2(Ω)” and “H s-error” to represent “ max
1≤n≤N

‖un − trΩvn
h‖Hs(Ω)”,

respectively. We define “Rate 1” and “Rate 2” as the L2- error convergence rate and H s-error
convergence rate, respectively. Fixed the time step N = 100 and s = 0.5, taking the mesh size
h = 1/4, 1/8, 1/16, 1/32, the L2-error and H s-error are given in the Table 3, and the spatial convergence
orders are shown in Figure 2 and Table 4. It can be seen from them that the L2-error convergence order
is approximately (#TY)−2/3 and the H s-error convergence order is approximately (#TY)−1/3, which is
consistent with the results of theoretical in Remark 4.1.

(a) The exact solution un. (b) The FEM solution trΩvn
h.

Figure 1. The exact solution, FEM solution for s = α = 0.50.
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Table 3. The error estimates of space directions with N = 100 and s = 0.5.

#TY
α = 0.25 α = 0.50 α = 0.75
L2-error H s-error L2-error H s-error L2-error H s-error

225 5.669e-03 6.067e-02 5.677e-03 6.069e-02 5.579e-03 6.014e-02
1620 4.304e-04 1.818e-02 4.271e-04 1.811e-02 4.366e-04 1.820e-02
12716 1.682e-04 1.171e-02 1.682e-04 1.169e-02 1.750e-04 1.194e-02
104544 3.161e-05 4.975e-03 3.351e-05 5.217e-03 3.723e-05 5.590e-03
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(a) The L2-error convergence order.
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(b) The Hs-error convergence order.

Figure 2. The space convergence order of FEM solution.

Table 4. The convergence rates of space directions with N = 100 and s = 0.5.

#TY
α = 0.25 α = 0.50 α = 0.75
Rate 1 Rate 2 Rate 1 Rate 2 Rate 1 Rate 2

225 – – – – – –
1620 1.3060 0.6104 1.3105 0.6126 1.2906 0.6055
12716 0.4561 0.2134 0.4524 0.2123 0.4436 0.2045
104544 0.7934 0.4065 0.7657 0.3831 0.7347 0.3602
Expected result 2/3 1/3 2/3 1/3 2/3 1/3

Meanwhile, the unconditional convergence of the numerical scheme can be confirmed by taking
the time step N = 10, 20, 40, 80 in Figure 3, we can know that the errors tend to be constant. The
numerical results imply that the error estimates hold without certain time-step restrictions dependent
on the spatial mesh sizes. Fixed the space mesh size h = 1/36, and the corresponding total degrees of
freedom are #TY = 150590, Table 5 presents the L2-errors and error convergence orders under different
time step sizes. It can be clearly seen that the time error order is close to 2, which is consistent with
our theoretical analysis.
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Figure 3. The convergence order of FEM solution with α = s = 0.5.

Table 5. The error estimates and convergence of time directions with #TY = 150590 and
s = 0.5.

N
α = 0.25 α = 0.50 α = 0.75
L2-error Order L2-error Rate L2-error Order

4 1.997e-03 – 1.900e-03 – 9.715e-04 –
8 7.138e-04 1.484 5.379e-04 1.821 2.379e-04 1.970
16 1.880e-04 1.925 1.260e-04 2.093 5.982e-05 2.051
32 3.068e-05 2.615 2.700e-05 2.223 1.560e-05 1.939
Expected result – 2 – 2 – 2

6. Conclusions

We develop fast high-order PDE techniques for solving the space-time parabolic problems with the
fractional Laplacian. By transforming the original problem into an equivalent extended problem, we
then construct a fast L2-1σ scheme for the time direction and adopt the tensor finite element method for
the spatial direction, thereby obtaining a fully discrete numerical scheme. Subsequently, we analyze
the stability and error estimates of the numerical scheme. Finally, a numerical example is used to verify
the efficiency of the numerical scheme and the correctness of the theoretical analysis. In the future, we
will further apply this technique to solve the nonlinear or variable-order fractional PDEs and consider
the a posteriori error estimation for the space fractional diffusion equations.
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