This paper addresses the initial value problem to the inviscid Boussinesq equations in $ \mathbb R^2 $. We rigorously show that the data-to-solution map fails to be uniformly continuous within a broad class of nonhomogeneous Besov spaces $ B^s_{p, r}(\mathbb R^2) $ cited in [
Citation: Yuanyuan Zhang. Non-uniform dependence for the inviscid Boussinesq equations in Besov spaces[J]. AIMS Mathematics, 2025, 10(11): 25624-25638. doi: 10.3934/math.20251135
This paper addresses the initial value problem to the inviscid Boussinesq equations in $ \mathbb R^2 $. We rigorously show that the data-to-solution map fails to be uniformly continuous within a broad class of nonhomogeneous Besov spaces $ B^s_{p, r}(\mathbb R^2) $ cited in [
| [1] | H. Bahouri, J. Y. Chemin, R. Danchin, Fourier analysis and nonlinear partial differential equations, Grundlehren der mathematischen Wissenschaften, 343, Heidelberg: Springer, 2011. https://doi.org/10.1007/978-3-642-16830-7 |
| [2] |
Q. Bie, Q. Wang, Z. A. Yao, On the well-posedness of the inviscid Boussinesq equations in the Besov-Morrey spaces, Kinet. Relat. Models, 8 (2015), 395–411. https://doi.org/10.3934/krm.2015.8.395 doi: 10.3934/krm.2015.8.395
|
| [3] |
J. Bourgain, D. Li, Galilean boost and non-uniform continuity for incompressible Euler, Comm. Math. Phys., 372 (2019), 261–280. https://doi.org/10.1007/s00220-019-03373-z doi: 10.1007/s00220-019-03373-z
|
| [4] |
Y. Brenier, Optimal transport, convection, magnetic relaxation and generalized Boussinesq equations, J. Nonlinear Sci., 19 (2009), 547–570. https://doi.org/10.1007/s00332-009-9044-3 doi: 10.1007/s00332-009-9044-3
|
| [5] |
D. Chae, H. S. Nam, Local existence and blow-up criterion for the Boussinesq equations, Proc. Roy. Soc. Edinburgh Sect. A, 127 (1997), 935–946. https://doi.org/10.1017/S0308210500026810 doi: 10.1017/S0308210500026810
|
| [6] | J. Hadamard, Lectures on Cauchy's problem in linear partial differential equations, New York: Dover Publications, 1953. https://doi.org/10.2307/3603014 |
| [7] |
A. A. Himonas, G. Misiołek, Non-uniform dependence on initial data of solutions to the Euler equations of hydrodynamics, Comm. Math. Phys., 296 (2010), 285–301. https://doi.org/10.1007/s00220-010-0991-1 doi: 10.1007/s00220-010-0991-1
|
| [8] |
T. Y. Hou, C. Li, Global well-posedness of the viscous Boussinesq equations, Discrete Contin. Dyn. Syst., 12 (2005), 1–12. https://doi.org/10.3934/dcds.2005.12.1 doi: 10.3934/dcds.2005.12.1
|
| [9] |
H. Inci, On the well-posedness of the inviscid 2D Boussinesq equation, Z. Angew. Math. Phys., 69 (2018), Paper No. 103, 8. https://doi.org/10.1007/s00033-018-0998-6 doi: 10.1007/s00033-018-0998-6
|
| [10] |
T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Rational Mech. Anal., 58 (1975), 181–205. https://doi.org/10.1007/BF00280740 doi: 10.1007/BF00280740
|
| [11] | I. Kukavica, W. Wang, Global Sobolev persistence for the fractional Boussinesq equations with zero diffusivity, Pure Appl. Funct. Anal., 5 (2020), 27–45. |
| [12] |
J. Li, Y. Yu, W. Zhu, Non-uniform dependence on initial data for the Euler equations in Besov spaces, J. Differ. Equations, 409 (2024), 774–789. https://doi.org/10.1016/j.jde.2024.08.033 doi: 10.1016/j.jde.2024.08.033
|
| [13] |
Z. Li, W. Wang, Norm inflation for the Boussinesq system, Discrete Contin. Dyn. Syst. Ser. B, 26 (2021), 5449–5463. https://doi.org/10.3934/dcdsb.2020353 doi: 10.3934/dcdsb.2020353
|
| [14] | D. F. Machado, New tools in mathematical analysis and applications, Birkhäuser: Trends Math, 2025. https://link.springer.com/book/10.1007/978-3-031-77050-0 |
| [15] | A. J. Majda, Introduction to PDEs and waves for the atmosphere and ocean, Providence, RI: Amer. Math. Soc., 2003. https://doi.org/10.1090/cln/009 |
| [16] | K. Ohkitani, Proceedings of Miniconference of Partial Differential Equations and Applications, Seoul: Seoul National University, 1997. |
| [17] |
J. Pastrana, Non-uniform dependence for Euler equations in Besov spaces, J. Differ. Equations, 273 (2021), 40–57. https://doi.org/10.1016/j.jde.2020.11.039 doi: 10.1016/j.jde.2020.11.039
|
| [18] |
H. Tang, Z. R. Liu, Continuous properties of the solution map for the Euler equations, J. Math. Phys., 55 (2014), Paper No. 031504, 10. https://doi.org/10.1063/1.4867622 doi: 10.1063/1.4867622
|
| [19] |
Y. Yu, X. Yang, Non-uniform dependence on initial data for the 2D MHD-Boussinesq equations, J. Math. Phys., 62 (2021), Paper No. 121504, 8. https://doi.org/10.1063/5.0060974 doi: 10.1063/5.0060974
|
| [20] | B. Yuan, Local existence and continuity conditions of solutions to the Boussinesq equations in Besov spaces, Acta Math. Sinica (Chinese Ser.), 53 (2010), 455–468. |