Research article

Non-uniform dependence for the inviscid Boussinesq equations in Besov spaces

  • Published: 06 November 2025
  • MSC : 35B30, 35Q35, 35S30

  • This paper addresses the initial value problem to the inviscid Boussinesq equations in $ \mathbb R^2 $. We rigorously show that the data-to-solution map fails to be uniformly continuous within a broad class of nonhomogeneous Besov spaces $ B^s_{p, r}(\mathbb R^2) $ cited in [20] (i.e., $ s > 1+\frac{2}{p}, 1 < p < \infty, 1\leq r \leq \infty $ or $ s = 1+ \frac{2}{p}, 1 < p < \infty, r = 1 $). This result partially extends the nowhere uniform continuity previously demonstrated by Inci[9] in the Sobolev spaces $ H^m(\mathbb R^2) $ with $ m > 2 $. Our proof leverages the interaction between terms of low and high frequencies. Besides, the linearized system to the inviscid Boussinesq equations plays a pivotal role in the construction of appropriate approximate solutions.

    Citation: Yuanyuan Zhang. Non-uniform dependence for the inviscid Boussinesq equations in Besov spaces[J]. AIMS Mathematics, 2025, 10(11): 25624-25638. doi: 10.3934/math.20251135

    Related Papers:

  • This paper addresses the initial value problem to the inviscid Boussinesq equations in $ \mathbb R^2 $. We rigorously show that the data-to-solution map fails to be uniformly continuous within a broad class of nonhomogeneous Besov spaces $ B^s_{p, r}(\mathbb R^2) $ cited in [20] (i.e., $ s > 1+\frac{2}{p}, 1 < p < \infty, 1\leq r \leq \infty $ or $ s = 1+ \frac{2}{p}, 1 < p < \infty, r = 1 $). This result partially extends the nowhere uniform continuity previously demonstrated by Inci[9] in the Sobolev spaces $ H^m(\mathbb R^2) $ with $ m > 2 $. Our proof leverages the interaction between terms of low and high frequencies. Besides, the linearized system to the inviscid Boussinesq equations plays a pivotal role in the construction of appropriate approximate solutions.



    加载中


    [1] H. Bahouri, J. Y. Chemin, R. Danchin, Fourier analysis and nonlinear partial differential equations, Grundlehren der mathematischen Wissenschaften, 343, Heidelberg: Springer, 2011. https://doi.org/10.1007/978-3-642-16830-7
    [2] Q. Bie, Q. Wang, Z. A. Yao, On the well-posedness of the inviscid Boussinesq equations in the Besov-Morrey spaces, Kinet. Relat. Models, 8 (2015), 395–411. https://doi.org/10.3934/krm.2015.8.395 doi: 10.3934/krm.2015.8.395
    [3] J. Bourgain, D. Li, Galilean boost and non-uniform continuity for incompressible Euler, Comm. Math. Phys., 372 (2019), 261–280. https://doi.org/10.1007/s00220-019-03373-z doi: 10.1007/s00220-019-03373-z
    [4] Y. Brenier, Optimal transport, convection, magnetic relaxation and generalized Boussinesq equations, J. Nonlinear Sci., 19 (2009), 547–570. https://doi.org/10.1007/s00332-009-9044-3 doi: 10.1007/s00332-009-9044-3
    [5] D. Chae, H. S. Nam, Local existence and blow-up criterion for the Boussinesq equations, Proc. Roy. Soc. Edinburgh Sect. A, 127 (1997), 935–946. https://doi.org/10.1017/S0308210500026810 doi: 10.1017/S0308210500026810
    [6] J. Hadamard, Lectures on Cauchy's problem in linear partial differential equations, New York: Dover Publications, 1953. https://doi.org/10.2307/3603014
    [7] A. A. Himonas, G. Misiołek, Non-uniform dependence on initial data of solutions to the Euler equations of hydrodynamics, Comm. Math. Phys., 296 (2010), 285–301. https://doi.org/10.1007/s00220-010-0991-1 doi: 10.1007/s00220-010-0991-1
    [8] T. Y. Hou, C. Li, Global well-posedness of the viscous Boussinesq equations, Discrete Contin. Dyn. Syst., 12 (2005), 1–12. https://doi.org/10.3934/dcds.2005.12.1 doi: 10.3934/dcds.2005.12.1
    [9] H. Inci, On the well-posedness of the inviscid 2D Boussinesq equation, Z. Angew. Math. Phys., 69 (2018), Paper No. 103, 8. https://doi.org/10.1007/s00033-018-0998-6 doi: 10.1007/s00033-018-0998-6
    [10] T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Rational Mech. Anal., 58 (1975), 181–205. https://doi.org/10.1007/BF00280740 doi: 10.1007/BF00280740
    [11] I. Kukavica, W. Wang, Global Sobolev persistence for the fractional Boussinesq equations with zero diffusivity, Pure Appl. Funct. Anal., 5 (2020), 27–45.
    [12] J. Li, Y. Yu, W. Zhu, Non-uniform dependence on initial data for the Euler equations in Besov spaces, J. Differ. Equations, 409 (2024), 774–789. https://doi.org/10.1016/j.jde.2024.08.033 doi: 10.1016/j.jde.2024.08.033
    [13] Z. Li, W. Wang, Norm inflation for the Boussinesq system, Discrete Contin. Dyn. Syst. Ser. B, 26 (2021), 5449–5463. https://doi.org/10.3934/dcdsb.2020353 doi: 10.3934/dcdsb.2020353
    [14] D. F. Machado, New tools in mathematical analysis and applications, Birkhäuser: Trends Math, 2025. https://link.springer.com/book/10.1007/978-3-031-77050-0
    [15] A. J. Majda, Introduction to PDEs and waves for the atmosphere and ocean, Providence, RI: Amer. Math. Soc., 2003. https://doi.org/10.1090/cln/009
    [16] K. Ohkitani, Proceedings of Miniconference of Partial Differential Equations and Applications, Seoul: Seoul National University, 1997.
    [17] J. Pastrana, Non-uniform dependence for Euler equations in Besov spaces, J. Differ. Equations, 273 (2021), 40–57. https://doi.org/10.1016/j.jde.2020.11.039 doi: 10.1016/j.jde.2020.11.039
    [18] H. Tang, Z. R. Liu, Continuous properties of the solution map for the Euler equations, J. Math. Phys., 55 (2014), Paper No. 031504, 10. https://doi.org/10.1063/1.4867622 doi: 10.1063/1.4867622
    [19] Y. Yu, X. Yang, Non-uniform dependence on initial data for the 2D MHD-Boussinesq equations, J. Math. Phys., 62 (2021), Paper No. 121504, 8. https://doi.org/10.1063/5.0060974 doi: 10.1063/5.0060974
    [20] B. Yuan, Local existence and continuity conditions of solutions to the Boussinesq equations in Besov spaces, Acta Math. Sinica (Chinese Ser.), 53 (2010), 455–468.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(333) PDF downloads(38) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog