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Abstract: This paper presents a geometric study of three types of ruled surfaces generated from
the tangent, normal, and binormal unit vectors of unit speed space curves. Using the T-pedal curve
construction as a foundation, we analyze these surfaces through their fundamental geometric forms,
including curvature properties, the striction curve geometry, and the distribution parameter. The
theoretical framework is used to analyze problems in computational geometry and shape modeling,
with results relevant to both mathematical research and engineering applications. The work establishes
fundamental geometric insights while providing tools for applied shape modeling and analysis.
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1. Introduction

Pedal curves represent a fundamental object of study in differential geometry, characterized by
their distinctive construction as the locus of orthogonal projections from a fixed pedal point onto
the tangent lines of a generator curve. These curves exhibit profound geometric duality with their
originating curves, sharing conceptual parallels with other dual curve families, including evolutes,
involutes, and Bertrand partner curves [10]. Modern geometric analysis has significantly expanded the
classical understanding of pedal curves through rigorous investigation of their singularities, curvature
properties, and generalizations to alternative geometries. While their mathematical foundations were
established in seminal works by Newton and Leibniz, contemporary research continues to reveal their
theoretical importance and practical utility in applied mathematics, computer-aided geometric design,
and mechanical engineering applications.
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The systematic study of pedal curves has evolved significantly through distinct phases of
mathematical investigation. Early foundational work by Bukcu and Karakus (2008) established
rigorous normal forms for pedal curve singularities in S”, providing crucial classification tools for
their degenerate cases [1]. Subsequent research by Tuncer et al. (2018) expanded the theoretical
framework through detailed analysis of pedal and contrapedal curve pairs in Euclidean plane geometry,
particularly examining their interaction with curve fronts [15]. The field advanced substantially with
Li et al. (2023), who studied studied the notions of pedal curves, contrapedal curves, and B-Gauss
maps of non-lightlike regular curves in Minkowski 3-space [9]. Most recently, Kaya (2024) developed
comprehensive differential geometric aspects of pedal curves on surfaces [8], while Canli et al. (2024)
made dual contributions through their investigations of Frenet-frame derived pedal curves and their
Smarandache variants, demonstrating novel connections with alternative moving frames [2, 3]. This
evolution highlights how research on pedal curves has advanced from classical studies of singularities
to modern applications in diverse geometric settings.

Ruled surfaces represent a fundamental class of surfaces in differential geometry, formed by the
continuous motion of a straight line called the generator along a space curve known as the directrix.
These surfaces exhibit a unique combination of geometric simplicity and mathematical depth, making
them valuable for both theoretical analysis and practical applications. Their linear structure enables
efficient parameterization and exact solutions to geometric problems while facilitating construction in
engineering and architectural design. Classical studies primarily focused on developable surfaces with
zero Gaussian curvature, but modern research has expanded to include non-developable cases with
complex curvature properties and singularities [4, 14]. Recent computational advances have enabled
innovative applications in robotic path planning, computer-aided design, and structural optimization.
This continued investigation demonstrates how ruled surfaces remain essential mathematical objects
that bridge abstract theory with engineering practice, offering both analytical tractability and functional
versatility across multiple disciplines. The combination of their geometric properties and practical
applications continues to advance research in both theoretical and applied mathematics.

While ruled surfaces have been studied since classical differential geometry, contemporary research
has produced significant new developments. Ivanov’s (2021) analysis of normal ruled surfaces
provided important insights into their mechanical properties and structural behavior [7]. The following
year, Masal and Azak (2022) developed innovative Bishop frame constructions for ruled surfaces in
Euclidean space, creating new analytical frameworks [11]. Subsequent work by Pal and Kumar (2023)
expanded the classification of ruled-like surfaces through novel geometric characterizations [12].
Building on established geometric foundations, recent research has significantly advanced both
theoretical and computational aspects of ruled surfaces. Pan et al. (2025) developed innovative
methods for piecewise ruled approximation of freeform surfaces [13], while Elsharkawy et al. (2025)
introduced novel quasi-ruled surfaces [5], and the geometric properties of Smarandache ruled surfaces
by integral binormal curves in Euclidean space [6]. These parallel developments demonstrate the
field’s progression toward increasingly sophisticated mathematical formulations coupled with practical
computational implementations.

We introduce a new class of ruled surfaces generated by the T-pedal curve, where the Frenet frame
of the original curve is chosen as the ruling direction. The study discusses the geometric properties
of the tangent, normal, and binormal ruled surfaces derived from this construction, focusing on their
curvature behavior, striction curve geometry, distribution parameters, and the three fundamental forms.
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Furthermore, the conditions under which these surfaces become developable or minimal are examined.
[lustrative examples are presented to illustrate and verify the obtained results.
This paper is structured as follows:

e Section 2: Establishes the geometric foundations, including Frenet-frame theory, T-pedal curves,
and ruled surface preliminaries.

e Section 3: Presents three fundamental ruled surfaces generated from the Frenet apparatus of a
unit-speed curve a(s), where the T-pedal curve a7 (s) serves as base curve. The analysis includes
the tangent ruled surface determined by T(s), the normal ruled surface constructed via N(s),
and the binormal ruled surface generated by B(s). Each surface undergoes complete geometric
characterization through its fundamental forms, curvature properties, striction curve geometry,
and distribution parameter.

e Section 4: Demonstrates practical applications of these surfaces in geometric modeling and
computational design.

e Section 5: Summarizes key findings in particle dynamics and differential geometry, proposing
relativistic extensions and stochastic modeling as future directions.

2. Preliminary

This section briefly outlines the essential geometric concepts. For comprehensive treatments, we
refer to established texts [4, 14].

Let a(s) be a unit-speed curve in E*> parameterized by arc length s. The set {T(s), N(s), B(s)} is the
Frenet frame along the curve a(s), where T(s), N(s), and B(s) are the tangential, normal, and binormal
unit vector fields, respectively, given by

T(s) = a'(s), N(s)= &, B(s) = T(s) X N(s), 2.1
[l ()l

where differentiation with respect to s is indicated by the superposed dash.
For a unit-speed curve, the Frenet-Serret equations are given by

T'(s) = k(s)N(s),
N'(s) = —k(s)T(s) + 7(5)B(s), (2.2)
B'(s) = —7(s)N(s),
where the curvature and torsion of the curve a(s) are given by
k(s) =T (I, 7(s) = =(B'(5), N(s)).

The T-pedal curve a7 of a regular unit-speed curve a(s) with respect to a fixed point P in E? is given
by
ar = a(s) + (P — a(s), T(s))T(s),

where a(s) is the original curve, P is the pedal point, and T(s) denotes the unit tangent vector of a(s).
The scalar quantity (P — a(s), T(s)) represents the signed projection of the vector from the curve point
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a(s) to the pedal point P onto the tangent direction T(s). Geometrically, this term gives the directed
distance from the point a(s) along the tangent line to the foot of the perpendicular dropped from P onto
that tangent line.

Thus, the point ar(s) lies on the tangent line to the original curve at a(s), positioned such that it
corresponds to the orthogonal projection of the pedal point P onto this tangent. As the point of contact
a(s) moves along the curve, the locus of all such projected points forms the T-pedal curve. The shape
and position of the T-pedal curve depend entirely on the location of the pedal point P.

In the special case where the pedal point P coincides with the origin O(0, 0, 0), the scalar projection
simplifies to

u(s) = —(a(s), T(s)),

and the expression of the T-pedal curve reduces to
ar = a(s) + u(s)T(s). (2.3)

This formulation provides a simpler representation, where u(s) can be interpreted as the signed distance
from the curve point a(s) to the foot of the perpendicular dropped from the origin onto the tangent line
at that point, see Figure 1.

P=(0.0)

Figure 1. The regular curve (black), T-pedal curve (red).

The unit tangent vector Ty of the T-pedal curve associated with the original unit-speed curve a(s)
can be expressed in terms of the Frenet frame of a(s) as follows [2, 3]:

Ti=w; (1 +u)T + wukN, 2.4)
where
1
w) = .
\/(1 +u)? + (ux)?

Example 2.1. [2] The pedal curve of the ellipse a(t) = (2 cos t,sint), in E?, with respect to the origin
0(0,0), is given by the following relation, see Figure 2:

2cost 4sint
1+3sin’t 1+ 3sin’t)

ar(n) = (
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Figure 2. The T-pedal curve (red) of the ellipse (black) according to the origin.

As X moves along a(s), its associated T-pedal curve a7 generates a ruled surface given by the

regular parametrization

0(s,v) = ar +vX(s),
where the curve a7 is the base curve, and X(s) the ruling of the surface Q [5, 12].

The striction curve and distribution parameter of Q can be written as follows:

Bx(s) = ar — MX(S),
X717
and
det(Tl,X, X’)
X112

The standard unit normal vector field n on a surface Q can be defined by

no &X9
10, % Q.

where Q, and Q, are the partial derivatives of the surface Q with respect to s and v.

Ax(s) =

The geometry of the ruled surface Q(s, v) is described by its fundamental forms [11].

The first fundamental form (FFF) is given by

[ =Eds*>+2Fdsdv + G dv,

where E = <Qsa Qs)a F = <Qs’ Qv>’ and G = <QV’ Qv>
The second fundamental form (SFF) is given by

Il = Lst* +2Mdsdv + N dv?,

where L= <st’ n), M = <st’ n), and N = <vi’n>-
The third fundamental form (TFF) is given by

I =eds® +2f dsdv + gdv*,

(2.5)

(2.6)

2.7)

(2.8)

(2.9)

(2.10)

(2.11)
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where e = (ng,ny), f = (ny,n,), and 8= (n,,m,).
Here, n; and n, are the partial derivatives of the unit normal vector n.
The Gaussian curvature K and mean curvature H of the ruled surface are given by

_ LN - M _EN-2FM+GL
"~ EG-F?*’  2EG-F?

K (2.12)

3. Ruled surfaces using T-pedal curves

This section has three subsections that introduce three different types of ruled surfaces generated
by the T-pedal curve, where T, N, and B are the Frenet frame for the unit speed curve a(s). We also
discuss their fundamental properties.

Definition 1. Let ar be the T-pedal curve of unit speed curve a(s) with Frenet frame {T,N, B}. Then,
the parametric representations of the ruled surfaces QT, QV, and QP using Eq (2.5) are

07 (s,v) = ar + vI(s), (3.1)
0V (s,v) = ar + vN(s), (3.2)
08(s,v) = ar + vB(s). (3.3)

These ruled surfaces, known as the tangent ruled surface, normal ruled surface, and binormal ruled
surface are constructed using the tangent, normal, and binormal vectors T(s), N(s), and B(s) of a unit-
speed space curve a(s), respectively. Each of these surfaces takes the T-pedal curve ar(s) of a(s) as
its base curve, with the corresponding Frenet vector field serving as the ruling direction.

3.1. QT tangent ruled surface

Definition 2. The tangent ruled surface Q" is represented parametrically by
Q" (5,v) = a(s) + (u(s) + v) T(s), (3.4)

where the expression is derived using Eqs (3.1) and (2.3).
Theorem 3.1. The FFF of the surface Q is given by

I=[W) + u+v)’Kds” +2u' dsdv + dv’. (3.5)
Proof. From Eq (3.4), the first partial derivatives of Q7 (s, v) using Eq (2.2), are given by
O =u/'T + (u + v)kN, Q" = T(s). (3.6)

From Eq (2.9), the coefficients of the FFF are given by

E=(0;,07) = W)+ u+v)c, F=(05,00)=u, G=(0,0))=1 (3.7)

O

AIMS Mathematics Volume 10, Issue 11, 25606-25623.



25612

Theorem 3.2. The SFF of the surface Q' is given by
II = —(u+v)krds’, (3.8)
Proof. From Eq (3.6), the cross product is given by
0" x QT = —(u +v)«B.
By taking the norm, we get

107 X Q1= (u + v)k.

Thus, the unit normal vector can be defined by

o x Q7 —(u +v)xB
T _ K v oo _ _
" 10T X QT (u+vk B G:9)

From Eq (3.6), the second partial derivatives are given by

of = (u" —(u+ V)K2) T+ (k+2u'k + (u+v)K')N + (u + v)ktB,
Q\T;\/ = 0’
QF = kN.
From Eq (2.10), the coefficients of the SFF are given by
L=(Ql.n"y=—@+vkr, M=(QL.n")=0, N=(Ql.n")=0. (3.10)

O

Theorem 3.3. The Gaussian curvature K and the mean curvature H for the surface QT are respectively

given by:
-7
K =0, = TR (3.11)
Proof. By using Eqs (3.7) and (3.10), then
LN-M*=0, EG-F>=@u+v)’«’, LG+EN-2MF =—(u+ v,
and by substitution into Eq (2.12), we deduce the result. O

Corollary 3.1. (a) The surface Q' is always developable, as the Gaussian curvature vanishes (K = 0).
(b) The surface QT is both developable and minimal if and only if the base curve a(s) is planar (t = 0).

Theorem 3.4. The TFF of the surface Q" is given by
11 = 7* ds’. (3.12)
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Proof. From Eq (3.9), the first partial derivatives of n are given by
n! = 7N, n! =0.

Vv

From Eq (2.11), the coefficients of the TFF are given by

e=®m!l,n’y =1 f=®m!l,n’)=0, g=(m!,n’)=0.

A A vty

Theorem 3.5. The striction curve Br(s) for the surface QT is given by

Br(s) = a(s) + (1 — wy)uT.

Proof. From Eq (2.6), the striction curve is defined by

(T, T)
By using Eqgs (2.2) and (2.4), we have
(T, T  wuk®
= = WwilU.
R K2 1

Thus, by using Eq (2.3), we can deduce the result.

Theorem 3.6. For the tangent ruled surface Q", the distribution parameter Ay vanishes.

Proof. From Eq (2.7), the distribution parameter defined by

_ de(Ty, T, T)
! IT|I?

By using Eqs (2.2) and (2.4), we have
det(T{, T, T") = 0.

Thus, we can deduce the result.

3.2. O normal ruled surface

Definition 3. The normal ruled surface QY is represented parametrically by
0" (s,v) = a(s) + u(s)T(s) + vN(s),

where the expression is derived using Eqs (3.2) and (2.3).
Theorem 3.7. The FFF of the surface Q" is given by

I=[(1+u —ve)*+ uk) + (v1)*1ds* + 2ukdsdv + dv*.

(3.13)

(3.14)
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Proof. From Eq (3.13), the first partial derivatives of Q" (s, v) using Eq (2.2), are given by
OV =1 +u —v)T + ukN + vrB, QY =N. (3.15)

From Eq (2.9), the coefficients of the FFF are given by

E=0Y, 0%y = +u —v)* + (u)* + (v1)?, F=(0Y,0Vy=ux, G=(QY,Q0Y)y=1. (3.16)

O
Theorem 3.8. The SFF of the surface Q" is given by
I = Lds* + 2M dsdv + N dv*, (3.17)
where
—VT (u” — vk — MKZ) + (ukt +vt')(1 + ' — vk)
L=(Q}.n) = ;
VOT? + (1 +u = vi)? (3.18)
1+u
M=@m=-——0 _ N-(hm=o.
Vo2 + (1 + i’ — vk)?
Proof. From Eq (3.15), the cross product is given by
0¥ x Q) = —viT+ (1 +u’ —ve)B.
By taking the norm, we get
10Y x QM= VT2 + (1 + u — vi)2.
Thus, the unit normal vector can be defined by
N x QN —viT + (1 + v —vk)B
N _ Q;v Q;v _ v + (1 +u" —vk) ’ (3.19)
109 X OVl \Jor? + (1 +w —w)?
From Eq (3.15), the second partial derivatives are given by
oN = (u" — vk’ — MKZ) T+ (K +2u' K + uk’ — v(K* + 7'2)) N + (ukt +v7’) B,
0, =0,
O = —«T + 7B.
From Eq (2.10), we can deduce the coefficients of the SFF.
]

Theorem 3.9. The Gaussian curvature K and the mean curvature H for the normal ruled surface Q~
are given respectively by:
(1 + u')?
(1 +u —ve)? + (v1)2)*
—VT (u” - vk — uKZ) + (ukt + v )1 + ' — vk) — 2ukt(1 + ')

2((1+u = w2 + (o))

H =

AIMS Mathematics Volume 10, Issue 11, 25606-25623.
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Proof. By using Eqs (3.16) and (3.18), then

2(1 + u')?
(1 +uw —vk)? + (v1)?’
EG - F? =1 +u —vk)* + (v1)%,

LN — M?* = —

—VT (u” — vk — MK2) + (ukt + v )1 + u’ — vk) — 2uxkt(1 + u’)
LG + EN -2MF =

)

\/(1 +u —vk)? + (vr)?

and by substitution into Eq (2.12), we deduce the result. O

Corollary 3.2. (a) The surface QV is both developable and a miniamal surface if and only if the base
curve a(s) is planar (t = 0).

Theorem 3.10. The TFF of the surface QY is given by
I = eds* + 2f dsdv + g dv?, (3.20)

with coefficients

—vt'  ADy; 2 —1(1+u) 2 u’ —vk CiDy 2
e= - + + — ,
D, D? D, D, D?
Fe vt AD,\ (-t A (T*=«kC)) N u’ —vk  CDy\[(-k C,(vi*>=«Cy)
\Dr D J\D D’ D, D? J\D, D} ’
-7 Al(VTZ—Kcl))2+(—K Cl(VTZ—Kcl))Z
¢=\b D} D, D3 ’
where

Ai=-vr, Ci=1+u —-vk, D;= VAZ+(C?,
and Dy is the partial derivatives of D with respect to s.
Proof. From Eq (3.19), the unit normal vector can be written as

nN _ AT+ CB
= —Dl ,

A =-vr, Ci=1+u —-vk, Dy=JAT+C].

The partial derivatives of n with respect to s and v are respectively

nls\, _ —vr’ B A1Dq; T —1(1 +u’) N+ u’ — v B CDy; B,
D, D3 D, D, D}
. -T A (vt? = kC)) - C,(vt* — kC)) B.
D, D3 D, D]
The coeflicients e, f, and g of the third fundamental form are obtained by computing the inner
products

(3.21)

where

n

e=(m{,nY), f=mn), g=m, nl),
which yield the explicit expressions given in the theorem. O
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Theorem 3.11. The striction curve By(s) for the surface QY is given by

w1 (1 + u)k
ﬁN(S) = Q(S) +uT + LZT

Proof. From Eq (2.6), the striction curve defined by

_ (Ty,N")
Bn(s) = ar — W

By using Eqgs (2.2) and (2.4), we have

(TL,N) __on(l+u)k
NP~ e

Thus, by using Eq (2.3), we can deduce the result. O

Theorem 3.12. The distribution parameter Ay for the surface QV is given by

1 _wi(l+uwr
NT kg2

Proof. From Eq (2.7), the distribution parameter is defined by

_ det(Ty,N,N')
N2

N
By using Eqs (2.2) and (2.4), we have
det(T1,N,N) = w (1 + u)t.
Thus, we can deduce the result. O
3.3. Q8 binormal ruled surface
Definition 4. The binormal ruled surface QF is represented parametrically by
08(s,v) = a(s) + u(s)T(s) + vB(s), (3.22)

where the expression is derived using Eqs (3.3) and (2.3).
Theorem 3.13. The FFF of the surface QF is given by

I=[(1+u) + (uk—vr)’lds* + dv*. (3.23)
Proof. From Eq (3.22), the first partial derivatives of Q%(s, v) using Eq (2.2), are given by
0% = (1 + )T + (uk — v7)N, 0% = B. (3.24)
From Eq (2.9), the coefficients of the FFF are given by

E=(0%0% =0 +u)+@uk—vr)’, F=(0%0%=0, G=1(Q% Q% =1. (3.25)
O
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Theorem 3.14. The SFF of the surface Q® is given by

II = Lds* +2M dsdv + N dv*, (3.26)
where
(u” —uK® + VKT) (uk —vt) = (k +2u'k + ux’ —v’) (1 + o)
L= ,
VA +w) + (uk = vr)? (3.27)
(1 +u')
M = N =0.

\/(1 +u)? + (uk — VT)Z’

Proof. From Eq (3.24), the cross product is given by
0% x 08 = (uk —vt)T — (1 + u')N.

By taking the norm, we get

108 x QFll= V(uk — vr)? + (1 + w')?.

Thus, the unit normal vector can be defined by

g O9xQF  (uk-vo)T—-(1+u)N

n” = = . (3.28)
107 x Q7 V@uk —vr? + (1 +w)?
From Eq (3.24), the second partial derivatives are given by
Q0 = (u” — uKk® + VKT) T+ (k+2u'k +uk’ —vt’)N + (uKT - VT2) B,
0 =0, 0y = —7N.
From Eq (2.10), we can deduce the coefficients of the SFF. O

Theorem 3.15. The Gaussian curvature K and the mean curvature H for the binormal ruled surface
Q? are given respectively by:

Ko 2(1 + u')? y
((1T+ w)? + (uk — vr)?)
(u" —uk® + VKT) (uk —vrt) — (k +2u'k + ux’ —v’) (1 + u')
H =

2((1 +w)? + (uk — vr)2)*?
Proof. By using Eqs (3.25) and (3.27), then
(1 + u')?
(1 +uw)*+ (uk — vr)?’

EG-F?>=E=(1+u)*+ (uk —v1)%,

IN — M?*=-M?=

LG+ EN-2MF =L
(u” —uk® + VKT) (uk —vrt) — (k +2u'k +uk’ — v’ )Y (1 + u')

o

\/(1 +uw)? + (uk — vr)?

and by substitution into Eq (2.12), we deduce the result. O
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Corollary 3.3. (a) The surface Q8 is developable (K = 0) if the base curve a(t) is planar (t = 0) with

mean curvature 5
(W = uk”)(uk) — (k + 2u'k + uk’)(1 + u')

- 2((1+ w)? + (uxR)?

Theorem 3.16. The TFF of surface QF is given by

I = eds*, +2f dsdv + g dv*, (3.29)

with coefficients:

. W'k +uk =vi') = Cok  AsDs; 2 N Ak —u” CzDzs)2 . (C27)2
D, D3 D, D; D, |’
fe Wk +uk’ —vi') = Cox AzDzs) (—_T . A%T) . (AzK —u” CzDzs) (AzCzT)
D, p? J\D, D} D, D3 D} )
-T A%T 2 A2C2T 2
g=—+—=] + ,
D, D D;

where

Ay =uk—vtr, Cr=-(1+u"), D,= JA5+C3,

and Dy is the partial derivative of D, with respect to s.
Proof. From Eq (3.28), the unit normal vector can be written as

nB _ AzT + CzN
= —D2 ,

Ay =uk—vr, Cry=-(1+u"), D,= w/A% + C%.

The partial derivatives of n with respect to ¢ and v are respectively

(3.30)

where

s

'k + uk’ —vt') — A>D Aok —u” D
nb = (u'k + uk’ —vt’) Cok Ay Dy, T+ ok —u”  CyDyy N+ %B,
D, D3 D, D3 D,

N.

-t At A,C
nB (T 2)T+22T

=—+
" \D, D} D;

The coeflicients e, f, and g of the third fundamental form are obtained by computing the inner
products

e=(mg,ng),  f=(m)n’),  g=(nn),
which yield the explicit expressions given in the theorem. O

Theorem 3.17. The striction curve Bg(s) for the surface QF is given by

w1 UK
B

Be(s) = a(s) + uT + - B.
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Proof. From Eq (2.6), the striction curve is defined by:
(T1, B)

Bs(s) :aT_W .

By using Egs (2.2) and (2.4), we have

(Ty,B’) _wlukB
B> T

Thus, by using Eq (2.3), we can deduce the result. O
Theorem 3.18. The distribution parameter Ay for the binormal ruled surface M5 is given by

_ (1)1(1 + u)
= - .

Ap

Proof. From Eq (2.7), the distribution parameter is defined by

_ det(T,,B,B)
g B

By using Eqs (2.2) and (2.4), we have
det(Ty,B,B’) = w;(1 + u)t.
Thus, we can deduce the result. O

Theorem 3.19. Among the three surfaces, only QT is always developable (K = 0). The surfaces
O and QFf are developable if and only if the base curve is planar (t = 0), creating a hierarchical
relationship where tangent-directed rulings naturally produce developable surfaces while normal and
binormal directions introduce torsion-dependent curvature.
4. Computational and illustrative examples
Example 4.1. Let a(s) be a general helix curve given by the parametrization
s s\ 3s
fon(2) () )
a(s) ( cos 5 sin 53
By using the equations in (2.1), the Frenet-frame is
4 4 3
1= (‘5 sin(3) 5 °°S(§)’§)’
s s
N = (—eos[5). ~sin(5) )
(s) cos 5 sin 5

- (o3 3en(3))
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We can deduce the T-pedal curve using Eq (2.3),

ar(s) = (4005(;) + % sm(;) 4 sin (g) - % Ccos (g), %),
where u(s) = —(a(s), T(s)) = —=%

Consequently, we can deduce the tangent ruled surface QT, normal ruled surface QN and binormal
ruled surface Q5 respectively, given in Figure 3, by

0l (s,v) = (4 cos(s) (ﬁ - ﬂ) sin (E), 4 sin (E) + (—@ + ﬂ) cos (ﬁ), 48s + ﬂ),

5)7\125 75 5 5 12573 51515
36s 36s s 48s
N _ _ - -
0 (s,v)—((4 v cos(2 )+12551n( %), (4 - Vsin(: % 2 cos(2), 125)
36s 3v s s 36s 3v s 48s 4v
B — (4 s [208 OV dsin S _ (295 )
Q°(s.m) ( CSsH| o5 TS5 NS T s TSy 15

Tangent Ruled surface (Ql) Normal Ruled Surface (QA) Binormal Ruled Surface (QB)

Figure 3. The helix (red), T-pedal curve (blue).

Example 4.2. Let a(s) be a regular curve given by the parametrization
3 1 3s)\ 3 1 3
a(s) = (5 cos (%) + 3 cos (?S) ' sin (%) + 3 sin (Ts) , V3 cos (%)) .
By Eq (2.1), the Frenet-frame is

3 3
T(s) = [—5 sin 3 + sin® E, cos’ RIS sin E) ,

2 2 27 2 2
3 3 1
N(s) = (_T cos s, —g sin s, 2),
1 3
e
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We can deduce the T-Pedal curve using Eq (2.3),

(£)+lcos§ + sin —gsin(£)+sin3(£) Esin(£)+lsin—
2 2 722 2)) 27 2) T 6 2

3
ar(s) = (— cos
2 6
3
+sin s cos’ (%), V3 cos (%) —~ g sin s sin (%)),

where u(s) = —(a(s), T(s)) = sin s.
Consequently, we can deduce the tangent ruled surface Q', normal ruled surface Q" and binormal

ruled surface QF, respectively, given in Figure 4, by
3s

0l (s,v) = (icosﬁ l(:osﬁ + (sins +v) —ism +sm3£ isin£+—sin—
y 2762 272 22276 2

+ (sin s + v) cos® %, \/gcos% + (sins +v) [_T sin %] ),

ON(s,v) = (3coss l sﬁ + (sin +)—£cos 3s1ns+ls1n§
S,V 6 S+ v > s S Sino + =

+ (sins +v) (—? sin s] V3 cos 5 + (sins +v) (—5) ),

08(s,v) = ((g cos % 3?) + (sin s + V) (—% cos —(1 + 2 sin —)) (% sm% 3 sin ?S)

6
+(sins+v)( sin® ) 3cos§+(sms+v)(§cos%))

B
Binormal Ruled Surface (Q )

Normal Ruled Surface (QN)

Tangent Ruled surface (Ql)

Figure 4. The regular curve (red), T-pedal curve (blue).
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5. Conclusions

This work develops a complete differential-geometric framework for three classes of Frenet-frame
ruled surfaces generated from unit-speed curves. Through systematic analysis of the T-pedal curve
construction, we establish fundamental curvature properties, metric characteristics, and distribution
parameters for each surface type. The results yield both theoretical advances in surface geometry and
practical computational tools for parametric surface modeling. These contributions not only deepen
our knowledge of ruled surface geometry, but also provide a foundation for future investigations
in extended mathematical contexts, including relativistic systems and non-Euclidean geometries,
demonstrating the continued relevance of classical surface theory in modern interdisciplinary research.
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