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Abstract: This paper presents a geometric study of three types of ruled surfaces generated from
the tangent, normal, and binormal unit vectors of unit speed space curves. Using the T-pedal curve
construction as a foundation, we analyze these surfaces through their fundamental geometric forms,
including curvature properties, the striction curve geometry, and the distribution parameter. The
theoretical framework is used to analyze problems in computational geometry and shape modeling,
with results relevant to both mathematical research and engineering applications. The work establishes
fundamental geometric insights while providing tools for applied shape modeling and analysis.

Keywords: Frenet frame; space curves; T-pedal curve; ruled surfaces; developable surface; minimal
surface
Mathematics Subject Classification: 53A04, 53A55, 53A17

1. Introduction

Pedal curves represent a fundamental object of study in differential geometry, characterized by
their distinctive construction as the locus of orthogonal projections from a fixed pedal point onto
the tangent lines of a generator curve. These curves exhibit profound geometric duality with their
originating curves, sharing conceptual parallels with other dual curve families, including evolutes,
involutes, and Bertrand partner curves [10]. Modern geometric analysis has significantly expanded the
classical understanding of pedal curves through rigorous investigation of their singularities, curvature
properties, and generalizations to alternative geometries. While their mathematical foundations were
established in seminal works by Newton and Leibniz, contemporary research continues to reveal their
theoretical importance and practical utility in applied mathematics, computer-aided geometric design,
and mechanical engineering applications.
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The systematic study of pedal curves has evolved significantly through distinct phases of
mathematical investigation. Early foundational work by Bukcu and Karakus (2008) established
rigorous normal forms for pedal curve singularities in S n, providing crucial classification tools for
their degenerate cases [1]. Subsequent research by Tuncer et al. (2018) expanded the theoretical
framework through detailed analysis of pedal and contrapedal curve pairs in Euclidean plane geometry,
particularly examining their interaction with curve fronts [15]. The field advanced substantially with
Li et al. (2023), who studied studied the notions of pedal curves, contrapedal curves, and B-Gauss
maps of non-lightlike regular curves in Minkowski 3-space [9]. Most recently, Kaya (2024) developed
comprehensive differential geometric aspects of pedal curves on surfaces [8], while Canli et al. (2024)
made dual contributions through their investigations of Frenet-frame derived pedal curves and their
Smarandache variants, demonstrating novel connections with alternative moving frames [2, 3]. This
evolution highlights how research on pedal curves has advanced from classical studies of singularities
to modern applications in diverse geometric settings.

Ruled surfaces represent a fundamental class of surfaces in differential geometry, formed by the
continuous motion of a straight line called the generator along a space curve known as the directrix.
These surfaces exhibit a unique combination of geometric simplicity and mathematical depth, making
them valuable for both theoretical analysis and practical applications. Their linear structure enables
efficient parameterization and exact solutions to geometric problems while facilitating construction in
engineering and architectural design. Classical studies primarily focused on developable surfaces with
zero Gaussian curvature, but modern research has expanded to include non-developable cases with
complex curvature properties and singularities [4, 14]. Recent computational advances have enabled
innovative applications in robotic path planning, computer-aided design, and structural optimization.
This continued investigation demonstrates how ruled surfaces remain essential mathematical objects
that bridge abstract theory with engineering practice, offering both analytical tractability and functional
versatility across multiple disciplines. The combination of their geometric properties and practical
applications continues to advance research in both theoretical and applied mathematics.

While ruled surfaces have been studied since classical differential geometry, contemporary research
has produced significant new developments. Ivanov’s (2021) analysis of normal ruled surfaces
provided important insights into their mechanical properties and structural behavior [7]. The following
year, Masal and Azak (2022) developed innovative Bishop frame constructions for ruled surfaces in
Euclidean space, creating new analytical frameworks [11]. Subsequent work by Pal and Kumar (2023)
expanded the classification of ruled-like surfaces through novel geometric characterizations [12].
Building on established geometric foundations, recent research has significantly advanced both
theoretical and computational aspects of ruled surfaces. Pan et al. (2025) developed innovative
methods for piecewise ruled approximation of freeform surfaces [13], while Elsharkawy et al. (2025)
introduced novel quasi-ruled surfaces [5], and the geometric properties of Smarandache ruled surfaces
by integral binormal curves in Euclidean space [6]. These parallel developments demonstrate the
field’s progression toward increasingly sophisticated mathematical formulations coupled with practical
computational implementations.

We introduce a new class of ruled surfaces generated by the T-pedal curve, where the Frenet frame
of the original curve is chosen as the ruling direction. The study discusses the geometric properties
of the tangent, normal, and binormal ruled surfaces derived from this construction, focusing on their
curvature behavior, striction curve geometry, distribution parameters, and the three fundamental forms.
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Furthermore, the conditions under which these surfaces become developable or minimal are examined.
Illustrative examples are presented to illustrate and verify the obtained results.

This paper is structured as follows:

• Section 2: Establishes the geometric foundations, including Frenet-frame theory, T-pedal curves,
and ruled surface preliminaries.
• Section 3: Presents three fundamental ruled surfaces generated from the Frenet apparatus of a

unit-speed curve α(s), where the T-pedal curve αT (s) serves as base curve. The analysis includes
the tangent ruled surface determined by T(s), the normal ruled surface constructed via N(s),
and the binormal ruled surface generated by B(s). Each surface undergoes complete geometric
characterization through its fundamental forms, curvature properties, striction curve geometry,
and distribution parameter.
• Section 4: Demonstrates practical applications of these surfaces in geometric modeling and

computational design.
• Section 5: Summarizes key findings in particle dynamics and differential geometry, proposing

relativistic extensions and stochastic modeling as future directions.

2. Preliminary

This section briefly outlines the essential geometric concepts. For comprehensive treatments, we
refer to established texts [4, 14].

Let α(s) be a unit-speed curve in E3 parameterized by arc length s. The set {T(s),N(s),B(s)} is the
Frenet frame along the curve α(s), where T(s), N(s), and B(s) are the tangential, normal, and binormal
unit vector fields, respectively, given by

T(s) = α′(s), N(s) =
α′′(s)
‖α′′(s)‖

, B(s) = T(s) × N(s), (2.1)

where differentiation with respect to s is indicated by the superposed dash.
For a unit-speed curve, the Frenet-Serret equations are given by

T′(s) = κ(s)N(s),

N′(s) = −κ(s)T(s) + τ(s)B(s),

B′(s) = −τ(s)N(s),

(2.2)

where the curvature and torsion of the curve α(s) are given by

κ(s) = ‖T ′(s)‖, τ(s) = −〈B′(s),N(s)〉.

The T-pedal curve αT of a regular unit-speed curve α(s) with respect to a fixed point P in E3 is given
by

αT = α(s) + 〈P − α(s),T(s)〉T(s),

where α(s) is the original curve, P is the pedal point, and T(s) denotes the unit tangent vector of α(s).
The scalar quantity 〈P − α(s),T(s)〉 represents the signed projection of the vector from the curve point
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α(s) to the pedal point P onto the tangent direction T(s). Geometrically, this term gives the directed
distance from the point α(s) along the tangent line to the foot of the perpendicular dropped from P onto
that tangent line.

Thus, the point αT (s) lies on the tangent line to the original curve at α(s), positioned such that it
corresponds to the orthogonal projection of the pedal point P onto this tangent. As the point of contact
α(s) moves along the curve, the locus of all such projected points forms the T-pedal curve. The shape
and position of the T-pedal curve depend entirely on the location of the pedal point P.

In the special case where the pedal point P coincides with the origin O(0, 0, 0), the scalar projection
simplifies to

u(s) = −〈α(s),T(s)〉,

and the expression of the T-pedal curve reduces to

αT = α(s) + u(s)T(s). (2.3)

This formulation provides a simpler representation, where u(s) can be interpreted as the signed distance
from the curve point α(s) to the foot of the perpendicular dropped from the origin onto the tangent line
at that point, see Figure 1.

Figure 1. The regular curve (black), T-pedal curve (red).

The unit tangent vector T1 of the T -pedal curve associated with the original unit-speed curve α(s)
can be expressed in terms of the Frenet frame of α(s) as follows [2, 3]:

T1 = ω1 (1 + u) T + ω1uκN, (2.4)

where
ω1 =

1√
(1 + u′)2 + (uκ)2

.

Example 2.1. [2] The pedal curve of the ellipse α(t) = (2 cos t, sin t), in E2, with respect to the origin
O(0, 0), is given by the following relation, see Figure 2:

αT (t) =

(
2 cos t

1 + 3 sin2 t
,

4 sin t
1 + 3 sin2 t

)
.
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Figure 2. The T-pedal curve (red) of the ellipse (black) according to the origin.

As X moves along α(s), its associated T-pedal curve αT generates a ruled surface given by the
regular parametrization

Q(s, v) = αT + vX(s), (2.5)

where the curve αT is the base curve, and X(s) the ruling of the surface Q [5, 12].
The striction curve and distribution parameter of Q can be written as follows:

βX(s) = αT −
〈T1, X′〉
‖X′‖2

X(s), (2.6)

and
λX(s) =

det(T1, X, X′)
‖X′‖2

. (2.7)

The standard unit normal vector field n on a surface Q can be defined by

n =
Qs × Qv

‖Qs × Qv‖
, (2.8)

where Qs and Qv are the partial derivatives of the surface Q with respect to s and v.

The geometry of the ruled surface Q(s, v) is described by its fundamental forms [11].
The first fundamental form (FFF) is given by

I = E ds2 + 2F ds dv + G dv2, (2.9)

where E = 〈Qs,Qs〉, F = 〈Qs,Qv〉, and G = 〈Qv,Qv〉.
The second fundamental form (SFF) is given by

II = L st2 + 2M ds dv + N dv2, (2.10)

where L = 〈Qss,n〉, M = 〈Qsv,n〉, and N = 〈Qvv,n〉.
The third fundamental form (TFF) is given by

III = e ds2 + 2 f ds dv + g dv2, (2.11)
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where e = 〈ns,ns〉, f = 〈ns,nv〉, and g = 〈nv,nv〉.
Here, ns and nv are the partial derivatives of the unit normal vector n.

The Gaussian curvature K and mean curvature H of the ruled surface are given by

K =
LN − M2

EG − F2 , H =
EN − 2FM + GL

2(EG − F2)
. (2.12)

3. Ruled surfaces using T-pedal curves

This section has three subsections that introduce three different types of ruled surfaces generated
by the T-pedal curve, where T, N, and B are the Frenet frame for the unit speed curve α(s). We also
discuss their fundamental properties.

Definition 1. Let αT be the T-pedal curve of unit speed curve α(s) with Frenet frame {T,N,B}. Then,
the parametric representations of the ruled surfaces QT , QN , and QB using Eq (2.5) are

QT (s, v) = αT + vT(s), (3.1)

QN(s, v) = αT + vN(s), (3.2)

QB(s, v) = αT + vB(s). (3.3)

These ruled surfaces, known as the tangent ruled surface, normal ruled surface, and binormal ruled
surface are constructed using the tangent, normal, and binormal vectors T(s),N(s), and B(s) of a unit-
speed space curve α(s), respectively. Each of these surfaces takes the T-pedal curve αT (s) of α(s) as
its base curve, with the corresponding Frenet vector field serving as the ruling direction.

3.1. QT tangent ruled surface

Definition 2. The tangent ruled surface QT is represented parametrically by

QT (s, v) = α(s) + (u(s) + v) T(s), (3.4)

where the expression is derived using Eqs (3.1) and (2.3).

Theorem 3.1. The FFF of the surface QT is given by

I = [(u′)2 + (u + v)2κ2] ds2 + 2u′ ds dv + dv2. (3.5)

Proof. From Eq (3.4), the first partial derivatives of QT (s, v) using Eq (2.2), are given by

QT
s = u′T + (u + v)κN, QT

v = T(s). (3.6)

From Eq (2.9), the coefficients of the FFF are given by

E = 〈QT
s ,Q

T
s 〉 = (u′)2 + (u + v)2κ2, F = 〈QT

s ,Q
T
v 〉 = u′, G = 〈QT

v ,Q
T
v 〉 = 1. (3.7)

�
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Theorem 3.2. The SFF of the surface QT is given by

II = −(u + v)κτ ds2. (3.8)

Proof. From Eq (3.6), the cross product is given by

QT
s × QT

v = −(u + v)κB.

By taking the norm, we get

‖QT
s × QT

v ‖= (u + v)κ.

Thus, the unit normal vector can be defined by

nT =
QT

s × QT
v

‖QT
s × QT

v ‖
=
−(u + v)κB

(u + v)κ
= −B. (3.9)

From Eq (3.6), the second partial derivatives are given by

QT
ss =

(
u′′ − (u + v)κ2

)
T +

(
κ + 2u′κ + (u + v)κ′

)
N + (u + v)κτB,

QT
vv = 0,

QT
vs = κN.

From Eq (2.10), the coefficients of the SFF are given by

L = 〈QT
ss,n

T 〉 = −(u + v)κτ, M = 〈QT
sv,n

T 〉 = 0, N = 〈QT
vv,n

T 〉 = 0. (3.10)

�

Theorem 3.3. The Gaussian curvature K and the mean curvature H for the surface QT are respectively
given by:

K = 0, H =
−τ

2(u + v)κ
. (3.11)

Proof. By using Eqs (3.7) and (3.10), then

LN − M2 = 0, EG − F2 = (u + v)2κ2, LG + EN − 2MF = −(u + v)κτ,

and by substitution into Eq (2.12), we deduce the result. �

Corollary 3.1. (a) The surface QT is always developable, as the Gaussian curvature vanishes (K = 0).
(b) The surface QT is both developable and minimal if and only if the base curve α(s) is planar (τ = 0).

Theorem 3.4. The TFF of the surface QT is given by

III = τ2 ds2. (3.12)
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Proof. From Eq (3.9), the first partial derivatives of n are given by

nT
s = τN, nT

v = 0.

From Eq (2.11), the coefficients of the TFF are given by

e = 〈nT
s ,n

T
s 〉 = τ2, f = 〈nT

s ,n
T
v 〉 = 0, g = 〈nT

v ,n
T
v 〉 = 0.

�

Theorem 3.5. The striction curve βT (s) for the surface QT is given by

βT (s) = α(s) + (1 − ω1)uT.

Proof. From Eq (2.6), the striction curve is defined by

βT (s) = αT −
〈T1,T′〉
‖T′‖2

T.

By using Eqs (2.2) and (2.4), we have

〈T1,T′〉
‖T′‖2

=
ω1uκ2

κ2 = ω1u.

Thus, by using Eq (2.3), we can deduce the result. �

Theorem 3.6. For the tangent ruled surface QT , the distribution parameter λT vanishes.

Proof. From Eq (2.7), the distribution parameter defined by

λT =
det(T1,T,T′)
‖T′‖2

.

By using Eqs (2.2) and (2.4), we have

det(T1,T,T′) = 0.

Thus, we can deduce the result. �

3.2. QN normal ruled surface

Definition 3. The normal ruled surface QN is represented parametrically by

QN(s, v) = α(s) + u(s)T(s) + vN(s), (3.13)

where the expression is derived using Eqs (3.2) and (2.3).

Theorem 3.7. The FFF of the surface QN is given by

I = [(1 + u′ − vκ)2 + (uκ)2 + (vτ)2] ds2 + 2uκ ds dv + dv2. (3.14)
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Proof. From Eq (3.13), the first partial derivatives of QN(s, v) using Eq (2.2), are given by

QN
s = (1 + u′ − vκ)T + uκN + vτB, QN

v = N. (3.15)

From Eq (2.9), the coefficients of the FFF are given by

E = 〈QN
s ,Q

N
s 〉 = (1 + u′ − vκ)2 + (uκ)2 + (vτ)2, F = 〈QN

s ,Q
N
v 〉 = uκ, G = 〈QN

v ,Q
N
v 〉 = 1. (3.16)

�

Theorem 3.8. The SFF of the surface QN is given by

II = L ds2 + 2M ds dv + N dv2, (3.17)

where

L = 〈QN
ss,n〉 =

−vτ
(
u′′ − vκ′ − uκ2

)
+ (uκτ + vτ′)(1 + u′ − vκ)√

(vτ)2 + (1 + u′ − vκ)2
,

M = 〈QN
sv,n〉 =

τ(1 + u′)√
(vτ)2 + (1 + u′ − vκ)2

, N = 〈QN
vv,n〉 = 0.

(3.18)

Proof. From Eq (3.15), the cross product is given by

QN
s × QN

v = −vτT + (1 + u′ − vκ)B.

By taking the norm, we get

‖QN
s × QN

v ‖=
√

(vτ)2 + (1 + u′ − vκ)2.

Thus, the unit normal vector can be defined by

nN =
QN

s × QN
v

‖QN
s × QN

v ‖
=
−vτT + (1 + u′ − vκ)B√

(vτ)2 + (1 + u′ − vκ)2
. (3.19)

From Eq (3.15), the second partial derivatives are given by

QN
ss =

(
u′′ − vκ′ − uκ2

)
T +

(
κ + 2u′κ + uκ′ − v(κ2 + τ2)

)
N +

(
uκτ + vτ′

)
B,

QN
vv = 0,

QN
vs = −κT + τB.

From Eq (2.10), we can deduce the coefficients of the SFF.
�

Theorem 3.9. The Gaussian curvature K and the mean curvature H for the normal ruled surface QN

are given respectively by:

K = −
τ2(1 + u′)2(

(1 + u′ − vκ)2 + (vτ)2)2 ,

H =
−vτ

(
u′′ − vκ′ − uκ2

)
+ (uκτ + vτ′)(1 + u′ − vκ) − 2uκτ(1 + u′)

2
(
(1 + u′ − vκ)2 + (vτ)2)3/2 .
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Proof. By using Eqs (3.16) and (3.18), then

LN − M2 = −
τ2(1 + u′)2

(1 + u′ − vκ)2 + (vτ)2 ,

EG − F2 = (1 + u′ − vκ)2 + (vτ)2,

LG + EN − 2MF =
−vτ

(
u′′ − vκ′ − uκ2

)
+ (uκτ + vτ′)(1 + u′ − vκ) − 2uκτ(1 + u′)√
(1 + u′ − vκ)2 + (vτ)2

,

and by substitution into Eq (2.12), we deduce the result. �

Corollary 3.2. (a) The surface QN is both developable and a miniamal surface if and only if the base
curve α(s) is planar (τ = 0).

Theorem 3.10. The TFF of the surface QN is given by

III = e ds2 + 2 f dsdv + g dv2, (3.20)

with coefficients

e =

(
−vτ′

D1
−

A1D1s

D2

)2

+

(
−τ(1 + u′)

D1

)2

+

(
u′′ − vκ′

D1
−

C1D1s

D2

)2

,

f =

(
−vτ′

D1
−

A1D1s

D2
1

) (
−τ

D1
−

A1(vτ2 − κC1)
D3

1

)
+

(
u′′ − vκ′

D1
−

CD1s

D2
1

) (
−κ

D1
−

C1(vτ2 − κC1)
D3

1

)
,

g =

(
−τ

D1
−

A1(vτ2 − κC1)
D3

1

)2

+

(
−κ

D1
−

C1(vτ2 − κC1)
D3

1

)2

,

where
A1 = −vτ, C1 = 1 + u′ − vκ, D1 =

√
A2 + C2,

and D1s is the partial derivatives of D1 with respect to s.

Proof. From Eq (3.19), the unit normal vector can be written as

nN =
A1T + C1B

D1
, (3.21)

where
A1 = −vτ, C1 = 1 + u′ − vκ, D1 =

√
A2

1 + C2
1.

The partial derivatives of n with respect to s and v are respectively

nN
s =

(
−vτ′

D1
−

A1D1s

D2
1

)
T +

(
−τ(1 + u′)

D1

)
N +

(
u′′ − vκ′

D1
−

C1D1s

D2
1

)
B,

nN
v =

(
−τ

D1
−

A1(vτ2 − κC1)
D3

1

)
T +

(
−κ

D1
−

C1(vτ2 − κC1)
D3

1

)
B.

The coefficients e, f , and g of the third fundamental form are obtained by computing the inner
products

e = 〈nN
s ,n

N
s 〉, f = 〈nN

s ,n
N
v 〉, g = 〈nN

v ,n
N
v 〉,

which yield the explicit expressions given in the theorem. �
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Theorem 3.11. The striction curve βN(s) for the surface QN is given by

βN(s) = α(s) + uT +
ω1(1 + u)κ
κ2 + τ2 N.

Proof. From Eq (2.6), the striction curve defined by

βN(s) = αT −
〈T1,N′〉
‖N′‖2

N.

By using Eqs (2.2) and (2.4), we have

〈T1,N′〉
‖N′‖2

= −
ω1(1 + u)κ
κ2 + τ2 .

Thus, by using Eq (2.3), we can deduce the result. �

Theorem 3.12. The distribution parameter λN for the surface QN is given by

λN =
ω1(1 + u)τ
κ2 + τ2 .

Proof. From Eq (2.7), the distribution parameter is defined by

λN =
det(T1,N,N′)
‖N′‖2

.

By using Eqs (2.2) and (2.4), we have

det(T1,N,N′) = ω1(1 + u)τ.

Thus, we can deduce the result. �

3.3. QB binormal ruled surface

Definition 4. The binormal ruled surface QB is represented parametrically by

QB(s, v) = α(s) + u(s)T(s) + vB(s), (3.22)

where the expression is derived using Eqs (3.3) and (2.3).

Theorem 3.13. The FFF of the surface QB is given by

I = [(1 + u′)2 + (uκ − vτ)2] ds2 + dv2. (3.23)

Proof. From Eq (3.22), the first partial derivatives of QB(s, v) using Eq (2.2), are given by

QB
s = (1 + u′)T + (uκ − vτ)N, QB

v = B. (3.24)

From Eq (2.9), the coefficients of the FFF are given by

E = 〈QB
s ,Q

B
s 〉 = (1 + u′)2 + (uκ − vτ)2, F = 〈QB

s ,Q
B
v 〉 = 0, G = 〈QB

v ,Q
B
v 〉 = 1. (3.25)

�
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Theorem 3.14. The SFF of the surface QB is given by

II = L ds2 + 2M ds dv + N dv2, (3.26)

where

L =

(
u′′ − uκ2 + vκτ

)
(uκ − vτ) − (κ + 2u′κ + uκ′ − vτ′) (1 + u′)√

(1 + u′)2 + (uκ − vτ)2
,

M =
τ(1 + u′)√

(1 + u′)2 + (uκ − vτ)2
, N = 0.

(3.27)

Proof. From Eq (3.24), the cross product is given by

QB
s × QB

v = (uκ − vτ)T − (1 + u′)N.

By taking the norm, we get

‖QB
s × QB

v ‖=
√

(uκ − vτ)2 + (1 + u′)2.

Thus, the unit normal vector can be defined by

nB =
QB

s × QB
v

‖QB
s × QB

v ‖
=

(uκ − vτ)T − (1 + u′)N√
(uκ − vτ)2 + (1 + u′)2

. (3.28)

From Eq (3.24), the second partial derivatives are given by

QB
ss =

(
u′′ − uκ2 + vκτ

)
T +

(
κ + 2u′κ + uκ′ − vτ′

)
N +

(
uκτ − vτ2

)
B,

QB
vv = 0, QB

vs = −τN.

From Eq (2.10), we can deduce the coefficients of the SFF. �

Theorem 3.15. The Gaussian curvature K and the mean curvature H for the binormal ruled surface
QB are given respectively by:

K = −
τ2(1 + u′)2(

(1 + u′)2 + (uκ − vτ)2)2 ,

H =

(
u′′ − uκ2 + vκτ

)
(uκ − vτ) − (κ + 2u′κ + uκ′ − vτ′) (1 + u′)

2
(
(1 + u′)2 + (uκ − vτ)2)3/2 .

Proof. By using Eqs (3.25) and (3.27), then

LN − M2 = −M2 = −
τ2(1 + u′)2

(1 + u′)2 + (uκ − vτ)2 ,

EG − F2 = E = (1 + u′)2 + (uκ − vτ)2,

LG + EN − 2MF = L

=

(
u′′ − uκ2 + vκτ

)
(uκ − vτ) − (κ + 2u′κ + uκ′ − vτ′) (1 + u′)√

(1 + u′)2 + (uκ − vτ)2
,

and by substitution into Eq (2.12), we deduce the result. �
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Corollary 3.3. (a) The surface QB is developable (K = 0) if the base curve α(t) is planar (τ = 0) with
mean curvature

H =
(u′′ − uκ2)(uκ) − (κ + 2u′κ + uκ′)(1 + u′)

2
(
(1 + u′)2 + (uκ)2)3/2 .

Theorem 3.16. The TFF of surface QB is given by

III = e ds2,+2 f dsdv + g dv2, (3.29)

with coefficients:

e =

(
(u′κ + uκ′ − vτ′) −C2κ

D2
−

A2D2s

D2
2

)2

+

(
A2κ − u′′

D2
−

C2D2s

D2
2

)2

+

(
C2τ

D2

)2

,

f =

(
(u′κ + uκ′ − vτ′) −C2κ

D2
−

A2D2s

D2
2

) (
−τ

D2
+

A2
2τ

D3
2

)
+

(
A2κ − u′′

D2
−

C2D2s

D2
2

) (
A2C2τ

D3
2

)
,

g =

(
−τ

D2
+

A2
2τ

D3
2

)2

+

(
A2C2τ

D3
2

)2

,

where
A2 = uκ − vτ, C2 = −(1 + u′), D2 =

√
A2

2 + C2
2,

and D2s is the partial derivative of D2 with respect to s.

Proof. From Eq (3.28), the unit normal vector can be written as

nB =
A2T + C2N

D2
, (3.30)

where
A2 = uκ − vτ, C2 = −(1 + u′), D2 =

√
A2

2 + C2
2.

The partial derivatives of n with respect to t and v are respectively

nB
s =

(
(u′κ + uκ′ − vτ′) −C2κ

D2
−

A2D2s

D2
2

)
T +

(
A2κ − u′′

D2
−

C2D2s

D2
2

)
N +

(
C2τ

D2

)
B,

nB
v =

(
−τ

D2
+

A2
2τ

D3
2

)
T +

A2C2τ

D3
2

N.

The coefficients e, f , and g of the third fundamental form are obtained by computing the inner
products

e = 〈nB
s ,n

B
s 〉, f = 〈nB

s ,n
B
v 〉, g = 〈nB

v ,n
B
v 〉,

which yield the explicit expressions given in the theorem. �

Theorem 3.17. The striction curve βB(s) for the surface QB is given by

βB(s) = α(s) + uT +
ω1uκ
τ

B.
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Proof. From Eq (2.6), the striction curve is defined by:

βB(s) = αT −
〈T1,B′〉
‖B′‖2

B.

By using Eqs (2.2) and (2.4), we have

〈T1,B′〉
‖B′‖2

= −
ω1uκ
τ

B.

Thus, by using Eq (2.3), we can deduce the result. �

Theorem 3.18. The distribution parameter λT for the binormal ruled surface M3 is given by

λB =
ω1(1 + u)

τ
.

Proof. From Eq (2.7), the distribution parameter is defined by

λB =
det(T1,B,B′)
‖B′‖2

.

By using Eqs (2.2) and (2.4), we have

det(T1,B,B′) = ω1(1 + u)τ.

Thus, we can deduce the result. �

Theorem 3.19. Among the three surfaces, only QT is always developable (K ≡ 0). The surfaces
QN and QB are developable if and only if the base curve is planar (τ = 0), creating a hierarchical
relationship where tangent-directed rulings naturally produce developable surfaces while normal and
binormal directions introduce torsion-dependent curvature.

4. Computational and illustrative examples

Example 4.1. Let α(s) be a general helix curve given by the parametrization

α(s) =

(
4 cos

( s
5

)
, 4 sin

( s
5

)
,

3s
5

)
.

By using the equations in (2.1), the Frenet-frame is

T(s) =

(
−

4
5

sin
( s
5

)
,

4
5

cos
( s
5

)
,

3
5

)
,

N(s) =

(
− cos

( s
5

)
,− sin

( s
5

)
, 0

)
,

B(s) =

(
3
5

sin
( s
5

)
,−

3
5

cos
( s
5

)
,

4
5

)
.
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We can deduce the T-pedal curve using Eq (2.3),

αT (s) =

(
4 cos

( s
5

)
+

36s
125

sin
( s
5

)
, 4 sin

( s
5

)
−

36s
125

cos
( s
5

)
,

48s
125

)
,

where u(s) = −〈α(s),T(s)〉 = − 9s
25 .

Consequently, we can deduce the tangent ruled surface QT , normal ruled surface QN and binormal
ruled surface QB, respectively, given in Figure 3, by

QT (s, v) =

(
4 cos

( s
5

)
+

(
36s
125
−

4v
5

)
sin

( s
5

)
, 4 sin

( s
5

)
+

(
−

36s
125

+
4v
5

)
cos

( s
5

)
,

48s
125

+
3v
5

)
,

QN(s, v) =

(
(4 − v) cos(

s
5

) +
36s
125

sin(
s
5

), (4 − v) sin(
s
5

) −
36s
125

cos(
s
5

),
48s
125

)
,

QB(s, v) =

(
4 cos

s
5

+

(
36s
125

+
3v
5

)
sin

s
5
, 4 sin

s
5
−

(
36s
125

+
3v
5

)
cos

s
5
,

48s
125

+
4v
5

)
.

Figure 3. The helix (red), T-pedal curve (blue).

Example 4.2. Let α(s) be a regular curve given by the parametrization

α(s) =

(
3
2

cos
( s
2

)
+

1
6

cos
(
3s
2

)
,

3
2

sin
( s
2

)
+

1
6

sin
(
3s
2

)
,
√

3 cos
( s
2

))
.

By Eq (2.1), the Frenet-frame is

T(s) =

−3
2

sin
s
2

+ sin3 s
2
, cos3 s

2
, −

√
3

2
sin

s
2

 ,
N(s) =

− √3
2

cos s, −

√
3

2
sin s, −

1
2

 ,
B(s) =

−1
2

cos
s
2

(
1 + 2 sin2 s

2

)
, − sin3 s

2
,

√
3

2
cos

s
2

 .
AIMS Mathematics Volume 10, Issue 11, 25606–25623.



25621

We can deduce the T-Pedal curve using Eq (2.3),

αT (s) =

3
2

cos
( s
2

)
+

1
6

cos
(
3s
2

)
+ sin s

(
−

3
2

sin
( s
2

)
+ sin3

( s
2

))
,

3
2

sin
( s
2

)
+

1
6

sin
(
3s
2

)
+ sin s cos3

( s
2

)
,
√

3 cos
( s
2

)
−

√
3

2
sin s sin

( s
2

) ,
where u(s) = −〈α(s),T(s)〉 = sin s.

Consequently, we can deduce the tangent ruled surface QT , normal ruled surface QN and binormal
ruled surface QB, respectively, given in Figure 4, by

QT (s, v) =

( (3
2

cos
s
2

+
1
6

cos
3s
2

)
+ (sin s + v)

(
−

3
2

sin
s
2

+ sin3 s
2

)
,

(
3
2

sin
s
2

+
1
6

sin
3s
2

)
+ (sin s + v) cos3 s

2
,
√

3 cos
s
2

+ (sin s + v)

− √3
2

sin
s
2

 ),

QN(s, v) =

( (3
2

cos
s
2

+
1
6

cos
3s
2

)
+ (sin s + v)

− √3
2

cos s

 , (3
2

sin
s
2

+
1
6

sin
3s
2

)
+ (sin s + v)

− √3
2

sin s

 , √3 cos
s
2

+ (sin s + v)
(
−

1
2

) )
,

QB(s, v) =

( (3
2

cos
s
2

+
1
6

cos
3s
2

)
+ (sin s + v)

(
−

1
2

cos
s
2

(1 + 2 sin2 s
2

)
)
,

(
3
2

sin
s
2

+
1
6

sin
3s
2

)
+ (sin s + v)

(
− sin3 s

2

)
,
√

3 cos
s
2

+ (sin s + v)

 √3
2

cos
s
2

 ).

Figure 4. The regular curve (red), T-pedal curve (blue).
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5. Conclusions

This work develops a complete differential-geometric framework for three classes of Frenet-frame
ruled surfaces generated from unit-speed curves. Through systematic analysis of the T-pedal curve
construction, we establish fundamental curvature properties, metric characteristics, and distribution
parameters for each surface type. The results yield both theoretical advances in surface geometry and
practical computational tools for parametric surface modeling. These contributions not only deepen
our knowledge of ruled surface geometry, but also provide a foundation for future investigations
in extended mathematical contexts, including relativistic systems and non-Euclidean geometries,
demonstrating the continued relevance of classical surface theory in modern interdisciplinary research.
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