Research article Special Issues

Mathematical modeling and sensitivity analysis of hypoxia-activated drugs

  • Published: 06 November 2025
  • MSC : 35Q92, 35R20, 65M60, 92C45, 92C50

  • Hypoxia-activated prodrugs offer a promising strategy for targeting oxygen-deficient regions in solid tumors, which are often resistant to conventional therapies. However, modeling their behavior is challenging because of the complex interplay between oxygen availability, drug activation, and cell survival. In this work, we developed a multi-scale and mixed-dimensional model that coupled spatially resolved drug and oxygen transport with pharmacokinetics and pharmacodynamics to simulate the cellular response. The model integrated blood flow, oxygen diffusion, and consumption, drug delivery, and metabolism. To reduce computational cost, we mitigated the global nonlinearity by coupling the multi-scale and mixed-dimensional models one-way with a reduced 0D model for drug metabolization. The global sensitivity analysis was then used to identify key parameters influencing drug activation and therapeutic outcome. This approach enabled efficient simulation and supports the design of optimized therapies targeting hypoxia.

    Citation: Alessandro Coclite, Riccardo Montanelli Eccher, Luca Possenti, Piermario Vitullo, Paolo Zunino. Mathematical modeling and sensitivity analysis of hypoxia-activated drugs[J]. AIMS Mathematics, 2025, 10(11): 25504-25544. doi: 10.3934/math.20251130

    Related Papers:

  • Hypoxia-activated prodrugs offer a promising strategy for targeting oxygen-deficient regions in solid tumors, which are often resistant to conventional therapies. However, modeling their behavior is challenging because of the complex interplay between oxygen availability, drug activation, and cell survival. In this work, we developed a multi-scale and mixed-dimensional model that coupled spatially resolved drug and oxygen transport with pharmacokinetics and pharmacodynamics to simulate the cellular response. The model integrated blood flow, oxygen diffusion, and consumption, drug delivery, and metabolism. To reduce computational cost, we mitigated the global nonlinearity by coupling the multi-scale and mixed-dimensional models one-way with a reduced 0D model for drug metabolization. The global sensitivity analysis was then used to identify key parameters influencing drug activation and therapeutic outcome. This approach enabled efficient simulation and supports the design of optimized therapies targeting hypoxia.



    加载中


    [1] H. E. Barker, J. T. E. Paget, A. A. Khan, K. J. Harrington, The tumour microenvironment after radiotherapy: mechanisms of resistance and recurrence, Nat. Rev. Cancer, 15 (2015), 409–425. https://doi.org/10.1038/nrc3958 doi: 10.1038/nrc3958
    [2] M. Dewhirst, T. Secomb, Transport of drugs from blood vessels to tumour tissue, Nat. Rev. Cancer, 17 (2017), 738–750. https://doi.org/10.1038/nrc.2017.93 doi: 10.1038/nrc.2017.93
    [3] M. S. Abdo, K. Shah, H. A. Wahash, S. K. Panchal, On a comprehensive model of the novel coronavirus (COVID-19) under Mittag-Leffler derivative, Chaos Soliton. Fract., 135 (2020), 109867. https://doi.org/10.1016/j.chaos.2020.109867 doi: 10.1016/j.chaos.2020.109867
    [4] S. Kumar, A. Ahmadian, R. Kumar, D. Kumar, J. Singh, D. Baleanu, et al., An efficient numerical method for the fractional SIR epidemic model of infectious disease by using Bernstein wavelets, Mathematics, 8 (2020), 558. https://doi.org/10.3390/math8040558 doi: 10.3390/math8040558
    [5] P. Pandey, Y. M. Chu, J. F. Gómez-Aguilar, H. Jahanshahi, A. A. Aly, A novel fractional mathematical model of the COVID-19 epidemic considering quarantine and latent time, Results Phys., 26 (2021), 104286. https://doi.org/10.1016/j.rinp.2021.104286 doi: 10.1016/j.rinp.2021.104286
    [6] K. Hattaf, Useful results for the qualitative analysis of generalized Hattaf mixed fractional differential equations with applications to medicine, Computation, 13 (2025), 167. https://doi.org/10.3390/computation13070167 doi: 10.3390/computation13070167
    [7] M. El Younoussi, Z. Hajhouji, K. Hattaf, N. Yousfi, Dynamics of a reaction-diffusion fractional-order model for M1 oncolytic virotherapy with CTL immune response, Chaos Soliton. Fract., 157 (2022), 11957. https://doi.org/10.1016/j.chaos.2022.111957 doi: 10.1016/j.chaos.2022.111957
    [8] T. Ghosh, P. K. Roy, Critical analysis of FDA-approved dual inhibitor Cabenuva to HIV replication kinetics: A mathematical study, Math. Biol. Bioinform., 20 (2025), 236–268. https://doi.org/10.17537/2025.20.236 doi: 10.17537/2025.20.236
    [9] A. K. Bag, S. Ghosh, A. N. Chatterjee, P. K. Roy, A mathematical framework investigating the impact of Chemo-iPSC therapy for the dynamics of cervical cancer, J. Appl. Math. Comput., 71 (2025), 6061–6093. https://doi.org/10.1007/s12190-025-02476-2 doi: 10.1007/s12190-025-02476-2
    [10] S. Chakraborty, X. Z. Li, P. K. Roy, How can HPV-induced cervical cancer be controlled by a combination of drug therapy? A mathematical study, Int. J. Biomath., 12 (2019), 1950070. https://doi.org/10.1142/S1793524519500700 doi: 10.1142/S1793524519500700
    [11] K. O. Hicks, F. B. Pruijn, T. W. Secomb, M. P. Hay, R. Hsu, J. M. Brown, et al., Use of three-dimensional tissue cultures to model extravascular transport and predict in vivo activity of hypoxia-targeted anticancer drugs, J. Natl. Cancer I., 98 (2006), 1118–1128. https://doi.org/10.1093/jnci/djj306 doi: 10.1093/jnci/djj306
    [12] Y. Li, S. P. Patel, J. Roszik, Y. Qin, Hypoxia-driven immunosuppressive metabolites in the tumor microenvironment: New approaches for combinational immunotherapy, Front. Immunol., 9 (2018), 1591. https://doi.org/10.3389/fimmu.2018.01591 doi: 10.3389/fimmu.2018.01591
    [13] Z. Fu, A. M. Mowday, J. B. Smaill, I. F. Hermans, A. V. Patterson, Tumour hypoxia-mediated immunosuppression: Mechanisms and therapeutic approaches to improve cancer immunotherapy, Cells, 10 (2021), 1006. https://doi.org/10.3390/cells10051006 doi: 10.3390/cells10051006
    [14] J. C. Forster, L. G. Marcu, E. Bezak, Approaches to combat hypoxia in cancer therapy and the potential for in silico models in their evaluation, Phys. Medica, 64 (2019), 145–156. https://doi.org/10.1016/j.ejmp.2019.07.006 doi: 10.1016/j.ejmp.2019.07.006
    [15] L. Possenti, P. Vitullo, A. Cicchetti, P. Zunino, T. Rancati, Modeling hypoxia-induced radiation resistance and the impact of radiation sources, Comput. Biolo. Med., 173 (2024), 108334. https://doi.org/10.1016/j.compbiomed.2024.108334 doi: 10.1016/j.compbiomed.2024.108334
    [16] E. Sausville, Respecting cancer drug transportability: A basis for successful lead selection, J. NatL. Cancer Inst., 98 (2006), 98. https://doi.org/10.1093/jnci/djj327 doi: 10.1093/jnci/djj327
    [17] F. B. Pruijn, K. Patel, M. P. Hay, W. R. Wilson, K. O. Hicks, Prediction of tumour tissue diffusion coefficients of hypoxia-activated prodrugs from physicochemical parameters, Aust. J. Chem., 61 (2008), 687–693. https://doi.org/10.1071/CH08240 doi: 10.1071/CH08240
    [18] Y. Li, L. Zhao, X. F. Li, Targeting hypoxia: Hypoxia-activated prodrugs in cancer therapy, Front. Oncol., 11 (2021), 700407. https://doi.org/10.3389/fonc.2021.700407 doi: 10.3389/fonc.2021.700407
    [19] A. Linninger, K. A. Mardal, P. Zunino, Quantitative approaches to microcirculation: Mathematical models, computational methods and data analysis, Cham: Springer, 2024. https://doi.org/10.1007/978-3-031-58519-7
    [20] L. Cattaneo, P. Zunino, Computational models for fluid exchange between microcirculation and tissue interstitium, Netw. Heterog. Media, 9 (2014), 135–159. https://doi.org/10.3934/nhm.2014.9.135 doi: 10.3934/nhm.2014.9.135
    [21] L. Possenti, S. di Gregorio, F. M. Gerosa, G. Raimondi, G. Casagrande, M. L. Costantino, et al., A computational model for microcirculation including Fahraeus-Lindqvist effect, plasma skimming, and fluid exchange with the tissue interstitium, Int. J. Numer. Meth. Bio., 35 (2019), e3165. https://doi.org/10.1002/cnm.3165 doi: 10.1002/cnm.3165
    [22] L. Possenti, A. Cicchetti, R. Rosati, D. Cerroni, M. L. Costantino, T. Rancati, et al., A mesoscale computational model for microvascular oxygen transfer, Ann. Biomed. Eng., 49 (2021), 3356–3373. https://doi.org/10.1007/s10439-021-02807-x doi: 10.1007/s10439-021-02807-x
    [23] L. Cattaneo, P. Zunino, A computational model of drug delivery through microcirculation to compare different tumor treatments, Int. J. Numer. Meth. Bio., 30 (2014), 1347–1371. https://doi.org/10.1002/cnm.2661 doi: 10.1002/cnm.2661
    [24] L. Possenti, S. Di Gregorio, G. Casagrande, M. L. Costantino, T. Rancati, P. Zunino, A global sensitivity analysis approach applied to a multiscale model of microvascular flow, Comput. Method. Biomec., 23 (2020), 1215–1224. https://doi.org/10.1080/10255842.2020.1793964 doi: 10.1080/10255842.2020.1793964
    [25] P. Vitullo, L. Cicci, L. Possenti, A. Coclite, M. L. Costantino, P. Zunino, Sensitivity analysis of a multi-physics model for the vascular microenvironment, Int. J. Numer. Meth. Bio., 39 (2023), e3752. https://doi.org/10.1002/cnm.3752 doi: 10.1002/cnm.3752
    [26] A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, et al., Global sensitivity analysis: The primer, John Wiley & Sons, 2008. https://doi.org/10.1002/9780470725184
    [27] P. Vitullo, A. Colombo, N. R. Franco, A. Manzoni, P. Zunino, Nonlinear model order reduction for problems with microstructure using mesh-informed neural networks, Finite Elem. Anal. Des., 229 (2024), 104068. https://doi.org/10.1016/j.finel.2023.104068 doi: 10.1016/j.finel.2023.104068
    [28] A. R. Pries, T. W. Secomb, Microvascular blood viscosity in vivo and the endothelial surface layer, Am. J. Physiol. Heart C., 289 (2005), 6. https://doi.org/10.1152/ajpheart.00297.2005 doi: 10.1152/ajpheart.00297.2005
    [29] M. Jarzyńska. The application of practical Kedem-Katchalsky equations in membrane transport, Centr. Eur. J. Phys., 4 (2006), 429–438. https://doi.org/10.2478/s11534-006-0034-x doi: 10.1152/ajpheart.00297.2005
    [30] J. M. Brown, SR 4233 (tirapazamine): A new anticancer drug exploiting hypoxia in solid tumors, Br. J. Cancer, 67 (1993), 1163–1170. https://doi.org/10.1038/bjc.1993.220 doi: 10.1038/bjc.1993.220
    [31] K. O. Hicks, F. B. Pruijn, J. R. Sturman, W. A. Denny, W. R. Wilson, Multicellular resistance to tirapazamine is due to restricted extravascular transport: A pharmacokinetic/pharmacodynamic study in HT29 multicellular layer cultures, Cancer Res., 63 (2003), 5970–5977.
    [32] K. O. Hicks, B. G. Siim, J. K. Jaiswal, F. B. Pruijn, A. M. Fraser, R. Patel, et al., Pharmacokinetic/pharmacodynamic modeling identifies SN30000 and SN29751 as tirapazamine analogues with improved tissue penetration and hypoxic cell killing in tumors, Clin. Cancer Res., 16 (2010), 4946–4957. https://doi.org/10.1158/1078-0432.CCR-10-1439 doi: 10.1158/1078-0432.CCR-10-1439
    [33] H. Zou, P. Banerjee, S. S. Y. Leung, X. Yan, Application of pharmacokinetic-pharmacodynamic modeling in drug delivery: development and challenges, Front. Pharmacol., 11 (2020), 997. https://doi.org/10.3389/fphar.2020.00997 doi: 10.3389/fphar.2020.00997
    [34] F. B. Pruijn, J. R. Sturman, H. D. S. Liyanage, K. O. Hicks, M. P. Hay, W. R. Wilson, Extravascular transport of drugs in tumor tissue: Effect of lipophilicity on diffusion of tirapazamine analogues in multicellular layer cultures, J. Med. Chem., 48 (2005), 1079–1087. https://doi.org/10.1021/jm049549p doi: 10.1021/jm049549p
    [35] B. G. Siim, P. L. Van Zijl, J. M. Brown, Tirapazamine-induced DNA damage measured using the comet assay correlates with cytotoxicity towards hypoxic tumour cells in vitro, Br. J. Cancer, 73 (1996), 952–960. https://doi.org/10.1038/bjc.1996.187 doi: 10.1038/bjc.1996.187
    [36] M. Di Paola, F. P. Pinnola, M. Zingales, A discrete mechanical model of fractional hereditary materials, Meccanica, 48 (2013), 1573–1586. https://doi.org/10.1007/s11012-012-9685-4 doi: 10.1007/s11012-012-9685-4
    [37] L. T. Baxter, R. K. Jain, Transport of fluid and macromolecules in tumors. Ⅰ. Role of interstitial pressure and convection, Microvasc. Res., 37 (1989), 77–104. https://doi.org/10.1016/0026-2862(89)90074-5 doi: 10.1016/0026-2862(89)90074-5
    [38] L. T. Baxter, R. K. Jain, Transport of fluid and macromolecules in tumors Ⅱ. Role of heterogeneous perfusion and lymphatics, Microvasc. Res., 40 (1990), 246–263. https://doi.org/10.1016/0026-2862(90)90023-k doi: 10.1016/0026-2862(90)90023-k
    [39] R. B. Bird, W. E. Stewart, E. N. Lightfoot, Transport phenomena, John Wiley & Sons, 2002.
    [40] M. Prosi, P. Zunino, K. Perktold, A. Quarteroni, Mathematical and numerical models for transfer of low-density lipoproteins through the arterial walls: A new methodology for the model setup with applications to the study of disturbed luminal flow, J. Biomech., 38 (2005), 903–917. https://doi.org/10.1016/j.jbiomech.2004.04.024 doi: 10.1016/j.jbiomech.2004.04.024
    [41] A. Bressan, Hyperbolic systems of conservation laws: The one-dimensional cauchy problem, 2000.
    [42] L. C. Evans, Partial differential equations, American Mathematical Society, 2010.
    [43] P. Hartman, Ordinary differential equations, Society for Industrial and Applied Mathematics, 2002.
    [44] C. D'Angelo, A. Quarteroni, On the coupling of 1D and 3D diffusion-reaction equations: Application to tissue perfusion problems, Math. Mod. Method. Appl. Sci., 18 (2008), 1481–1504. https://doi.org/10.1142/S0218202508003108 doi: 10.1142/S0218202508003108
    [45] T. Köppl, E. Vidotto, B. Wohlmuth, P. Zunino, Mathematical modeling, analysis, and numerical approximation of second-order elliptic problems with inclusions, Math. Mod. Method. Appl. Sci., 28 (2018), 953–978. https://doi.org/10.1142/S0218202518500252 doi: 10.1142/S0218202518500252
    [46] I. G. Gjerde, K. Kumar, J. M. Nordbotten, B. Wohlmuth, Splitting method for elliptic equations with line sources, ESAIM Math. Model. Num., 53 (2019), 1715–1739. https://doi.org/10.1051/m2an/2019027 doi: 10.1051/m2an/2019027
    [47] F. Laurino, P. Zunino, Derivation and analysis of coupled PDEs on manifolds with high dimensionality gap arising from topological model reduction, ESAIM Math. Model. Num., 53 (2019), 2047–2080. https://doi.org/10.1051/m2an/2019042 doi: 10.1051/m2an/2019042
    [48] M. Kuchta, F. Laurino, K. Mardal, P. Zunino, Analysis and approximation of mixed-dimensional PDEs on 3D-1D domains coupled with Lagrange multipliers, SIAM J. Numer. Anal., 59 (2021), 558–582. https://doi.org/10.1137/20M1329664 doi: 10.1137/20M1329664
    [49] L. Heltai, P. Zunino, Reduced Lagrange multiplier approach for non-matching coupling of mixed-dimensional domains, Math. Mod. Method. Appl. Sci., 33 (2023), 2425–2462. https://doi.org/10.1142/S0218202523500525 doi: 10.1142/S0218202523500525
    [50] M. D. Morris, Factorial sampling plans for preliminary computational experiments, Technometrics, 33 (1991), 161–174. https://doi.org/10.1080/00401706.1991.10484804 doi: 10.1080/00401706.1991.10484804
    [51] A. Saltelli, Global sensitivity analysis: an introduction, In: Proceedings of the 4th international conference on sensitivity analysis of model output (SAMO'04), 2004.
    [52] S. Senan, R. Rampling, M. A. Graham, P. Wilson, H. Robin Jr, N. Eckardt, et al., Phase Ⅰ and pharmacokinetic study of tirapazamine (SR 4233) administered every three weeks, Clin. Cancer Res., 3 (1997), 31–38.
    [53] K. O. Hicks, Y. Fleming, B. G. Siim, C. J. Koch, W. R. Wilson, Extravascular diffusion of tirapazamine: Effect of metabolic consumption assessed using the multicellular layer model, Int. J. Radiat. Oncol., 42 (1998), 641–649. https://doi.org/10.1016/S0360-3016(98)00268-5 doi: 10.1016/S0360-3016(98)00268-5
    [54] A. H. Kyle, A. I. Minchinton, Measurement of delivery and metabolism of tirapazamine to tumor tissue using the multilayered cell culture model, Cancer Chemother. Pharmacol., 43 (1999), 213–220. https://doi.org/10.1007/s002800050886 doi: 10.1007/s002800050886
    [55] V. M. Aquino, S. D. Weitman, N. J. Winick, S. Blaney, W. L. Furman, J. L. Kepner, et al., Phase Ⅰ trial of tirapazamine and cyclophosphamide in children with refractory solid tumors: A pediatric oncology group study, J. Clin. Oncol., 22 (2004), 1413–1419. https://doi.org/10.1200/jco.2004.07.111 doi: 10.1200/jco.2004.07.111
    [56] W. R. Wilson, M. P. Hay, Targeting hypoxia in cancer therapy, Nat. Rev. Cancer, 11 (2011), 393–410. https://doi.org/10.1038/nrc3064 doi: 10.1038/nrc3064
    [57] A. Foehrenbacher, T. W. Secomb, W. R. Wilson, K. O. Hicks, Design of optimized hypoxia-activated prodrugs using spatially resolved PK/PD models, Front. Oncol., 27 (2013), 314. https://doi.org/10.3389/fonc.2013.00314 doi: 10.3389/fonc.2013.00314
    [58] F. Campolongo, J. Cariboni, A. Saltelli, An effective screening design for sensitivity analysis of computational models, Environ. Modell. Softw., 22 (2007), 1509–1518. https://doi.org/10.1016/j.envsoft.2006.10.004 doi: 10.1016/j.envsoft.2006.10.004
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(541) PDF downloads(33) Cited by(0)

Article outline

Figures and Tables

Figures(15)  /  Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog