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Abstract: Hypoxia-activated prodrugs offer a promising strategy for targeting oxygen-deficient
regions in solid tumors, which are often resistant to conventional therapies. However, modeling their
behavior is challenging because of the complex interplay between oxygen availability, drug activation,
and cell survival. In this work, we developed a multi-scale and mixed-dimensional model that
coupled spatially resolved drug and oxygen transport with pharmacokinetics and pharmacodynamics
to simulate the cellular response. The model integrated blood flow, oxygen diffusion, and consumption,
drug delivery, and metabolism. To reduce computational cost, we mitigated the global nonlinearity by
coupling the multi-scale and mixed-dimensional models one-way with a reduced OD model for drug
metabolization. The global sensitivity analysis was then used to identify key parameters influencing
drug activation and therapeutic outcome. This approach enabled efficient simulation and supports the
design of optimized therapies targeting hypoxia.
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Nomenclature
e TPZ—Tirapazamine, a representative hypoxia-activated prodrug
e SF—Surviving Fraction, quantifying the proportion of viable cells over time
e TME—Tumor Microenvironment
e RBC—Red Blood Cell
e 3D-1D model—Multi-scale model coupling three-dimensional tissue transport with

one-dimensional vascular networks
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e 0D model—Surrogate pharmacokinetics-pharmacodynamics model used to simulate average
tissue-level drug and oxygen dynamics

e 3D-1D-0D model—Multi-scale model combining spatially resolved transport (3D-1D) with

surrogate terms derived from the 0D model

PK/PD—Pharmacokinetics/Pharmacodynamics

SA—Sensitivity Analysis

DoE—Design of Experiments

EE—Elementary Effects method, used for global sensitivity analysis

KS test—Kolmogorov-Smirnov test, used to assess distributional similarity

ODE—Ordinary Differential Equation

PDE—Partial Differential Equation

FEM—Finite Element Method

DOF—Degrees of Freedom

List of symbols

Q—3D tissue domain [mm?]

A—1D vascular network domain [mm)]

I'—Vessel-tissue interface [mm?]

x € Q—Spatial position in the tissue domain

s € A—Arc-length parameter along 1D vessel centerlines
t—Time [s]

c;”(x,1)—TPZ concentration in tissue [mol/m?]

e (s, 1)—TPZ concentration in vessels [mol/m’]

c/*(x, )—Oxygen concentration in tissue [mol/m?]

(s, )—Oxygen concentration in vessels [mol/m?]
¢—Population of viable cells

P—Permeability coeflicient across the vessel wall [m/s]

S /V—Surface-to-volume ratio of the vessel-tissue interface [1/m]
SF(#)—Surviving fraction at time ¢ (dimensionless)
u—Interstitial fluid velocity field [m/s]

D%, D¢*—Diffusion coeflicients for oxygen [m?/s]

D", D'P*—Diffusion coefficients for TPZ [m?/s]

M,.(c®*, SF)—Oxygen consumption rate [mol/(m?-s)]

M (7%, ¢2*, SF)—TPZ metabolism rate [mol/(m?-s)]
m'P*—Surrogate TPZ metabolic rate [s™!]

m°*—Surrogate oxygen consumption rate [s']

r(t)—Effective metabolic efficiency at time 7 [s™!]
K—Half-saturation constant for TPZ oxygen modulation [mol/m?]
k,..-—Linear metabolism rate constant [s™']

Vi — Maximum velocity of nonlinear metabolism [mol/(m?-s)]
K,,—Michaelis-Menten constant for TPZ [mol/m?]
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1. Introduction

Delivering effective chemotherapy or radiotherapy to solid tumors remains a significant challenge
in oncology, as it is intricately linked to the TME and the physicochemical properties governing drug
transport [1,2]. As highlighted in a comprehensive review [2], the heterogeneous nature of tumor
vasculature and tissue characteristics results in highly variable drug and oxygen distribution,
necessitating a deeper understanding of the underlying transport processes and cellular responses.
Mathematical modeling, coupled with spatially resolved experimental observations, is increasingly
recognized as a crucial tool for advancing this understanding and designing improved treatment
strategies. In this broader context, fractional-order approaches have also been successfully applied in
mathematical epidemiology to capture memory and hereditary properties in biological systems [3-5].
Fractional-order models have recently gained attention in biomedical applications, as they can
effectively capture memory and hereditary effects in complex biological systems. For instance, recent
studies have investigated the qualitative analysis of generalized mixed fractional differential equations
with applications in medicine [6] and the dynamics of a reaction-diffusion fractional-order model for
oncolytic virotherapy with cytotoxic T lymphocyte immune response [7]. Recent mathematical
models have also investigated the dynamics of cancer-immune interactions under therapeutic
interventions. For instance, Ghosh et al. [8] analyzed human immunodeficiency virus (HIV)
replication kinetics under dual inhibitors, providing insights into treatment efficacy through fractional
modeling; Ali et al. [9] developed a mathematical framework for chemoinduced pluripotent stem cells
(chemo-iPSCs) therapy in cervical cancer; and Kumar et al. [10] studied combination drug therapy
strategies for human papilloma virus induced cervical cancer. These studies highlight the growing
relevance of fractional-order and optimal-control approaches in describing complex
tumor-immune-therapy systems.

A key factor influencing the success of cancer therapies, including chemotherapy and radiotherapy,
is the presence of hypoxia, low oxygen levels, within solid tumors [1, 2, 11]. Hypoxia is a
well-documented characteristic of many aggressive and immunosuppressive tumors, associated with
genomic instability,  apoptosis,  angiogenesis,  metastasis, invasion, and metabolic
reprogramming [12, 13]. Furthermore, tumor hypoxia is a critical contributor to resistance to both
radiotherapy and chemotherapy [1, 14, 15]. In particular, oxygen is one of the most potent sensitizers
in radiotherapy, since oxygen enhances the cytotoxic effect of radiation by stabilizing DNA-damaging
free radicals [1]. To specifically target these oxygen-deficient areas, hypoxia-activated prodrugs
(HAPs) have emerged as a promising therapeutic strategy [16—18]. These agents are designed to be
preferentially activated under low oxygen conditions, ideally releasing cytotoxic compounds within
hypoxic tumor regions while minimizing systemic toxicity. However, modeling the behavior of
hypoxia-activated drugs presents unique challenges due to the two-way coupling between drug
activation and oxygen availability, mediated by the survival fraction of cancer cells. Drug activation
depends on the hypoxic state, which, in turn, is influenced by oxygen delivery through the
microvasculature and oxygen consumption by viable tumor cells. As the drug exerts its cytotoxic
effect, the number of viable cells decreases, potentially altering oxygen consumption rates, thus
affecting the conditions that govern further drug activation [19]. This intricate feedback loop requires
sophisticated modeling approaches to capture these dynamic interactions.

Computational models are essential for understanding the complex dynamics of the vascular and
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tumor microenvironment, where mechanical, hemodynamic, and regulatory factors interact in both
healthy and diseased tissues. These models allow for the quantitative analysis of key processes such
as blood flow, oxygen transport, and drug delivery, which are particularly relevant in cancer and
radiotherapy, where they help assess oxygen dependence and vascular function to optimize treatment
strategies. Possenti and collaborators have developed advanced multi-scale models to study tumor
oxygenation and the impact of the vascular network on radiotherapy. Their work includes modeling
microcirculation, fluid exchange, oxygen and drug transport, and applying global sensitivity analysis
to identify key parameters. These tools support the exploration of hypothetical and in vitro scenarios,
improve our understanding of tumor responses, and help plan treatment [20-23]. However, modeling
complex scenarios such as hypoxia-activated drugs remains computationally demanding, as it
involves  coupling blood flow, interstitial dynamics, oxygen metabolism, and
pharmacokinetics/pharmacodynamics across multiple spatial and temporal scales. Capturing these
interactions with high spatial resolution can be extremely resource-intensive. In the case of
hypoxia-activated drugs, where drug activation depends on intricate interactions between blood flow,
oxygen transport, and metabolic processes, understanding which parameters most influence treatment
outcomes, such as drug concentration, oxygen levels, or cell survival, is crucial. However, techniques
like sensitivity analysis, while informative, add computational cost. Sensitivity analysis is essential
for extracting meaningful information from complex drug delivery models in the tumor
microenvironment [24,25], but it requires significant computational demands. Although methods like
Sobol’s indices provide rigorous and quantitative assessments of the influence of the parameters, they
require numerous simulations and are computationally intensive. More efficient approaches, such as
the Morris elementary effects method, offer qualitative insight with fewer simulations, but still require
careful sampling of the input space [26]. These challenges are amplified in models that include
multi-scale or multi-physics features, where each simulation can already be computationally costly.
Thus, while powerful, these models often require simplification, such as the reduced-order model
addressed in [27] or high-performance computing for practical use.

To address this complexity from a mathematical and computational point of view, we propose a
multi-scale modeling approach that combines spatially distributed models of drug delivery in three
dimensions (3D) with surrogate models (where spatial dependence is neglected). Spatially distributed
models are essential to capture the heterogeneous oxygen distribution within the TME, influenced by
the morphology of the microvascular network and the dynamics of oxygen transport. These models
can account for blood flow in the vasculature (often represented as a 1D network embedded in a 3D
tissue domain) and the transport and diffusion of oxygen and drugs within porous tumor tissue.
Several research studies have focused on developing such a microcirculation model to study oxygen
delivery and drug transport in tumors, highlighting the importance of vascular architecture and
transport properties. In contrast, while neglecting spatial variations, surrogate models can provide
computational efficiency in simulating cellular-level drug activation and its impact on cell survival
over time. The integration of these two modeling paradigms allows for a more comprehensive
understanding of the action of hypoxia-activated drugs. The 3D model can provide spatially resolved
oxygen concentrations that drive drug activation within different tumor regions. The effects of cell
death, potentially simulated using a surrogate approach coupled with the local drug concentration, can
then be reflected in terms of oxygen consumption within the 3D model, capturing the dynamic
interaction between drug activation and the evolving oxygen landscape. This hybrid strategy aims to
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balance the need for spatial accuracy in representing the TME with the computational tractability
required for simulating complex biochemical reactions and cellular responses. Moreover, the rationale
for employing a multi-scale modeling framework lies in the trade-off between capturing essential
spatial heterogeneities and maintaining computational tractability. A pure surrogate (0D) model
would neglect spatial gradients of oxygen and drug, which are fundamental to the activation of
hypoxia-activated prodrugs. However, a fully resolved 3D—1D description of the entire system would
be computationally demanding and would complicate parameter estimation, making systematic
studies unfeasible. The proposed surrogate formulation combines the advantages of both approaches:
the OD component efficiently describes systemic pharmacokinetics, while the 3D-1D module resolves
the tumor microenvironment where the oxygen-drug interaction is most critical. This framework
allows us to address specific scientific questions that neither model could capture alone, such as the
influence of intratumoral oxygen heterogeneity on drug activation, the coupling between systemic
pharmacokinetics and local tissue hypoxia, and the identification of treatment scenarios where local
versus systemic effects dominate.

Therefore, the main purpose of this work is to develop such a multi-scale mathematical model
capable of capturing the intricate interplay between the transport and activation of hypoxia-activated
drugs and the dynamic changes in oxygen availability driven by cell survival. Importantly, this
multi-scale modeling framework enables the application of global sensitivity analysis methods to
unravel the influence of key model parameters, including drug properties, physiological factors of the
TME, and microvascular characteristics, on drug distribution, activation, and therapeutic efficacy. Our
central hypothesis is that explicitly modeling the pharmacokinetics, transvascular exchange, and
hypoxia-dependent activation of tirapazamine within a multi-scale hemodynamic framework can
provide quantitatively accurate predictions of drug distribution and cytotoxic effect across
heterogeneous tumor regions. We further hypothesize that this mechanistic approach offers a
foundation for future model generalizations, including fractional-order formulations that may capture
additional memory effects in drug-tissue interactions. Using this sensitivity analysis, we aim to
identify the model parameters that most significantly affect relevant outputs, such as the cell survival
fraction. Ultimately, this study seeks to provide valuable information for designing and optimizing
hypoxia-targeted cancer therapies by identifying the factors that have the greatest impact on treatment
outcomes.

2. Multi-scale model of hypoxia-activated drug pharmacokinetics and pharmacodynamics

This section details the interconnected models essential for capturing the pharmacokinetics (PK)
and pharmacodynamics (PD) of hypoxia-activated drugs, using Tirapazamine (TPZ) as a
representative example. Specifically, our surrogate framework integrates: (i) a 3D-1D model of blood
flow in the microvascular network coupled with interstitial fluid dynamics, which addresses the
heterogeneity of the tumor microenvironment (TME); (ii) a 3D-1D model of oxygen transport,
diffusion, and metabolization, crucial for understanding the oxygen dependency of drug activation;
and (ii1) a model of drug delivery and metabolization within both the vascular and tissue
compartments, accounting for its interaction with the oxygen landscape. Sections 2.1.1 and 2.1.2
summarize key modeling components previously developed and validated in the authors’ previous
works [15, 21], including the coupled 3D-1D hemodynamic model and the reaction-diffusion
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equations for oxygen transport. These elements are reported here in concise form to provide a
self-contained presentation and to enable readers to reproduce the complete computational
framework. The present study extends these prior works in important directions: (i) incorporation of a
mechanistic model for the pharmacokinetics and tissue distribution of tirapazamine, including plasma
clearance and transvascular exchange represented via a semi-permeable membrane model; (ii)
introduction of a reaction term describing the bioreductive activation of tirapazamine under hypoxic
conditions, which couples drug dynamics to the local oxygen partial pressure; and (iii) formulation of
a surrogate (0D) model that reduces the computational cost of simulating drug and oxygen dynamics
while preserving the dominant transport and reaction mechanisms. Taken together, these contributions
provide a novel, fully coupled 3D-1D-OD in silico platform to investigate the efficacy of
hypoxia-activated prodrugs in realistic, patient-specific vascular geometries. = The following
subsections will detail the mathematical formulation of these interconnected components, focusing on
the necessary boundary conditions, parameter considerations, and the physiological interplay that
governs drug behavior and efficacy in the hypoxic conditions prevalent in solid tumors. This
comprehensive model aims to capture the intricate feedback between drug activation and oxygen
availability driven by cell survival, as discussed in the Introduction.

2.1. A spatially distributed 3D-1D model of the vascular microenvironment

In the proposed model, the domain Q represents a portion of biological tissue (submillimeter)
composed of two regions (Q = Q, | JQ,): the tissue interstitium €, and the microvascular bed Q,. Q,
is a porous medium, while Q, is an oriented network composed of a set of N cylindrical channels.
This network 1is endowed with three sets of variables that indicate the outer surface
I'={I';,i = 1,...,N}; the radius R = {R;,i = 1, ..., N} and the position of the centerline along with the
orientation A = {A;,i = 1, ..., N} of the selected channel. As such, on the vascular bed, the arc length
coordinate s is defined as increasing accordingly to the orientation of A;,i = 1,..., N. The boundary
conditions that complement the problems are imposed at the inlets and outlets, respectively, 0A;, and
O0N,,;. Since we approximated the vascular domain to a 1D domain, from now on, the microvascular
domain refers to A and the tissue domain by Q, with Q =~ €,. In what follows, for the compact
description of the governing equations of flow and transport in the vascular microenvironment, we
will denote the geometrical data, defining the domains Q and A as D.

2.1.1. The microvascular flow model

Blood flow is crucial to understanding how drugs are distributed within the vascular network and
subsequently delivered to tumor tissues. The rate and pattern of blood flow determine the delivery
of oxygen and the drug itself to the hypoxic regions. The blood flow can be modeled using fluid
dynamics principles, often employing equations like Poiseuille’s law for vascular flow and Darcy’s law
for tissue perfusion. This involves understanding how blood pressure, vascular resistance, and tissue
permeability affect drug delivery. The mathematical model describing flow dynamics and hematocrit
transport in a vascular network is represented here by the combined framework F &H. This framework
provides a comprehensive, yet simplified, description of fluid dynamics and red blood cell distribution
within the system:

F&H(p,u,H; D,P",6)=0.
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The notation in the equation above distinguishes between the unknowns and the parameters of the
problem. In this expression, the variables p, u, and H before the semicolon (;) represent the unknowns.
The terms after the semicolon-D, P", and 6-represent the parameters of the problem. 9 includes
domain characteristics, P™ is the parameter of the boundary condition on the input of the vascular
network, and 6 represents any additional parameters influencing the system. This notation separates the
variables to be solved from the model’s fixed parameters and will be consistently used throughout the
document for all other abstract models. The fluid dynamics model, ¥, incorporates both the Poiseuille
flow within the vasculature and the Darcy flow in the tissue. The Poiseuille flow within the vasculature
and the Darcy flow in the tissue are nonlinearly coupled via extravasation and lymphatic drainage

terms. The continuity equations govern both domains (A and Q). The complete model is expressed as:

Veu + LFS(po— po) = fo(po p) 64 in Q,
u, + in, in Q,
0, (R?u,) + £o(prs py) in A,
F =< 8uu, + R*0,p, in A, 2.1)
Py —(po+Ap) in A,
Pv— Do in 0Ayu,
u,-n in 0Q.

In this formulation, the quantities with subscripts ¢ and v refer to the tissue and the vascular bed,
respectively. Here, u, and u, are fluid velocities, while p, and p, are pressures. The pressures py and
Ap correspond to the outlet pressure and the pressure difference between inlets and outlets (therefore,
we define the inlet pressure as py + Ap). The viscosities y, and p, denote the dynamic viscosities of the
two fluids. Furthermore, the term L’;;F f—,( p: — pr) represents the volumetric flow rate due to lymphatic
drainage, with L[Lf being the hydraulic permeability of the lymphatic walls. The function f,(p;, p,)
models fluid extravasation according to the Starling model:

Jo(pi. py) = 27RL, [(py = py) = 0 (mry — 7)), (2.2)

where L, is the hydraulic conductivity, &, and m, are the osmotic pressure gradients across the
capillaries, and o is the reflection coefficient. Model ¥ is further extended with the coupled
one-dimensional red blood cell (RBC) transport model H. The hematocrit transport model, H,
ensures the conservation and distribution of RBC concentration (i.e., hematocrit, H) throughout the
vascular network, maintaining mass balance. The governing equations of the hematocrit H within A
read as follows:

aR*u,0,H — f,(p;, p,)H in A,

H :=<H- H, in 0\, (2.3)

o,H in O0A,.
Here, H;, is the input hematocrit value. This model assumes hematocrit as a conserved quantity,
which means that RBCs do not extravasate from A and are not degraded during transport.

Furthermore, network connectivity allows only for bifurcations or anastomoses, ensuring mass
conservation at all junctions, leveraging the problem closure defined by Pries et al. [21,28]. Finally,
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we note that the microvascular flow model focuses on equilibrium conditions of spatial distributions,
ignoring any time-dependent dynamics that might occur in the system. This simplification is useful
for studying long-term behavior and the overall distribution of flow and hematocrit in the vascular
network, but it can overlook transient events and fluctuations that could be important in certain
physiological or pathological situations.

2.1.2. Oxygen transport and metabolism

The efficacy of hypoxia-activated prodrugs is directly related to the level of oxygen in the tissue,
since hypoxic conditions activate these drugs. Oxygen transport models are used to simulate the
diffusion and consumption of oxygen within the tissue by solving diffusion equations that consider
tissue oxygen demand and capillary oxygen supply. Note that the interaction between the flow and the
oxygen model is characterized by a one-way coupling because ¥ & influences oxygen transport, but
not vice versa. The oxygen transport model describes the diffusion and metabolism of oxygen within
tissue and vasculature, characterized by oxygen concentration ¢”*:

O + T (¢, D, pou, H, 75", 0°%) + Myp(c?) = 0,

where c®*" represents the boundary condition for oxygen concentration at inflow and 6°* includes
all physical parameters, such as viscosities, hydraulic conductivities, and reflection coefficients. To
prepare the coupling with TPZ, we have the effects related to oxygen transport, represented by 7.,
from those related to oxygen metabolization, denoted by M,,. This compact notation hides several
phenomena that govern oxygen transport and delivery to cells, both in the A and the 2 domains. In
the vasculature, the concentration of oxygen available in the blood is the sum of the concentration
of dissolved oxygen ¢}* and hemoglobin-bound oxygen cf;, , . Moreover, given the fast kinetics, we
neglect transient phenomena related to hemoglobin binding, so that ¢* and c7;, , are always chemically
balanced. Consequently, c7;,,, is a function of ¢J™":
ox,y

Cy

b
C(\jx}’ + (apl psSo)y

Chvo,(€)) = ki H (2.4)
with k| a constant given by the Hiifner factor N times the mean corpuscular hemoglobin concentration
MCHC; ay, the solubility of oxygen in plasma; y the Hill exponent; and p,,, the oxygen partial pressure
at hemoglobin half-saturation. The evolution of the oxygen concentration in A is given by:

ox,y

—~AR*D%*0*c%" + nR*0, | u,c”* + uvlecv—%) = —f(ps, pyr ¢7F,C)) on A, (2.5)
2

ox,y t 2%y
Cy

where D9 is oxygen diffusion coeflicient in A; ky = (@pipss)” and f2*(p;, py, ¢, ¢)") is a coupling
term modeling the diffusion of ¢J* from A to Q. In this work, we adopt the Kedem-Katchalsky model:

e+t
JE P pos €, ¢ = 2nRP7 ()" = ) + (1 = o™ (Tt) “So(pis pv) s (2.6)

with ¢{* the tissue oxygen concentration and c{* its mean value on Q; P°* the permeability of the
vascular wall to oxygen, 0" a reflection coefficient relative to the oxygen molecule [29]. Although
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this modeling approach describes both diffusive and advective oxygen flow, we remark that oxygen
delivery from microvasculature is predominantly a diffusion-dominated problem (27rRP**(c{* — ¢7*) >
(1-0%) ( ) Jfo(ps, py)). Note that the prescribed evolution for ¢)* in Eq (2.5) holds by assuming

co* as conserved in A (no oxygen consumption within blood flow) and that the diffusion coefficient for

0oX

chO is null. On the other hand, transport and diffusion of oxygen concentration in € corresponds to:
=V - (c]*u, — DYVe*) = f2(pry Py €75, 00N — m(c)T)  on Q, 2.7)

where D7* is oxygen diffusion coeflicient in Q and u, the fluid velocity. m(c{*) is the rate of oxygen
depletion due to the metabolic activity of the tissue (Michaelis-Menten model):

CO.X

m(c?) = Viypgr————. (2.8)

max _ox + %

t Pmso

with V4, its maximum consumption rate; p,,,, its partial pressure at half consumption rate; and a* its
solubility in the tissue. As a result, in the conditions where the metabolism of oxygen is not affected
by TPZ, the term M,, is given by:

0oX

Gy

()X(Cl}x QUX) = m(c()x) = max ox ox

¢, + a; pmio

The overall proposed model for oxygen transport and diffusion is:

=V (c7"u, = DP*Ver™) = f75(prs pos €7, €75)0A in Q,
—TR2DY Pl + R, (o + u ki H —k) o5 (P por €25, ¢%%) in A,

Tox gy = in A, (2.9)
—D5*0,c in - 0Aou,
—DOVC - 1= Byt — ¢ in 4Q.

At 0A;, the oxygen concentration c}* is specified. For the tissue, we simulate the presence of an
adjacent tissue domain with boundary conductivity j,, and far-field concentration cg*. In fact, the
latter is only one-way coupled with # and H through u,, u,, and H, while ¢?* and ¢/* have no influence
on the blood dynamics. We note that when oxygen metabolism is not affected by hypoxia-activated
drugs, such as TPZ, the oxygen level may reach a steady state, determined by the equilibrium between
the supply of microvessels and the consumption of cells [22]. Under these conditions, the oxygen
model is steady and can be simplified as follows:

T ox(c”s D, p,u, H, ¢, 077) + M, (c?F;67) = 0. (2.10)

2 m?°

o

2.1.3. Pharmacokinetics and pharmacodynamics of TPZ

Accurate drug delivery models are essential to predict the concentration of drugs reaching the
target tissue, directly affecting their therapeutic efficacy and safety profile. The activation of
hypoxia-activated drugs like TPZ depends on their metabolic conversion, considering variations in
metabolic rates under different oxygen levels. Understanding these kinetics is crucial to predicting
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drug activation and efficacy. TPZ is a prototypical hypoxia-activated prodrug whose pharmacokinetics
and pharmacodynamics have been extensively characterized. Early preclinical studies demonstrated
that TPZ exhibits selective activation under hypoxic conditions, with tumor-to-plasma ratios
consistent with its hypoxia-dependent cytotoxicity [30]. Clinical pharmacokinetics investigations
confirmed this tissue selectivity and provided evidence for heterogeneous metabolism across tumor
regions [31]. More recent work has highlighted the limited penetration of TPZ into poorly perfused
tumor zones, an aspect that critically affects its therapeutic efficacy [31].
Pharmacokinetics/pharmacodynamics modeling studies further established the role of spatial
distribution and hypoxia gradients in shaping drug activity, and identified strategies to improve tissue
penetration and cytotoxic potency in TPZ analogues [32]. Together, these studies provide the
biological basis for developing the following model of TPZ concentration in hypoxic tumor tissue.

The TPZ pharmacokinetic and pharmacodynamic model describes the distribution and effects of the
drug within the vascular network and tissue:

0,c" + TPZ(c"; D, p,u, H, SF, ¢, ¢/, 67) = 2.11)

vm’
where ¢'7* = [}, ¢/’*] is the concentration of TPZ in the vascular bed and the tissue, respectively. cv o
denotes the drug concentratlon at the inflow boundary, and 7% includes drug-specific parameters,
such as diffusion coeflicients and metabolic rates. When TPZ is modeled within the tumor
microenvironment, the dynamic nature of the cellular population of the tumor must be taken into
account. Consequently, the TPZ pharmacokinetic and pharmacodynamic model must incorporate
temporal changes in cellular density and distribution to accurately simulate drug activation and
efficacy. This model must dynamically link changes in cell population with fluctuations in oxygen
availability and TPZ activation, ensuring that they reflect the complex and evolving nature of the
tumor microenvironment. This is done by introducing a new variable in the model, named SF, that is
the surviving fraction of cells that metabolize TPZ. Let us subdivide the model 7#Z into two parts,
corresponding to the drug transport and the drug metabolization by cells. As such, we rewrite
Eq (2.11) as follows:

0, + Tipe(P D, pou, H, €5, 67) + My (e, SF; ¢7*) = 0. (2.12)

v,in’

Also, note that tirapazamine is a hypoxia-activated drug whose metabolism depends on the local
oxygen concentration. The operator 7P involves both the vasculature and tissue domains. The
concentration of injected drug ¢!’ evolves in the vascular bed governed by the following boundary
value problem:

B,c" I d, ( e, DCPzascipz) — ﬂszth(ppr’ c; ,cv ) in A,
(P = (7 in 0A,, (2.13)
LPZaSCLPZ =0 in 6A0ut

with ¢ the time coordinate, D' the diffusion coefficient in A, and c © is a function returning the injected
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dose of drug concentration in inlet A,

A’ =at for 1€ (0,Tp),
13 13
- CVPZ = Cvﬁz for te (Tpy,Tp), (2.14)
M| =@V for te (TrTr+5- ),
=0 for 1>Tp+5-%,

where T'p; corresponds to the time at which c’vpfn reaches a plateau, ctv%z is the TPZ concentration value

in the vascular compartment at this plateau (i.e., an effective delivered concentration), while 7p,
denotes the duration of the plateau, before the effective concentration decays with exponential rate.
The increase in vascular concentration is assumed to be linear, with a slope of a. We account for a
decay time of 57 = SC—VL, V being the apparent volume of distribution, CL the systemic clearance rate,
and 7 = V/CL the characteristic decay time of TPZ in plasma. On the tissue side, we consider the
following model [31]:

PV
=DV - n = B - ) in 0Q,

(2.15)
where ¢/’ is the drug concentration in Q and f.* represents the mass flux of TPZ across the capillary
wall, modeled analogously to oxygen exchange in Eq (2.6) by a semi-permeable membrane model.
In the same fashion as in the oxygen problem O, the problem is complemented by the conductive
boundary condition (87* being the conductivity of the walls and the concentration of the far field cg” ).
To model the diffusivity of TPZ in tissue, we rely on empirical expressions derived from in vitro studies
on multi-cellular cancer layers (MCLs) [33], which aim to predict drug diffusivity based on molecular
descriptors. In this framework, the diffusion coefficient D;p “ used in our model is estimated from the

following relation:

{é‘td” 4+ V- (cu, — DFVET) + LEF S (p, — po)c” = 75 (pr o, €7, AF)0A + gmP(c7F) in - Q,

c

log P7.4—x+y-HD+z-HA ) >
w

log(D*) = a + blog(MW) + (2.16)

1+exp(

where MW is the molecular weight, log P74 is the octanol/water partition coeflicient at pH 7.4, and
HD and HA denote the numbers of hydrogen bond donors and acceptors, respectively. The
coefficients a, b, c,w, x,y, z are empirical parameters fitted to the experimental data and capture how
physicochemical properties influence diffusion in multi-cellular layers. For this reason, the estimated
value of DJ* can be interpreted as an effective diffusion coefficient in MCL in-vitro tissue
environments, often denoted in the literature as D,,. For assessing TPZ metabolization, we consider
the combination of two terms, precisely ¢ and m'”(c/"”"), where ¢ represents the population of viable
cells and m'P(c’*) is the rate of drug metabolism. We rewrite the viable cell population introducing
the surviving fraction SF, defining ¢ = ¢(SF, with ¢, corresponding to the initial cellular volume
fraction and SF to the cell surviving fraction under the action of the drug. The term m'*(c/’*) is then
defined by a modified Michaelis-Menten dynamics with an effective term depending on oxygen
concentration to describe the hypoxia-activated drug behavior:

K thz Ctpz
mth(CfPZ’ COX) — ( )(kme P4 M) , 2.17)
! K + ¢~ o K, +c”*
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where k,,, is the first order metabolic rate constant, V..~ is the maximal rate of Michaelis-Menten
metabolism, K, is the Michaelis constant and K represents the oxygen concentration to halve
m'P*(c!P*) [34]. As a result, the TPZ metabolization model becomes:

My (SF, ¢, 7%y = ¢o SEm'* (P, ¢?%), (2.18)

¢o being the initial cellular volume fraction. To describe the surviving fraction SF, we here introduce
the pharmacodynamics model defining the drug’s effect on cancer cells. Due to the TPZ’s action, the
population of viable cells in the system is not constant. For this reason, the surviving fraction of cancer
cells is regulated by an exponential law. More precisely, the rate of the logarithm of SF is modeled as
a linear function of m'"* and c/** [31,35]:
d log SF
- —dgt = a P mP(cP, ). (2.19)
a is a constant heuristically derived from linear regression of experimental data quantifying the
cytotoxic potency of TPZ. As a consequence:

t
SF(c/*, o) = exp(— f ac” m'P(c, ) dT). (2.20)
0

In general, we formulate a model to describe both pharmacokinetics and pharmacodynamics. The
pharmacokinetics is described by Eq (2.12), where M,,.(SF, c¢*, ci” °) is defined in Eq (2.18), and 77,
is:

V- (cPu, - DV + LEP S (p, — p)el™ = £7(pr pon 7, 6F)0, in Q,
0 (ctvpzuv - D’J’Zasc’fz) + # PPy Py €7, O in A,
Py — (po+ Ap) in 0N\,

Tipz = {Pv = Po in Ao,  (221)
o=l in  dA;,
a,c* in A,
=DV = B = ) in 0Q.

The effect of the drug on cell viability also influences the uptake of oxygen, altering the oxygen
concentration and, consequently, affecting the drug activity. Consistent with the modeling approach
adopted for TPZ, we similarly define the oxygen metabolism term as:

M,«(SF, %) = ¢ SE m**(c™), (2.22)

where the surviving fraction SF is calculated according to the tissue TPZ concentration c”* as detailed
in Eq (2.20). Thus, the modified oxygen transport and metabolism equation becomes:

9,c” + Tox(c™; D, p,u, H, i, 07) + ¢o SEm™(¢™) = 0. (2.23)

n?

In conclusion, the model we formulate here for the study of hypoxia-activated drugs is the following:

F&H(p,u,H; D, P",0) =0,
0, + Tox(c™; D, p,u, H, ¢, 6) + Mo (SF, ¢™) = 0,

in’

B, + TP D, pyu, Hy &7 Oris) + Myy(ci7, SF, ¢2%) = 0,

v,in’

SF(c!"*) = exp (— fot ach m(cipz)dT).

(2.24)
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This model, also illustrated in the schematic of Figure 1, highlights the essential pharmacokinetics
and pharmacodynamics processes, capturing the interaction of TPZ with the vascular and tissue
environments, influenced by oxygen levels and drug properties. By integrating this model with the
fluid dynamics, hematocrit, and oxygen transport models, a comprehensive understanding of drug
behavior in hypoxic tumor regions is achieved.

Blood Flow & Hematocrit

T,

Oxygen Transport (3D- lﬂ (" TPZ Delivery (3D-1D) )
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Figure 1. Schematic of the full 3D-1D model. The vascular network (1D) supplies oxygen
and drugs to the tissue (3D). Spatially resolved concentrations influence the cell survival
model at each point in space and time (3D), which feeds back to modulate oxygen and TPZ
consumption and reshape the microenvironment.

2.2. A surrogate model for pharmacokinetics and pharmacodynamics: the 0D model

The 3D-1D mixed-dimensional model presented in Eq (2.24) shows a nonlinear interdependence
of SF, ¢®* and ¢;”*, as shown in Figure 1. This model definition represents a peculiar feature for
properly describing reliable pharmacokinetics, but is incompatible with a sensitivity analysis
approach due to computational demands. To address this, we developed a surrogate model (0D
model) incorporating nonlinear dynamics to support the 3D-1D mixed-dimensional model.
Specifically, our approach is to leverage the linear relationship for drug consumption while
thoughtfully incorporating nonlinear dynamics that are a priori determined using a suitable OD model.
In the present work, we construct a surrogate model that reduces the complex distributed system
governing TPZ pharmacokinetics and pharmacodynamics (described by a set of coupled partial
differential equations) to a system of ordinary differential equations formulated in terms of spatially
averaged quantities. This approach decreases computational complexity while preserving the
dominant transport and reaction dynamics. We formulate a surrogate model based on Eq (2.21) in Q
to quickly compute the spatial average of c/”* and SF.

Neglecting the space dependence, the ordinary differential problem (d, being the time derivative)
for TPZ reads:

Z Z ox S Z z Z Z
dic” + ¢(SEYm®* ([, ") + L,L,F‘—,(pt = p)er = f (P pon L ), (2.25)

LFS

where we consider the consumption rate m'”*(c/”), the lymphatic drainage (L, 5(p: — po)c’”), and
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the forcing term f£**. In this study, the influence of lymphatic drainage and capillary leakage is

considered negligible. This assumption is supported by experimental observations that indicate that
functional lymphatic vessels are often absent in the core regions of solid tumors, resulting in effective
lymphatic clearance rates as low as 107® s~! or less [37,38]. Similarly, although capillary leakage is
typically enhanced in tumors, the time scales associated with solute extravasation are much longer
than the characteristic diffusion and metabolism times considered here. Therefore, their contribution
to drug transport dynamics is deemed subdominant and neglected in the reduced-order formulation.
By neglecting lymphatic drainage and capillary leakage, three main contributions are identified:

i) the flux of the drug due to the permeability of the capillary walls: 2 P(c;’* — c/"');

b

DiF* ‘ t
S t (PPZ PZ);

ii) the diffusion flux from the perivascular environment to the tissue: c

iii) drug consumption in the tissue.

Here, P is the permeability of the capillary wall to TPZ and L is the representative distance for the
diffusion of the solute between the perivascular space and the bulk of the tissue (characteristic
diffusion path length, 2.5um). The quantity S/V denotes the vessel surface area per unit tissue
volume. Moreover, we introduce a new variable c¢/** representing the concentration of drugs in the
perivascular environment to accurately describe diffusion in the tissue without explicitly including the
spatial coordinate. Consequently, c;”* is the average concentration in the tissue and D}’ is the solute
diffusion coefficient. Thus, the homogeneous problem holds:

e+ SEYMPA(, %) = P (cff’z 'y + D:Zf/ (PP =Py (2.26)
In the same fashion as in electromagnetism, the flux of the drug from the vessel to the tissue can be
modeled as a current and the concentration differences as a voltage, obtaining the resulting resistance
exerted by the drug [39,40]. Let ¢, and ¢, be the two unknown resistances corresponding to the
permeation of the capillary walls and the diffusion from the perivascular environment, using the
following definitions:

° fctp = I,
° Ci}pz ptpz Af] ,
° Cf) Pz tpz Afz ,
o o ”’Z = A& + MG = AE
Vv VL
where they result ¢; = 5P and ¢, = SO As a consequence, the drug flux 7 reads:
t
[ = Af ftpz _ CtvpZ _C;pz _ Cipz C;pz S (Ctpz C;pZ)P'D;pZ (2.27)
e TV I LT e tpz : ’ '
o1+ P S(P+D§I’Z) ;_/( ;Dl:’"‘"' ) V D +P-L
t
. tpz _ S _P-D
where we introduce the constant K7 = & RIETIR

Note that the intermediate variable c¢!” ap: is eliminated algebraically by assuming a quasi-steady

transport regime. Under this assumption, the flux of TPZ through the capillary wall and the tissue
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interface is the same (i.e., the same current / flows through both resistive elements). This leads to the
system:
; cipz _ Cf,tpz Cf,tpz _ Cﬁpz
ol o5 ’

from which one obtains the explicit expression:

pitpz ¢2€sz + ¢IC;pZ
T i+ dy
Substituting this relation into the flux expression produces a closed-form relationship between vascular
and tissue concentrations, with an effective total resistance ¢; + ¢,.
In addition, we consider the coefficient m defined in Eq (2.17) as:

tpz
K V naxC
tpzs IPT 0x\ __ tpz maxCy
mp (Ct ’Ct ) - ( kmetct + s

ox tpz
K + C; K, + c

and we combine it with the dynamics of the survival fraction described by (2.19), so that nonlinear
dynamics are integrated while conserving a linear functional form.

The reciprocal influence of oxygen and TPZ concentrations is also considered:

0X
d,.c* + p(SFYm* (™) = P‘”‘f—/(c‘v”‘ -+ DTIL‘Q—/(C‘," -y,

with ¢* and ¢%* corresponding to tissue and vascular blood oxygen concentrations, while ¢/
represents its perivascular concentration and m®*(c{*) is defined in (2.8). Exploiting, as before, the
electrical analogy between mass and charge transport, we define K = %%. In addition, we
account for cell viability after drug exposure, including the effect of the surviving fraction. This
would account for the impact of cell death, induced by drug concentration, on oxygen consumption
rates by integrating pharmacodynamic responses.

As a result, the surrogate model for pharmacodynamics in the tissue governing the time evolution

. t .
of the variables ¢;”*, ¢, and SF is:

pz tpz AIPZ t pz — Ktpz Pz
dic” + K", + ¢o SEm'P*(c,”™, ¢*) = K'P*c; ™,
dic* + ¢o SEm*(c0¥) + K**c)* = K7*¢9%,

tpz
tpz( P2 0X\ — K tpz Vinax¢
m'P(c;”, ci*)= (_K+ch)(kmetct 4 el

K, + c;pz
oxy _ it 2.28
m(ct ) - Vmax Ctvx+a?xpm50 B ( )
d log SF t
(:i = _—q- ctPZ . mtpz(ctpz’ c;)x),
tpz _
¢, (0)=0,

c7*(0) = ¢f".

Equations (2.28), illustrated in the schematic of Figure 2, define the nonlinear system of ordinary
differential equations that constitutes the surrogate model for TPZ pharmacokinetics and
pharmacodynamics in tissue complemented with oxygen dynamics. Equation (2.28) governs the time
evolution of the spatially averaged tissue drug concentration c/”, incorporating both linear
extravasation from the vasculature and nonlinear metabolic consumption modulated by oxygen
availability and cell viability. Precisely, the dynamics of tissue oxygen concentration ¢{* is accounted
for, where oxygen consumption is also modulated by SF(z).
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Figure 2. Schematic of the 0D surrogate model. Vascular TPZ drives the tissue concentration
c/’*, which, together with the tissue oxygen ¢%*, determines the surviving fraction SF(¢). This
in turn modulates both TPZ and oxygen metabolism through the nonlinear terms m'?* and m°*,
capturing the feedback structure of the pharmacodynamics model described in Eq (2.28).

2.3. One-way interaction between the 0D and the 3D-1D models

The surrogate model (OD model) presented in Section 2.2 not only provides a standalone
framework to investigate pharmacokinetics and pharmacodynamics interactions under the assumption
of spatial homogeneity, but also acts as a computationally efficient auxiliary tool within the more
complex spatially resolved 3D-1D model. In particular, we employ the 0D model to facilitate and
accelerate the evaluation of the nonlinear metabolic consumption terms required by the full
multi-scale 3D-1D model. This section details the methodology of using a one-way coupling
approach to bridge these two modeling scales effectively.

The principal goal of this one-way interaction is to simplify the complex metabolic consumption of
TPZ in the 3D-1D framework employing a spatially separable and linear approximation. Specifically,
the metabolic consumption is approximated by

m'P*(x, 1) = SF() - r(z) - ¢'P(x, 1), (2.29)

where SF(7) represents the surviving fraction influenced by tissue concentrations of TPZ and oxygen,
and r(#) acts as an effective metabolic rate coefficient integrating both Michaelis-Menten kinetics and
oxygen modulation. Thus, the spatial variability of the TPZ concentration, ¢’7*(x, t), is preserved. The
linearization in Eq (2.29) represents a strategic decomposition of what would otherwise be a
computationally prohibitive nonlinear metabolic term encapsulating the complex Michaelis-Menten
kinetics with oxygen modulation that must be evaluated pointwise throughout the entire 3D-1D
computational domain at each time step. By assuming uniform spatial dependence in the kinetic
behavior of metabolic processes, we decomposed this complex function into separable temporal and
spatial components: the temporal factors SF(7) and r(f) capture all nonlinear dynamics through
pre-computation using the efficient 0D model, while the spatial factor ¢'7*(x, t) preserves the essential
spatial heterogeneity of drug distribution. This decomposition transforms the original nonlinear
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problem requiring iterative solving at every grid point into a simple linear operation, dramatically
reducing computational cost while maintaining the spatial resolution critical for accurate modeling of
drug transport and distribution. This linear representation not only circumvents computationally
demanding pointwise nonlinear evaluations, significantly enhancing numerical tractability and
computational efficiency, but is also directly motivated by implementation constraints. The existing
C++ code that underpins the full 3D-1D model illustrated in Figure 1 is specifically limited to linear
reaction terms within the advection-diffusion-reaction solver used to model the dynamics of TPZ.
This practical constraint further justifies the adoption of the proposed linear approximation.

To achieve this efficient representation, we first approximate the surviving fraction SF(¢) obtained
from the OD simulations using a sigmoid function:

Y
" 1+exp(-Z(t = D))’

SF() =X (2.30)
The sigmoid approximation is characterized by parameters that represent distinct physiological
behaviors: X and X — Y correspond to the upper and lower asymptotes, Z controls the steepness of the
transition, and D marks the midpoint time of the response. The optimized values of these parameters,
derived from the regression against the data from the OD model, are summarized in Table 1. The
parameter optimization was performed in Python using scipy.optimize.curve fit, which
implements a nonlinear least-squares solver based on the Levenberg—Marquardt algorithm.

Table 1. Optimized sigmoid parameters for the surviving fraction SF(¢).

Parameter Value Unit Description

X 1.0658 - Upper asymptote
Y 0.6013 - Sigmoid amplitude
Z 0.00065 7! Slope

D 4002.48 S Midpoint time

The high accuracy of this sigmoid fit is quantitatively validated by a coefficient of determination
R?* = 0.9999, indicating a satisfactory level of agreement with data obtained from the 0D model.
However, the Kolmogorov-Smirnov test suggests slight deviations in the residual distribution,
reflecting minor systematic discrepancies. This result is further illustrated in Figure 3 (left panel),
where the fitted sigmoid curve closely follows the original computed SF(¢#) values of the 0D model.
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Figure 3. Left panel: Comparison between the surviving fraction (SF) computed by
the original OD model and its sigmoid approximation. The remarkable correspondence
underscores the adequacy of the sigmoid representation to capture the primary nonlinear
transition observed in the OD simulations. Right panel: Comparison of the computed
metabolic rate r(f) from the 0D model and its fitted rational approximation. The figure
highlights both the successful capture of the general declining trend and areas where
discrepancies remain, potentially indicating more complex underlying dynamics.

Following the approximation of SF(¢), we compute the effective metabolic coefficient r(r) by
dividing the metabolic rate m'?*(t), as output by the 0D model, by the product of SF(f) and the
spatially averaged TPZ concentration ¢'7*(f). The resulting time series for r(r) is suitably
approximated using a rational function:

A

r(t) = +B +C. (2.31)
This functional form effectively captures the sharp early decay and nonzero asymptotic level observed
in the OD model data while minimizing residual bias; it did not systematically over- or under-predict
data across time. Its hyperbolic structure naturally captures the expected saturation kinetics of
metabolic processes, where high initial rates occur when substrate availability is abundant, followed
by a monotonic decay to lower steady-state levels as the system approaches metabolic equilibrium.
This form provides excellent numerical stability compared to exponential alternatives while
maintaining analytical tractability for integration into the 3D-1D framework. Additionally, the
three-parameter structure offers interpretable coefficients that correspond to distinct physiological
phases: the scaling parameter A governs the magnitude of initial metabolic activity, the time shift B
controls the transition timing, and the asymptotic offset C represents the long-term basal metabolic
rate.  This parsimony in parameters, combined with the function’s ability to approximate
multi-exponential decay processes typical of complex metabolic networks, makes it an efficient and
physiologically meaningful choice for capturing the essential dynamics of TPZ metabolism. The
fitted parameters, obtained through regression analysis, are listed in Table 2. The quality of this
hyperbolic fit, though moderate with an R* = 0.7000, demonstrates an adequate ability to capture the
main trends and stabilize metabolic decay, even if some residual temporal variability remains
unexplained. We note that the rational fit of the effective metabolic rate coefficient yielded a
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Table 2. Fitted parameters for the effective metabolic rate coefficient r(z).

Parameter Value Unit Description
A 4.7865 - Scaling numerator
B 331.6163 S Time shift
C 0.00247 57! Long-term offset

coefficient of determination R> ~ 0.70, which is moderate. However, this level of accuracy is
acceptable in the present context because the fit is used as an intermediate surrogate function rather
than a direct predictive endpoint. Its main role is to preserve the monotonic oxygen dependence and
approximate magnitude of the metabolic rate, both of which are reliably captured. Figure 3 (right
panel) depicts both the original metabolic rate data and the fitted rational function, visually illustrating
the strengths and limitations of the approximation.

In summary, substituting Eqs (2.30) and (2.31) into (2.29) produces a highly efficient and
analytically explicit expression for the metabolic source term in the 3D-1D model. This combined
approach significantly improves computational performance, thus facilitating extensive parametric
investigations, optimization studies, and uncertainty quantification without sacrificing spatial
resolution.
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Figure 4. Schematic representation of the multi-scale 3D-1D-0D pharmacokinetics model
architecture after implementing the one-way interaction with the OD model. Tissue-level
TPZ and oxygen concentrations are computed via the 3D transport equations, while the
corresponding metabolic source terms are no longer evaluated through nested nonlinear
functions. Instead, TPZ metabolism is modeled as a linear expression modulated by two
surrogate functions derived offline from the OD model: the surviving fraction SF(#) and
the effective metabolic coefficient (). Oxygen metabolism is similarly represented via an
exogenous effective function m&i(¢). This reformulation reduces computational complexity
while preserving the essential physiological feedback.
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The conceptual structure of the updated 3D-1D model, incorporating the surrogate functions SF(?),
r(t), and an exogenous effective function mgf(t), is summarized in Figure 4. We refer to this
reformulated system as the 3D-1D-0D model, to emphasize the multi-scale architecture that combines
spatially resolved 3D and 1D transport dynamics with surrogate functions derived from a reduced 0D
pharmacokinetics/pharmacodynamics model. This framework will serve as the basis for the numerical
experiments of Section 5.

Note that, in this paper, the classical full-memory formulation is adopted (see Eq (2.20)). As such,
the history of the system is fully taken into account through the integral operators. An alternative
approach consists of using short-memory kernels, in which the influence of distant past states
progressively vanishes or is truncated after a finite horizon. Such models, recently investigated in the
context of viscoelasticity and continuum mechanics [36], may provide a more realistic description of
biological processes characterized by fading memory and could also reduce computational cost.
Although not considered in the present study, the extension of our framework to short-memory
operators represents an interesting direction for future work. In particular, fractional-order models
could be employed to account for memory effects in tissue transport and drug-cell interactions,
potentially capturing delayed cellular responses or heterogeneous diffusion behaviors not represented
in classical integer-order models. Incorporating such effects may improve model fidelity in settings
where drug uptake or clearance exhibits non-exponential kinetics. Exploring these generalizations lies
beyond the scope of the present study but represents an exciting avenue for future research.

2.4. Mathematical analysis of the OD and the 3D-1D pharmacokinetics models

The analysis of the existence of solutions for the proposed coupled multi-scale model presents
significant theoretical challenges due to the nonlinear couplings between flow dynamics, transport
phenomena, and pharmacodynamic responses. Although a complete existence proof for the full
coupled system is beyond the scope of this study, we provide here a mathematical framework that
establishes the foundation for such an analysis.

Our multi-scale model consists of four main components whose existence properties can be
analyzed separately:

o (F&H): The microvascular flow model is based on well-established Poiseuille flow in vessels
and Darcy flow in tissue. For systems of this type, the results of existence and uniqueness are
available when the hydraulic conductivities and geometric parameters meet the standard regularity
conditions [42]. The hematocrit transport Eq (2.3) represents a hyperbolic conservation law with
source terms, for which existence follows from standard theory [41].

e O: The coupled 3D-1D oxygen transport system in (2.10) consists of advection-diffusion-reaction
equations with Michaelis-Menten kinetics. The existence of weak solutions for such systems is
well-established in the literature [42].

e 7PZ: The main mathematical challenge lies in the strong nonlinear coupling through the
surviving fraction SF(¢) defined in Eq (2.20). This integral equation creates a global-in-time
dependence that requires careful analysis.

e The OD model (Section 2.2) serves as a regularization of the full system and provides smooth
approximations that can be rigorously analyzed. For this simplified system, existence follows
directly from the standard ordinary differential equations (ODEs) theory [43].
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Lastly, while formal existence proofs remain as future theoretical work, our extensive numerical
experiments provide strong computational evidence of well-posedness. As such, while rigorous
existence analysis represents an important theoretical challenge that merits dedicated mathematical
investigation, the current study focuses on computational implementation and sensitivity analysis.
The numerical evidence strongly supports well-posed behavior, and the mathematical framework
outlined above provides the foundation for future theoretical work.

3. Numerical discretization techniques

Given the complexity of the coupled mathematical models that describe the microvascular
environment and drug transport, analytical solutions are not available. Therefore, numerical
simulations are essential to apply these models to realistic scenarios. This section outlines the
numerical techniques employed for the mixed-dimensional 3D-1D models and the OD surrogate
model presented in Section 2.

3.1. 3D-1D model discretization

The core of the spatially distributed model is a mixed-dimensional 3D-1D framework, which
describes the tissue environment as a three-dimensional (3D) domain and embeds the microvascular
network within it as a collection of one-dimensional (1D) channels or a metric graph, see for
example [21-23]. The finite element method (FEM) is used to discretize the governing partial
differential equations (PDEs) for 3D-1D problems, including blood flow, oxygen transfer, and drug
transport. This method is based on the variational formulation and the partitioning of the domain into
finite elements. We refer the interested reader to specific papers on the formulation and discretization
of these equations, for example [44-49]. A key advantage of the mixed-dimensional formulation is
that the discretizations of the equations defined in the tissue and vascular networks are entirely
independent. Meshes ultimately lack shared topological characteristics (such as vessel segments
located at boundaries or centroids of 3D elements), and geometrically consistent features are not
necessary in the design of numerical schemes. The tissue is discretized using a uniform tetrahedral
mesh. Piecewise continuous polynomial finite elements are used for quantities such as oxygen and
drug concentrations, whereas mixed finite elements are used for interstitial fluid flow. The resolution
of the mesh is determined through a mesh sensitivity analysis. For example, a typical domain size
500 um x 500 um x 500 um is discretized with 15 nodes per side. The 1D branches of the vascular
network are discretized as separate subdomains, approximated by piecewise-straight segments,
typically divided into five equispaced elements per branch. Continuous piecewise polynomial finite
elements are also used for variables such as blood flow and drug transport in the vascular system. To
solve the coupled problem, a linearization strategy is employed to handle nonlinearities, using either a
fixed-point iteration or the Newton-Raphson method. The resulting linear systems arising from 7 &H
as well as from O and 7P at each iteration are solved using a direct SuperLU solver. All 3D-1D
simulations are performed using an in-house C++ code built on the open-source GetFEM++ library,
which enables discretization and coupling of operators across multiple dimensions and supports
non-matching grids between embedded and embedding domains.

From the numerical approximation standpoint, the reduced regularity of the solution induced by
line sources leads to suboptimal convergence, with order O(h'/?>7%) in the H' seminorm on
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quasi-uniform meshes, & being the mesh characteristic size and £ > 0 an arbitrarily small constant.
Nevertheless, numerical analysis of related models with inclusions [45,46] shows that optimal finite
element rates (O(h) in H') are recovered when the mesh is aligned with the embedded network or
suitably refined near the singular sources. In particular, Koppl et al. [45] provides comprehensive
analysis for second-order elliptic problems with inclusions, showing that embedded
lower-dimensional structures create singular behavior that requires appropriate mesh treatment for
optimal convergence; meanwhile, Gjerde et al. [46] shows for elliptic equations with line sources that
the solution exhibits reduced regularity near the line source and that optimal convergence can be
restored by appropriate treatment of singular terms. However, the satisfaction of such conditions for
optimal approximation significantly increases the computational cost of the method, making its
application to realistic problems (as the one addressed here) computationally intractable.

3.2. 0D model discretization and integration

A spatially averaged surrogate model (OD) is used to simulate nonlinear pharmacokinetics and
pharmacodynamics responses (e.g., drug metabolism rate and cell survival fraction SF) that depend on
quantities at the tissue level, such as oxygen concentration. This model provides input-output curves
(e.g., SF(¢) and r(¢) ) that are parameterized and integrated into the larger 3D-1D FEM framework.
Internally, the OD model is formulated as a system of ODEs, which account for the time evolution of
drug and oxygen concentrations and the nonlinear dependence of SF on those quantities. These ODEs
reflect Michaelis-Menten-type kinetics and exponential decay laws for drug action. The ODE system
is numerically solved using MATLAB’s ODE Suite, specifically the ode45 solver, which implements a
Runge-Kutta (4,5) method with adaptive time-stepping. This choice ensures computational efficiency
and robustness for the stiff, nonlinear behavior typical of pharmacokinetics and pharmacodynamics
models. Under smoothness assumptions, this scheme achieves a global order of accuracy equal to four,
with local error control of order five. The results of these simulations, that is, the functions SF(#) and
r(t) defined in Eqgs (2.30) and (2.31), respectively, are then used to inform the source terms in the 3D-
1D FEM framework. This multi-scale strategy allows the 3D model to incorporate complex, nonlinear
cellular-level dynamics without solving the full set of coupled equations at every spatial node and time
step.

4. Sensitivity analysis of the multi-scale model

As detailed in the preceding section, we have developed a multi-scale model to simulate the
pharmacokinetics and pharmacodynamics of hypoxia-activated drugs in the vascular
microenvironment. This model integrates various interconnected components, including blood flow,
oxygen transport, and drug delivery, each governed by a set of physical, physiological, and
geometrical parameters. Given the complexity of this multi-scale model and the inherent uncertainty
in the precise values of these parameters within the heterogeneous tumor microenvironment, it
becomes crucial to assess the robustness of the model predictions and to identify the most influential
parameters affecting treatment outcomes, such as drug concentration, oxygen levels, and possibly cell
survival. Therefore, this section presents the methodology adopted for global sensitivity analysis, a
technique essential to systematically exploring how variations in the input parameters of our
multi-scale model impact its outputs across their physiological and pathological ranges. By
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identifying the most influential factors, this analysis aims to provide valuable insight into the design
and optimization of hypoxia-targeted cancer therapies and guide future experimental investigations.
This section provides a concise overview of the methodology used to perform a global sensitivity
analysis that assesses the influence of variations in input across the full spectrum of potential input
values.

4.1. Variance based methods

Variance-based sensitivity analysis methods, such as Sobol’s indices, are widely regarded as the
gold standard for global sensitivity assessment, as they decompose the output variance into
contributions from individual parameters and their interactions [26]. These approaches provide
rigorous quantitative information but require a very large number of model evaluations, which is
prohibitive for computationally expensive models such as the current 3D-1D framework. For this
reason, variance-based methods are not employed in this work; instead, we focus on the Morris
screening approach, which offers an efficient compromise between interpretability and computational
feasibility, while still allowing us to capture the main effects and potential interactions among
parameters.

4.2. Screening methods: Elementary effect

The elementary effects (EE) method is simple but effective in screening for a few important input
factors over the many that can be contained in a model. The fundamental idea behind the method
was proposed by Morris in 1991 with the definition of the concept of EEs [50]. The EE method
determines whether an input factor is negligible, linear and additive, nonlinear or interacts with some
other factor [51]. This test corresponds to an average of derivatives over the space of inputs. Let
X € R* represent the vector of input factors for a model and Y € R its scalar outcome. By assuming
the k components of X as independent factors, each normalized to the interval [0, 1], the input space is
defined by the k-dimensional unit hypercube X := [0, 1]*. For the construction of EE trajectories, the
hypercube Xj is discretized on p € N levels, therefore inducing a partition X} of the parameter domain
[0, 1]¥ from which admissible candidate points are drawn. For a given input X, the EE corresponding
to the i-th component X;, withi = 1,..., k is defined as:

[Y(X + eA) - Y(X)]

EE/(X) =
(X) A
) ) 1 2 p-2 ) ) .. :
A being a value in Pt T | and e; the unitary vector for the i-th direction. It is
p—L1 p- P -
important to mention that for each i = 1, ..., k, EE;(X) captures local characteristics since it relies on

X. To derive a broader sensitivity measure, one should determine the statistics of their distribution,
denoted as F; ~ EE;, by randomly selecting various X from X}. Therefore, after sampling r points

XD, ..., X", we obtain the following sensitivity metrics for the i-th component of the input factors:
1 v -
i=— Y EE(XY). 4.1
i = jE:l X7) (4.1)

We observe that the index y;, representing the sensitivity of the i-th parameter globally, can be deceptive
when faced with non-monotonic relationships, due to the potential offsetting of positive and negative
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contributions. For this reason, we introduce u;, the mean of the absolute values of the elementary
effects, which more reliably quantifies the overall importance of each parameter irrespective of the
direction of influence:

* 1 - j
ui=— D IEEXD) (4.2)
j=1

The values of y are obtained as the mean of the absolute values of the elementary effects computed
along the sampling points within X. The EE; standard deviation o-; is used to estimate the quality of
the effect, namely, whether it results from nonlinear effects or due to mutual interactions with other
factors:

1 © . )
i = — EEI X(]) — ;) .
o — ;:1( (XD) - ;)

Calculating each EE; requires two sample points, which leads to 2rk evaluations of the model in order
to calculate the measures y; and o; fori = 1,... k.

To reduce computational cost, Morris proposed a unique sampling technique that allows the use
of only r(k + 1) samples [50]. This involves r trajectories, each consisting of k + 1 points in the unit
hypercube X} that differ from their adjacent point in a single component, thus yielding k elementary
effects for each trajectory. Each trajectory can be interpreted as a matrix B* of size (k+1)xk, constructed
in such a way that each input variable is varied one at a time while all others remain fixed. Specifically,
for each j = 1,...,k, there is a pair of rows in which only the j-th component differs. However, since
B” is built in a fixed and deterministic way, the resulting variations would not reflect the randomness
required for a proper global sensitivity analysis. To restore randomness, two additional components are
used: (i) a diagonal matrix D* of size k X k with diagonal entries randomly chosen from {—1, 1}, used
to assign a random sign (positive or negative) to each step in the trajectory; (ii) a permutation matrix
P* of size k X k, used to randomly change the order in which the input variables are perturbed. The
diagonal matrix D* ensures that a variable can be increased or decreased by A in the trajectory. The
permutation matrix P* ensures that the order of these changes is not fixed, adding further variability to
the sampling process. By evaluating the model at each point of the resulting perturbed trajectory, one
can calculate an elementary effect for each input variable as the difference between two consecutive
model evaluations, divided by A. These differences provide a local sensitivity measure of the model
output with respect to each input. For a more detailed discussion, we refer the reader to [26].

5. Results of the hypoxia-activated drug model and sensitivity analysis

This section presents the results obtained by coupling the proposed multi-scale mathematical
model with global sensitivity analysis techniques to evaluate the influence of key parameters on
model outcomes. The primary goal is to identify the most significant physiological, microvascular,
and drug-related parameters that affect therapeutic efficacy, with a particular focus on the cell survival
fraction (SF). To this end, a series of numerical simulations was carried out, incorporating a
time-dependent TPZ injection profile, described in detail in Section 5.2. The model tracks the TPZ
concentration in the tissue (c;”*) and the corresponding SF as indicators of drug distribution and
treatment effectiveness. Given the large number of parameters and their wide variability, direct
sensitivity analysis on the full model would be computationally prohibitive. Therefore, a two-stage

AIMS Mathematics Volume 10, Issue 11, 25504-25544.



25528

approach was adopted. A preliminary screening was conducted using a surrogate formulation (0D
model) to identify the most influential parameters. The sensitivity analysis was then refined on the
detailed 3D-1D-0D model, focusing only on this reduced subset of parameters.

Although physiological bounds for most parameters were available in the literature, the data for
others were incomplete or lacking. In such cases, a variability range of +25% around the physiological
baseline was assumed. Table 3 summarizes the ranges of parameters and their respective physiological
bounds.

Table 3. Parameter ranges for the sensitivity analysis along with the relative physiological

bounds.
i xomin X Physiological Bounds
P [52] 1.78 x 1072 mol/m> 4.73 x 1072 mol/m> 200 — 330 mg/m*
D" [53] 1.80 x 107" m?/s 1.25x 10719 m?/s 0.18 - 1.25x 107 %cm?/s
P, [25] 3.75 % 107 m/s 6.25 % 107 m/s 5% 107 m/s +25%
kmer [53] 5.00%x 1073 s 3.33x 1072 & 0.3 —2 min
VIP: 131] 1.07 x 107 mol/(m* s) 178 x 107* mol/(m>s) 1.42 x 10™* mol/(m> s) + 25%
K7 [31] 2.63 x 1073 mol/m? 4.38 x 1073 mol/m> 3.5 % 1072 mol/m> + 25%
K [54] 2.60 x 1073 mol/m? 1.30 x 1072 mol/m? 2—-10 mmHg
a [31] 1.75 x 10 (mol/m>)~2 2.91 x 10 (mol/m>)~2 23.3 (mol/m*) ™% +25%
¢o [31] 3.88 x 107! 6.46 x 107! 0.517 £ 25%
o 3.90 x 1072 mol/m? 1.30 x 107! mol/m? 30 — 100mmHg
ver . 120,25]  1.30 x 1073 mol/m?/s 1.04 x 1072 mol/m?/ s 1 -8 mmHg/s
Ky* [25] 6.50 X 107 mol/m>/ s 1.30 x 1073 mol/m?/s 0.5 — lmmHg
P, [25] 3.50x 107 m/s 3.00x 10™* m/s —
D, [22] 1.81 x 10™° m?/s 3.01 x 107° m?/s 2.41 % 1079 m?/s + 25%

5.1. Synthetic vascular network generation

The vascular networks adopted in this study are generated according to a biomimetic and iterative
procedure originally proposed in [21], designed to satisfy key physiological and morphological
criteria. The construction relies on Voronoi tessellations to model capillary topologies that ensure
space-filling properties while preserving biological realism. Each network is obtained by generating
planar Voronoi tessellations from a random distribution of 8 seed points on a square domain with
500 i m side, resulting in networks with a sufficiently high aspect ratio (L/R = 4) for each branch to
justify the one-dimensional approximation of blood flow. To assign physiologically consistent vessel
radii, an iterative refinement algorithm is used, enforcing Murray’s law in bifurcations and
anastomoses. The initial radii are set uniformly to 4 um and are iteratively updated based on

flow-driven topological connectivity. For each bifurcation, a random split ratio Rno g assigned, and

Rout.l
the radii of the daughter vessels are determined by the following rules: (i) bifurcation,
an,o = Rf)ut’l + Rf)ut’z, (ii) anastomosis, an’l + an,z = Riut’o. This procedure is repeated until

convergence. To maintain physiological significance, we keep only those configurations where radii

fall within the range [2, 6] um and the average radius is equal to R = 4 um with a tolerance of + 5%.
We construct a collection of approximately 10* valid configurations. 3D vascular networks are then

obtained by stacking 18 admissible planar networks along the vertical axis, with each layer occupying a
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slab of thickness 7, = 27.8 um. To avoid unrealistic planarity, the nodes are vertically perturbed within
the range +77,/2, ensuring a physiologically plausible spatial distribution. The resulting 3D network
achieves a surface-to-volume ratio of approximately ~ 7000 m~' [38], which corresponds to the target
physiological value. This structured approach allows controlled variability through a small number of
parameters, while ensuring compliance with essential physiological and topological constraints. All
the results of this work are obtained using a single synthetic vascular network with an associated radius
distribution reported in Figure 5.

Radius [um]

Figure 5. Example of constrained Voronoi-based synthetic vascular network and
visualization of radii distribution (um). This is the vascular network that has been used
consistently in all the numerical tests.

5.2. Computational setup and TPZ injection profile

The three-dimensional tissue domain was modeled as a cubic sample of size
500 um x 500 um x 500 um and discretized using a uniform tetrahedral mesh with 15 nodes per edge.
Linear finite elements were used for spatial discretization, resulting in approximately 4358 degrees of
freedom (DOF) in the tissue domain. The discretization of the one-dimensional vascular network was
performed based on the specific topology of the embedded vessel architecture. Specifically, we have
used 5021 DOFs to discretize a problem with 181 vessels. A mesh sensitivity analysis was performed
to ensure that spatial resolution was sufficient to capture the relevant features of oxygen and drug
transport, without introducing unnecessary computational overhead (see also [25]). The
computational cost of simulating the 3D-1D-0D model is highly dependent on the complexity of the
vascular network, the mesh density, and the domain size. For example, a single simulation could
range from tens of minutes to a few hours on a standard workstation, depending on the number of
vessels and the simulation time window. These substantial computational requirements justify the
development and use of reduced-order models, such as the OD surrogate formulation introduced in
Section 2.2, particularly for large-scale parametric analyses such as global sensitivity studies.

For the sensitivity analysis based on the Morris method, we set p = 10 and r = 70. Although it
differs from standard selection (p = 4, r = 10, as noted in [26]), this particular choice was made to meet
the requirements of our multi-scale model. A finer discretization (p = 10) was used to better resolve
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localized nonlinear effects and was paired with a sufficiently high number of trajectories (r = 70) to
ensure that the increased resolution translated into meaningful statistical estimates. This choice was
informed by previous experience [25], where we applied a similar methodology to oxygen transport in
the vascular microenvironment and found that although ranking stability was achieved around r =~ 20,
full convergence of the sensitivity indices required r = 50. For the current study, we opted for r = 70
to ensure robustness, even at the expense of an increase in computational cost. Finally, the perturbation
step was calculated using the standard formulation A = p/[2(p — 1)] ~ 0.55, ensuring valid finite-
difference approximations within the unit hypercube and consistency with previous implementations.

The outputs of interest included c/”* and SF taken at three specific time points: end of infusion (¢ =
72005, or t = 2 h), mid-decay (¢t = 10800, or t = 3 h), and end of simulation (¢ = 21600s, or t = 6 h),
as well as their averaged time values ¢;”* and SF throughout the observation period. TPZ perfusion
is simulated using a time-dependent boundary condition on vascular concentration c.”*, mimicking a
typical chemotherapy treatment. The injection protocol consists of three distinct phases:

i) Infusion phase (0s < 7 < 3600s|0h < ¢ < 1h): ctv”lil increases linearly, simulating the gradual
introduction of the drug.
i1) Sustained Infusion Phase (3600s <t < 7200s|1h < ¢ < 2h): cipfn is kept constant, representing
steady drug administration.
iii) Post-infusion Decay Phase (7200s < ¢t < 21600s | 2h < t < 6h): c’v"; undergoes exponential
decay to model drug clearance, with a characteristic time constant 7 = 3220 s (~ 54 min) [55].

The proposed dynamic injection methodology facilitates an accurate simulation of drug kinetics,
enabling a comprehensive evaluation of therapeutic effectiveness by analyzing the progression of ¢/
and SF across critical time points and throughout the treatment.

5.3. Sensitivity analysis for the 0D model

To systematically identify the most influential parameters that govern the pharmacokinetics and
pharmacodynamics of the OD model, we apply the Morris method of EE, presented in Section 4.
The results are summarized using two key statistical indices: the mean of the absolute values of the
elementary effects, denoted by u*, and their standard deviation, o~. The parameters with low u* and
low o can be considered negligible; high y* and low o indicate strong, nearly linear effects; while
high values of both u* and o suggest nonlinear or interaction-driven influences. A commonly adopted
visualization plots each parameter in the u*-o- plane. This type of plot offers an intuitive representation
to discern not only which parameters matter most but also how their effects manifest in the model’s
behavior.

In this study, this analysis is used to prioritize the role of physiological and pharmacological
parameters in determining tissue-level drug concentration ¢;” and the surviving fraction SF, helping
guide the subsequent refinement of high-fidelity 3D-1D simulations. Figure 6 shows the y-o; plot for
i= ci’(’f, D%, K, %, kier, Po, P2, V05, PP, @, Vb KF¢, D%, and K for the quantity of interest ¢;”~.

We observe that the value of u*,. is significantly higher, approximately on the order of 1072, compared
v
to the value for other parameters, the latter ranging from 1077 to 10™*. This calculation enables a

direct comparison of the u* index with the quantity of interest considered, suggesting that the vascular
concentration of TPZ exerts the most significant influence on the average tissue concentration with an

AIMS Mathematics Volume 10, Issue 11, 25504-25544.



25531

average effect of ~ 1072, Moreover, o, s shows relatively modest values compared to u* e O assesses

the combined effects of factors, 1ncludmg both nonlinear effects and interactions with other factors.
Low Values of o; suggest minimal variability between elementary effects, implying that the influence
of ' o is largely independent of the values assumed by the other factors.
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Figure 6. Morris sensitivity indices represented in the u*-o- plane for the output ¢;”* obtained
with the OD model. The horizontal axis reports the mean of the absolute elementary effects
(1), measuring the overall influence of each parameter, while the vertical axis reports their
standard deviation (o), which quantifies nonlinear effects and interactions.

Note that the quantity ¢.”* is used here as a representative of the biomedical problem, being a
measure of the amount of chemotherapeutic delivered to the tissue. In fact, the metric ¢;”* serves as a
preliminary evaluation measure. It is suitable to identify the parameters that most influence bulk
tissue exposure, and hence the average pharmacodynamics response, in our scenarios. However, when
the clinical or biological question requires the prediction of the fate of small, highly hypoxic niches, a
spatially resolved analysis is necessary, and the averaged metric should be replaced by point-wise or
near-vessel concentration diagnostics [32,56,57]. However, it may not be sufficiently descriptive as a
reference quantity for sensitivity analysis. ]

Due to the exponential decay for ¢ > 7200 s, ¢/”* assumes very low values for most of the time of
numerical experiments compared to its value at the peak of the infusion phase (3600 s < ¢t < 7200 s).
In this light, the concentration of TPZ in tissue at + = 7200 s, 10800 s, and 21600 s may provide a
more complete picture of the sensitivity of the system in terms of u: and o;. As we can observe in
Figure 7, interestingly, all parameters have a stronger influence on ¢/”*(7200 s) and ¢;"*(10800 s) since
the exponential decay of ¢ prescribed at the inflow boundary does not influence the results.
Moreover, as confirmation, the values of u; for cP*(21600 s) are, indeed, significantly smaller than the
other three quantities. Figure 8 collects Morris indices for ¢;”*(7200 s), ¢;”*(10800 s) and ¢;"*(21600 s).
Interestingly, except for ct” °, all indices lie about on the bisector of the u}-o; plane, thus suggesting
nonlinear effects of the input parameters on the output of the model and highlighting possible
interactions between them.
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Figure 8. Morris indices in the u*-o plane (the horizontal axis shows u* and the vertical axis
shows o) taken at 7200, 10800, and 21600 seconds, relatively to cip *, obtained with the 0D
model.

The surviving fraction SF is used as a measure of therapeutic efficacy, assessing cell death caused
by drug toxicity. Similarly to ¢/”*, we see that regarding SF as the most influential factor is 7’ (see
Figure 9). Interestingly, the metabolic parameters also greatly affect the model outputs, particularly
those related to oxygen concentration, such as K and cJj. The values of o7; indicate possible interactions
between the parameters and the resulting nonlinear effects. In general, c’vff, kmer» K, a, ¢y, Vo, and
P, are identified as the most critical parameters for SF.

Figure 10 reports Morris indices for these critical parameters taken at 7200 s, 10800 s, and 21600 s.
As expected, exposure to TPZ significantly influences model output. Specifically, focusing on ctv’(’)z,
1 (SF(21600 s)) is higher than those taken at previous times. This is due to the definition of SF, which is
an integral quantity depending on the metabolized drug (see Eq (2.20)). This consideration also extends
to the other parameters that influence the surviving fraction, resulting in a greater u;(SF(21600 s)) for
all i considered in the analysis (Figure 10). Lastly, o; presents minor variations in all parameters,

suggesting that interactions between the parameters play a role in the entire time domain.
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Figure 10. Morris indices in the u*-o- plane (the horizontal axis shows u* and the vertical
axis shows o) taken at 7200, 10800, and 21600 seconds, relatively to SF, obtained with the
0D model.

5.4. Sensitivity analysis for 3D-1D-0D model

In this section, we systematically adopt the multi-scale 3D-1D-0D model introduced in Section 2.3
for the sensitivity analysis. This choice is motivated by the significant computational cost of the full
nonlinear 3D-1D model, which would render comprehensive sensitivity analysis impractical. By
replacing the nonlinear metabolic terms with time-dependent surrogate functions obtained from
the 0D model, the 3D-1D-0D formulation enables efficient simulation while preserving the key
physiological dependencies required to assess parameter influence across scales. The assumption of
steady-state conditions for microvascular flow and oxygen transport (see Sections 2.1.1 and 2.1.2) is
motivated by the physiological separation of time scales. Vascular adaptation and oxygen
equilibration typically occur within seconds to minutes, while prodrug activation and cellular
response evolve over hours. This justifies approximating the microvascular and oxygen fields as
quasi-steady in the present framework. However, neglecting transient fluctuations may obscure the
influence of dynamic hypoxia or rapid vascular remodeling on drug activation and cell fate. As a
consequence, the sensitivity analysis reported here should be interpreted as capturing the dominant
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parametric trends under averaged conditions, while potentially underestimating the effect of
short-lived oxygen fluctuations. The sensitivity analysis of the 0D model suggests that the
concentration of TPZ in the vasculature is a dominant parameter in determining the concentration of
TPZ in the tissue domain. ,u*,pz(ctp “) is approximately two orders of magnitude larger than the

secondary influential parameter w7, (c'p “) (see Figure 6). In addition to c °, the parameters k,,.;, K, a,

¢’ Voo, and P, have been identified as relevant for the selected quantltles of interest. For this
reason, sensitivity analysis is conducted on this streamlined group of seven parameters for
the 3D-1D-0D model. The ranges of investigation are prescribed in Table 3.

As a clear difference among the two approaches, the 3D-1D-0OD model provides the spatial
distributions of c’p “and SF, as well as of all other fields involved, as a function of the vascular network
immersed (Figure 11.a). Specifically, the spatial distribution of TPZ in tissue is a function of
vascularization. Regions with lower drug concentrations present a small number of capillaries
immersed (low vascularization), while regions with a large number of capillaries immersed (high
vascularization) exhibit a higher drug concentration. Analogously, Figure 11.b shows that the spatial
distribution of SF is also a function of vascularization. To compare the Morris indices associated with
the OD model and those relative to the 3D-1D-0D model, the spatial averages of c/”* and SF are

calculated and then used as quantities of interest in the sensitivity analysis.
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Figure 11. Spatial distribution of ¢;”* along with the distribution of ¢/
network (a) and SF (b) taken at 7200 s.

in the vascular

The Morris indices u ,m( ) and o7:(-) with QoI () = {€/"; ¢/”*(7200 5); ¢/*(10800 5); ¢;”*(21600 5)}
are compared directly to those obtamed with OD and reported in Table 4.
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Table 4. Morris indices for the two models related to ¢! for €%, ¢;”(7200 s), ¢;”*(10800 s),
and ¢;”*(21600 s).

index model cr (7200 s) c7*(10800 s) (21600 s)
u 0D 1.17 x 1072 2.94 x 1072 2.05x 1072 3.37x 107
W 3D-1D-0D 1.13x 1072 2.83 x 1072 1.94 x 1072 472 x 1074
o 0D 3.99 x 107 1.73x 107* 6.36 x 107 472 x 107°
‘0 3D-1D-0D 1.32x 1073 3.30x 1073 226 x 1073 551x107

We can observe that the u* e indices are very similar between the two models, and the considerations

enlightened for the surrogate ‘model are confirmed. However, the o, : indices obtained for the 3D-1D-
0D model are approximately two orders of magnitude larger than those of the OD model, except for
c’*(21600 s). This is because the 3D-1D-0D model better captures the inherent complexity of the
biophysical problem by explicitly including the spatial domain. Consequently, the Morris indices
emphasize the nonlinear relationship between input parameters and output fields. As demonstrated in
Figure 12, this discrepancy is also evident in the u* — o plane for ¢/ relative to the other investigation
parameters.
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Figure 12. Morris indices in the y*-o- plane (the horizontal axis shows u* and the vertical
axis shows o) for /%, kyer, K, @, ¢%, VoX ., and P,, relatively to ¢,

To assess the sensitivity of the surviving fraction computed with the 3D-1D-0D model to the
selected input parameters, the Morris indices are first calculated against SF (see Figure 13). It is
noticeable that the indices relative to the 3D-1D-0D model are about one order of magnitude smaller
than those of the 0D model, whereas the relative standard deviation is larger. Those obtained larger
variances essentially indicate a wider interaction between the parameters and nonlinear relations with
the averaged distribution of SF. In contrast, the smaller y; represents a model less sensitive to
variations in input parameters. This picture is confirmed by looking at the indices computed for
SF(7200 s), SF(10800 s), and SF(21600 s) collected in Figure 14.

AIMS Mathematics Volume 10, Issue 11, 25504-25544.



25536

L+"o[on] g
.+ mlop] %2
Alop] K
O[OD] kmet
o[op] P°*
m[oD] Vints
A[OD] «
©[3D-1D-0D]c%%
©[3D-1D-0D] %

0.1 H
e O 8 m[3D-1D-0D] K’
"~ A[3D-1D-0D] Kyt
e . #[3D-1D-0D] Po®
o ‘ A ©[3D-1D-0D] V,2%,
,"3 m[3D-1D-0D]x
0.01 4= ; 1
0.01 0.1 1

Figure 13. Morris indices in the u*-o plane relative to SF for the 3D-1D-0D model (the
horizontal axis shows y* and the vertical axis shows o).

01 0.1 0.1 0

001 4= . L 0.01 4= ; 10,01 4 : i
0.01 0.1 1 001 0.1 1 001 0.1 1

QOcly Bhnw AK Qo @cf BV, AP™

Figure 14. Morris indices in the u*-o plane (the horizontal axis shows u* and the vertical
axis shows o) taken at 7200, 10800, and 21600 seconds, relatively to SF, obtained with the
3D-1D-0D model.

Until now, our analysis has been based primarily on the indices u}, defined as the mean of the
absolute values of the EEs. This choice provides a robust estimate of the overall importance of each
input parameter in the output, regardless of the direction of influence. However, additional insight can
be gained by also examining the signed mean y; of the EEs, which preserves the directionality of the
input-output relationship. While u} is suitable for identifying which parameters have strong effects,
the sign of y; helps to interpret whether an increase in a given parameter tends to increase or decrease
the output, on average. In the Morris screening method, the mean of the absolute EEs, u, is the
standard metric to quantify the overall importance of a factor, as it avoids the cancellation of opposing
contributions. For this reason, in our analysis, we consider u as the primary indicator of parameter
relevance. Alongside u?, we also report the signed mean y;, not as a measure of global importance but
rather to provide qualitative information on the direction of the effect. This distinction allows us to
combine the robustness of u in ranking influential factors with the interpretability of y; in indicating
the prevailing sign of the effect. We apply this directional analysis to the surviving fraction SF, a key
indicator of therapeutic efficacy. Figure 15 displays the signed indices u;(SF), w:(SF(72005s)),
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ui(SF(108005s)), and w;(SF(21600s)) for the seven parameters previously identified as the most
influential. Negative values of y; suggest that increasing the corresponding parameter tends to reduce
the surviving fraction, i.e., enhance the cytotoxic effect of TPZ. In contrast, positive values indicate
that increases in the parameter are associated with a reduction in drug efficacy. Hence, they should be
interpreted alongside u; and o; to provide a more complete understanding of sensitivity in the model.
Specifically, we observe negative values of y; for i = {ctv‘(’f, P°*, K, kner, a}, indicating that increases in
these parameters tend to decrease SF. The effect of ctv’(’f, K, kyer, @ aligns with biological intuition: all
these parameters are directly involved in drug availability or metabolism and thus influence TPZ
activation. The role of P**, ¢%), and V;  is more nuanced. Surely, an increased vascular oxygen
permeability P* improves tissue oxygenation, reducing TPZ consumption m'?*. In our data, an
increased P°* generally results in a lower SF. Conversely, even if a greater c?; does increase the tissue
oxygenation, the general result is a higher SF. A similar effect on SF is obtained when rising V>,
which is expected to decrease the tissue oxygenation. In summary, these parameters affect tissue
oxygenation and modify TPZ consumption. — Consequently, c/”* increases, leading to TPZ
accumulation within the tissue. Following the definition by the equation 2.20, the SF is affected by
both the TPZ concentration (c;”*) and the drug metabolization m’?. Varying these parameters, we
obtain a decrease in drug consumption but an increase in drug concentration, resulting in a behavior
hardly predictable a priori. Our modeling approach enables the estimation of SF as a combination of
these two effects, accounting for nonlinear interactions due to the inherent coupling of these
phenomena within the microenvironment. We remark that the definition SF (Eq 2.20) could also be
refined and substituted in the model based on further experimental evidence, separating the

contributions related to drug metabolization and drug concentration.
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Figure 15. Bar chart of ,ul-(S_F) and w;(SF) taken at 7200, 10800, and 21600 obtained with the
3D-1D-0D model.

6. Conclusions and future developments
This study presents a mathematical and mechanistic framework for exploring the pharmacokinetics
and pharmacodynamics of hypoxia-activated drugs in solid tumors. By integrating a spatially

resolved 3D-1D model of vascular flow and oxygen transport with a 0D surrogate model that
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describes nonlinear drug metabolism and cell survival, we provide a computational approach to
investigate how physical, physiological, and geometric factors in the tumor microenvironment
influence drug efficacy. This multi-scale model captures key feedback mechanisms between drug
activation and local oxygen concentration, reflecting the key challenges associated with the delivery
of hypoxia-activated drugs, such as TPZ. Through global sensitivity analysis, we systematically
identified the parameters that most influence drug distribution and therapeutic outcome, highlighting
the dominant role of vascular drug concentration, oxygen availability, and metabolic rates.

Beyond methodological contributions, our findings have important implications for the clinical
optimization of TPZ and other hypoxia-activated prodrugs. The multi-scale 3D-1D-0D framework
developed in this work provides a computationally efficient yet physiologically grounded tool to
simulate the spatiotemporal evolution of drug concentration and therapeutic response within the
hypoxic tumor microenvironment. By integrating nonlinear pharmacodynamic effects via exogenous
surrogate functions, the model enables rapid sensitivity analyses and parametric studies that would
otherwise be prohibitive with full-scale simulations. This capability opens the door to systematic
exploration of treatment protocols, such as timing, dosage, and vascular delivery of TPZ, under
varying levels of tissue oxygenation. Furthermore, the surrogate-based architecture supports future
incorporation of patient-specific vascular geometries and clinical imaging data, paving the way for
predictive simulation platforms that help customize hypoxia-targeted therapies. As such, the proposed
modeling approach may serve as a foundation for digital twin frameworks aimed at optimizing the
therapeutic index of bioreductive agents in precision oncology.

Although the proposed model offers a detailed representation of the tumor microenvironment on
multiple scales, the results should primarily be interpreted as exploratory. The analysis demonstrates
internal consistency and physiological plausibility in a range of hypothetical scenarios, but it does not
yet include calibration to specific experimental datasets or patient-derived measurements. Therefore,
its primary value lies in the generation of hypotheses and the guidance of future experimental or
computational studies, rather than providing predictive assessments for clinical settings. Furthermore,
it has several limitations that suggest opportunities for future improvements. Some biological
processes were simplified or excluded, including dynamic changes in vessel permeability, red blood
cell interactions, vascular remodeling, and the time-dependent effects of therapy on the vasculature.
This assumption implies that acute vascular remodeling and transient fluctuations in oxygen supply
are neglected. As a result, the predicted oxygen distributions are smoother and more stable than in
vivo, and the corresponding survival fraction SF reflects the average conditions rather than the effects
of cycling hypoxia or abrupt vascular alterations. Although this simplification is sufficient for our
sensitivity analysis, it may underestimate the impact of transient hypoxic events on drug activation
and cellular response. Furthermore, steady-state or quasi-steady oxygen transport is assumed, and the
model lacks a complete temporal coupling between all components, which could be important for
modeling rapid response to treatment or combination therapies. In addition to highlighting the
exploratory character of this work, the sensitivity analysis suggests several testable hypotheses that
can guide future experimental investigations. First, increasing vessel oxygen permeability enhances
tissue oxygenation but simultaneously decreases hypoxia-driven drug activation, leading to a
non-monotonic impact on cell survival. Second, variability in metabolic parameters (V% ., K¥) across
cell lines or in patient-specific settings is predicted to strongly influence therapeutic outcome,
suggesting that these quantities are potential biomarkers of treatment response. Third, our results
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indicate that the sensitivity of the survival fraction to microvascular geometry is secondary compared
to systemic pharmacokinetics and metabolic rates, implying that optimizing drug scheduling may
outweigh the effects of structural vascular heterogeneity. By making these hypotheses explicit, the
model can serve not only as a computational tool but also as a generator of experimentally verifiable
predictions.

Future work will address these aspects by incorporating time-dependent vascular remodeling,
angiogenesis, and tumor growth models, as well as refining drug-specific metabolic pathways. Further
sensitivity analysis of geometrical parameters and their interactions could yield more insight into
patient-specific variability. Integration with in vivo and in vitro experimental data will be crucial to
calibrate the model and support uncertainty quantification, inverse modeling, and personalized
therapy design. Furthermore, integrating the current framework with data-driven techniques could
offer practical strategies for real-time adaptation to treatment. On the other hand, future work will
explore extensions of the present model, including fractional-order formulations, to capture memory
effects and anomalous transport phenomena that may further enhance predictive capability.

In summary, this work provides a mechanistic tool for probing the complex interactions between
vascular architecture, oxygen dynamics, and drug metabolism in the context of hypoxia-targeted
therapies. By identifying influential parameters and mechanistic drivers of treatment response, it lays
the foundations for more comprehensive studies aimed at optimizing therapeutic strategies and
improving our understanding of treatment resistance in hypoxic tumors. Moreover, our results
highlight the crucial role of oxygen heterogeneity in shaping the activation and efficacy of
hypoxia-activated prodrugs, demonstrating the advantages of a multi-scale 3D-1D-0D approach over
purely surrogate or fully spatial models. Looking ahead, the framework can be extended to
incorporate time-dependent vascular dynamics, integrated with experimental datasets for quantitative
validation, and enriched with additional biological processes such as DNA damage repair or drug
resistance. These developments will further enhance the predictive power of the model and support its
application for treatment optimization in clinically relevant settings. Although the present framework
is not yet intended for predictive assessments in clinical settings, it naturally lends itself to progressive
refinement toward clinical applicability. A possible roadmap involves: (i) preclinical validation
against in  vitro and in  vivo  data, calibrating  oxygen  transport  and
pharmacokinetics/pharmacodynamics parameters; (ii) incorporation of patient-specific information,
such as imaging-derived hypoxia maps and pharmacokinetics profiles, to personalize inputs; (iii)
systematic integration of biological variability, to provide predictive ranges rather than single-point
estimates; and finally (iv) deployment in in silico clinical trials to explore dosing and scheduling
strategies before translation into actual patient studies.
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