This work examines the existence of a ground state solution for the following general nonlinear Choquard equation:
$-\Delta u+u = \left({(-\Delta )}_{E}^{\frac{-\alpha }{2}}\mathrm{*}\mathcal{Q}\left(u\right)\right)\mathcal{q}\left(u\right), in\;{\mathbb{R}}^{N}, $
where $ N\ge 3, $ $ \mathcal{Q} $ is the primitive function of $ \mathcal{q}, $ $ \mathcal{Q}\in {C}^{1}\left(\mathbb{R}; \mathbb{R}\right) $ fulfils the general Berestycki–Lions conditions, and $ {(-\Delta)}_{E}^{\frac{-\alpha }{2}} $ is the equivalent Riesz fractional operator of order $ \alpha \in \left(\mathrm{0, 2}\right) $. In this case, the Riesz potential has not previously been investigated. The existence of a solution is established through the application of variational techniques. This modification not only expands the theoretical understanding of such equations but also opens up new avenues for practical applications, particularly in fields such as quantum mechanics and astrophysics.
Citation: Sarah Abdullah Qadha, Muneera Abdullah Qadha, Haibo Chen, Mohamed Abdalla, Mohammed Z. Alqarni. Existence of ground state solutions for the general Choquard equation with Riesz fractional derivative operator[J]. AIMS Mathematics, 2025, 10(11): 25489-25503. doi: 10.3934/math.20251129
This work examines the existence of a ground state solution for the following general nonlinear Choquard equation:
$-\Delta u+u = \left({(-\Delta )}_{E}^{\frac{-\alpha }{2}}\mathrm{*}\mathcal{Q}\left(u\right)\right)\mathcal{q}\left(u\right), in\;{\mathbb{R}}^{N}, $
where $ N\ge 3, $ $ \mathcal{Q} $ is the primitive function of $ \mathcal{q}, $ $ \mathcal{Q}\in {C}^{1}\left(\mathbb{R}; \mathbb{R}\right) $ fulfils the general Berestycki–Lions conditions, and $ {(-\Delta)}_{E}^{\frac{-\alpha }{2}} $ is the equivalent Riesz fractional operator of order $ \alpha \in \left(\mathrm{0, 2}\right) $. In this case, the Riesz potential has not previously been investigated. The existence of a solution is established through the application of variational techniques. This modification not only expands the theoretical understanding of such equations but also opens up new avenues for practical applications, particularly in fields such as quantum mechanics and astrophysics.
| [1] |
I. M. Moroz, P. Roger, P. Tod, Spherically-symmetric solutions of the Schrödinger-Newton equations, Class. Quantum Grav., 15 (1998), 2733. https://doi.org/10.1088/0264-9381/15/9/019 doi: 10.1088/0264-9381/15/9/019
|
| [2] |
E. H. Lieb, Existence and uniqueness of the minimizing solution of Choquard's nonlinear equation, Stud. Appl. Math., 2 (1977), 93–105. https://doi.org/10.1002/sapm197757293 doi: 10.1002/sapm197757293
|
| [3] | S. Pekar, Untersuchungen über die Elektronentheorie der Kristalle, De Gruyter, 1954. |
| [4] |
P. L. Lions, The concentration-compactness principle in the calculus of variations The locally compact case, part 2, Ann. l'Institut Henri Poincare Anal. Non Lineaire, 1 (1984), 223–283. https://doi.org/10.1016/S0294-1449(16)30422-X doi: 10.1016/S0294-1449(16)30422-X
|
| [5] |
G. P. Menzala, On regular solutions of a nonlinear equation of Choquard's type, Proc. R. Soc. Edinburgh Sect. A Math., 86 (1980), 291–301. https://doi.org/10.1017/S0308210500012191 doi: 10.1017/S0308210500012191
|
| [6] |
P. Choquard, J. Stubbe, M. Vuffray, Stationary solutions of the Schrödinger-Newton model-an ODE approach, Differ. Integr. Equ., 21 (2008), 665–679. https://doi.org/10.57262/die/1356038617 doi: 10.57262/die/1356038617
|
| [7] |
P. Tod, I. M. Moroz, An analytical approach to the Schrödinger-Newton equations, Nonlinearity, 12 (1999), 201–216. https://doi.org/10.1088/0951-7715/12/2/002 doi: 10.1088/0951-7715/12/2/002
|
| [8] |
L. Ma, L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation, Arch. Ration. Mech. Anal., 195 (2010), 455–467. https://doi.org/10.1007/s00205-008-0208-3 doi: 10.1007/s00205-008-0208-3
|
| [9] |
V. Moroz, J. Van Schaftingen, Groundstates of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics, J. Funct. Anal., 265 (2013), 153–184. https://doi.org/10.1016/j.jfa.2013.04.007 doi: 10.1016/j.jfa.2013.04.007
|
| [10] |
H. Genev, G. Venkov, Soliton and blow-up solutions to the time-dependent Schrödinger-Hartree equation, Discrete Contin. Dyn. Syst. Ser. S, 5 (2012), 903–923. http://doi.org/10.3934/dcdss.2012.5.903 doi: 10.3934/dcdss.2012.5.903
|
| [11] | G. D. Li, C. L. Tang, Existence of ground state solutions for Choquard equation involving the general upper critical Hardy–Littlewood–Sobolev nonlinear term, Commun. Pure Appl. Anal., 18 (2019), 285. |
| [12] |
C. Daniele, J. Zhang, Choquard-type equations with Hardy-Littlewood-Sobolev upper-critical growth, Adv. Nonlinear Anal., 8 (2019), 1184–1212. https://doi.org/10.1515/anona-2018-0019 doi: 10.1515/anona-2018-0019
|
| [13] |
Y. Wang, X. Huang, Existence and concentration behavior of ground states for a generalized quasilinear Choquard equation involving steep potential well, Bull. Iran. Math. Soc., 49 (2023), 9. https://doi.org/10.1007/s41980-023-00756-w doi: 10.1007/s41980-023-00756-w
|
| [14] | V. Moroz, J. Van Schaftingen, Existence of groundstates for a class of nonlinear Choquard equations, Trans. Am. Math. Soc., 367 (2015), 6557–6579. |
| [15] | D. Cassani, L. Du, Z. Liu, Positive solutions to the planar logarithmic Choquard equation via asymptotic approximation, preprint paper, 2023. https://doi.org/10.48550/arXiv.2305.10905 |
| [16] |
H. Luo, Ground state solutions of Pohoz̆aev type for fractional Choquard equations with general nonlinearities, Comput. Math. with Appl., 77 (2019), 877–887. https://doi.org/10.1016/j.camwa.2018.10.024 doi: 10.1016/j.camwa.2018.10.024
|
| [17] |
H. Zhang, H. Chen, Ground state solution for a class of Choquard equations involving general critical growth term, Bull. Iran. Math. Soc., 48 (2022), 2125–2144. https://doi.org/10.1007/s41980-021-00624-5 doi: 10.1007/s41980-021-00624-5
|
| [18] | H. Berestycki, P. L. Lions, Nonlinear scalar field equations, I existence of a ground state, Arch. Ration. Mech. Anal., 82 (1983), 313–345. |
| [19] | E. H. Lieb, M. Loss, Analysis (Graduate Studies in Mathematics), Providence: American Mathematical Society, 2001. |
| [20] |
M. Kwasnicki, Ten equivalent definitions of the fractional Laplace operator, Fract. Calc. Appl. Anal., 20 (2017), 7–51. https://doi.org/10.1515/fca-2017-0002 doi: 10.1515/fca-2017-0002
|
| [21] | M. Willem, Minimax theorems, progress in nonlinear differential equations and their applications, Berlin: Springer Science & Business Media, 1997. |
| [22] |
V. Moroz, J. Van Schaftingen, Groundstates of nonlinear Choquard equations: Hardy-Littlewood-Sobolev critical exponent, Commun. Contemp. Math., 17 (2015), 15500054. https://doi.org/10.1142/S0219199715500054 doi: 10.1142/S0219199715500054
|
| [23] | L. Jeanjean, Existence of solutions with prescribed norm for semilinear elliptic equations, Nonlinear Anal.: Theory Meth. Appl., 28 (1997), 1633–1659. |