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Abstract: This work examines the existence of a ground state solution for the following general 

nonlinear Choquard equation: 

−∆𝑢 + 𝑢 = ((−∆)𝐸

−𝛼
2 ∗ 𝒬(𝑢))𝓆(𝑢),   𝑖𝑛 ℝ𝑁, 

where 𝑁 ≥ 3, 𝒬 is the primitive function of 𝓆, 𝒬 ∈ 𝐶1(ℝ;ℝ) fulfils the general Berestycki–Lions 

conditions, and (−∆)𝐸

−𝛼

2  is the equivalent Riesz fractional operator of order 𝛼 ∈ (0,2). In this case, 

the Riesz potential has not previously been investigated. The existence of a solution is established 

through the application of variational techniques. This modification not only expands the theoretical 

understanding of such equations but also opens up new avenues for practical applications, 

particularly in fields such as quantum mechanics and astrophysics. 
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1. Introduction and Preliminaries 

The Choquard equation (CE), initially presented by Choquard in 1976, originally described the 

behaviour of a single electron interacting with its electrostatic potential in a neutralising background. 

CE appears in various fields of physics, such as self-gravitating matter [1], modelling of 

one-component plasma [2] and quantum mechanics [3]. Recently, CE has garnered significant 

academic interest owing to its emergence in multiple physical contexts. Now, we consider the 

equation 

−∆𝑢 + 𝑢 = (𝐼𝛼 ∗ 𝒬(u))𝓆(𝑢),    𝑖𝑛 ℝ
𝑁,        (1.1) 

where 𝑁 ≥ 3, 𝛼 ∈ (0, 𝑁), 𝓆 ≔ 𝒬́, 𝒬 ∈ 𝐶1(ℝ;ℝ), and 𝐼𝛼 represents the Riesz potential, defined for 

all 𝑥 ∈ ℝ𝑁\{0} as 

𝐼𝛼(𝑥) =
𝛤 (
𝑁 − 𝛼
2

)

2𝛼𝛤 (
𝛼
2
) 𝜋

𝑁
2 |𝑥|𝑁−𝛼

. 

Equation (1.1) represents a semilinear elliptic problem with a nonlocal nonlinearity. The 

Choquard–Pekar equation receives considerable attention in specific cases in which 𝛼 = 2, 𝑁 = 3 

and 𝒬(𝜁) =
𝜁2

2
 [2,3]. It is also referred to as the Newton–Schrödinger equation or the stationary 

Hartree equation [1]. In this context, Lieb, Lions and Menzala demonstrated the existence of 

solutions using variational methods [2,4,5], as well as through techniques based on ordinary 

differential equations [1,6,7]. In a more general case in which 𝒬(𝜁) =
𝜁𝑝

𝑝
, Eq (1.1) has a solution if 

and only if 
𝑁+𝛼

𝑁
< 𝑝 <

𝑁+𝛼

𝑁−2
 ([8], p. 457; [9], Theorem 1; [10], Lemma 2.7). Until now, existence 

results have only been available in the following conditions: 

➢ When the Riesz potential 

𝐼𝛼(𝑥) =
𝛤 (
𝑁 − 𝛼
2

)

2𝛼𝛤 (
𝛼
2
) 𝜋

𝑁
2 |𝑥|𝑁−𝛼

, 

considerable studies can be referred to [11–14]. 

➢ When the Riesz potential 𝐼𝛼 = 𝑙𝑛
1

|𝑥|
, the authors, via asymptotic approximation, investigated the 

positive solutions of the planar logarithmic CE [15]. 

➢ In the case in which 𝐼𝛼 =
1

|𝑥|𝜁
, with 0 < 𝜁 < 𝑚𝑖𝑛{𝑁, 4𝑠} , 0 < 𝑠 < 1, the authors investigated 

ground state solutions (GSSs) of Pohoz̆aev type for fractional CEs with general nonlinearities by 

combining the deformation lemma with the constrained variational method [16]. 

➢ When 𝐼𝛼 =
1

|𝑥−𝑦|𝜁
, with 0 < 𝜁 < 𝑚𝑖𝑛{𝑁, 4} , 𝑁 ≥ 3, the author investigated the GSS for a class 

of CEs involving a general critical growth term whilst applying the Pohoz̆aev constraint [17]. 

In this work, we study a new case for the Riesz potential to examine the existence of GSS. This 

modification not only expands the theoretical understanding of such equations but also opens up new 

avenues for practical applications, particularly in fields such as quantum mechanics and astrophysics. 
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This work examines the existence of GSS for the following general nonlinear CE (GNCE): 

−∆𝑢 + 𝑢 = ((−∆)𝐸

−𝛼

2 ∗ 𝒬(u))𝓆(𝑢),    𝑖𝑛 ℝ𝑁,      (1.2) 

Where 𝑁 ≥ 3,  𝒬  represents the primitive function of 𝓆 , 𝒬 ∈ 𝐶1(ℝ;ℝ)  satisfies the general 

Berestycki–Lions conditions [18], and (−∆)𝐸

−𝛼

2  represents the equivalent Riesz fractional operator of 

order 𝛼 ∈ (0,2) defined by 

(−∆)𝐸

−𝛼
2 𝑢 = −

1

|Γ (
𝛼
2
)|
∫ (𝑒𝑡∆𝑢 − 𝑢)
∞

0

𝑡−1+
𝛼
2𝑑𝑡. 

In a more general case in which 𝒬(s) =
𝑠𝑝

𝑝
, Eq (1.2) has a solution if and only if 

𝑁+𝛼

𝑁
 < 𝑝 <

𝑁−𝛼

𝑁−2
. 

In this context, we demonstrate the existence of solutions to Eq (1.2) under the assumption that the 

nonlinearity 𝓆 ∈ ∁(ℝ;ℝ) satisfies the required growth condition: 

(𝐻1) A constant, 𝑐 > 0, exists. Accordingly, the inequality |𝑠𝓆(𝑠)| ≤ 𝑐 (|𝑠|
𝑁+𝛼

𝑁 + |𝑠|
𝑁+𝛼

𝑁−2) holds 

for all 𝑠 ∈ ℝ. 

(𝐻2) The antiderivative that for all 𝑠 ∈ ℝ, 𝒬: 𝑠 → ∫ 𝓆(𝔡)
𝑠

0
𝑑𝔡 satisfies subcritical properties, 

evidenced by 

𝑙𝑖𝑚
𝑠→0

𝒬(𝑠)

|𝑠|
𝑁+𝛼
𝑁

= 0, 𝑙𝑖𝑚
|𝑠|→∞

𝒬(𝑠)

|𝑠|
𝑁+𝛼
𝑁−2

= 0, 

(𝐻3) A nontrivial condition is met with the existence of 𝑠0 ∈ ℝ\{0}. Consequently, 𝒬(𝑠0) ≠ 0. 

The innovative aspects of this study can be summarised as follows: Previous research defined 

the Riesz potential 

𝐼𝛼(𝑥) = (−∆)
−𝜶
𝟐 =

𝛤 (
𝑁 − 𝛼
2

)

2𝛼𝛤 (
𝛼
2
) 𝜋

𝑁
2 |𝑥|𝑁−𝛼

. 

In our investigation, we replace 𝐼𝛼 with (−∆)𝐸

−𝛼

2 , where (−∆)𝐸

−𝛼

2  represents the equivalent Riesz 

fractional operator 

𝐼𝛼 = (−∆)𝐸

−𝛼
2 𝑢 = −

1

|Γ (
𝛼
2
)|
∫ (𝑒𝑡∆𝑢 − 𝑢)
∞

0

𝑡−1+
𝛼
2𝑑𝑡. 

This substitution leads to challenges in establishing the necessary conditions for the validity of the 

Pohožaev identity. Our principal contribution does not entail the development of a new method. 

Instead, our research focuses on demonstrating the existence of a GSS under specific conditions 

when the Riesz potential is altering. Our work is significant in providing valuable insights into 

ground state phenomena within this context. 

The purpose of this article is to address a gap in the existing literature. Previous studies have not 

examined this particular class of nonlinearities in the context of the Riesz potential; consequently, the 

equation introduced here is novel. It has potential applications across a wide range of phenomena 

involving long-range interactions, including water waves, dislocations in crystals, anomalous 
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diffusion, and non-local quantum theories. Moreover, the framework developed in this work opens 

new avenues for future research into related properties across diverse branches of mathematics, such 

as partial differential equations, potential theory, harmonic analysis, semigroup theory, function 

spaces, and probability theory. 

The paper is organised as follows. In the first section, we present essential theorems and 

definitions. The second section is devoted to demonstrating that the functional 𝒥(𝑢) exhibits a 

mountain pass geometry, which is then used to derive a corresponding Palais–Smale sequence. In the 

third section, we establish the necessary conditions for the existence of GSS, followed by the 

sufficient conditions ensuring its existence. 

In this section, we present some fundamental symbols which we will use. 𝛨1(ℝ𝑁) is the usual 

Sobolev space. For all 𝑢, 𝑣 ∈ 𝛨1(ℝ𝑁), the inner product within 𝛨1(ℝ𝑁) is defined as 

〈𝑢, 𝑣〉 = ∫ (∇𝑢 ∙ ∇𝑣 + 𝑢𝑣)𝑑𝑥,
ℝ𝑁

 

whilst the norm within 𝛨1(ℝ𝑁) is represented as 

‖𝑢‖2 = ∫ (|∇𝑢|2 +
ℝ𝑁

|𝑢|2). 

Theorem 1.1. (Hardy–Littlewood–Sobolev inequality (HLSI)) Suppose 𝑠 ∈ (1,
𝑁

𝛼
), then for every 

𝜈 ∈ 𝐿𝑠(ℝ𝑁), ((−∆)𝐸

−𝛼

2 ∗ 𝜈) ∈ 𝐿
𝑁𝑠

𝑁−𝛼𝑠(ℝ𝑁), and 

∫ |(−∆)𝐸

−𝛼

2 ∗ 𝜈|

𝑁𝑠

𝑁−𝛼𝑠

≤ 𝐺(∫ |𝜈|𝑠
ℝ𝑁

)
𝑁

𝑁−𝛼𝑠
ℝ𝑁

,       (1.3) 

where 𝐺 > 0 is a constant that depends only on 𝛼,𝑁 and 𝜁. This result is obtained by combining 

the HLSI with the weak Young inequality, as stated in [19]. 

Lemma 1.1. For every 𝑢 ∈ 𝐻1(ℝ𝑁), by the upper bound (𝐻1) on 𝒬, the HLSI and Sobolev 

embedding theorem 

∫ ((−∆)𝐸

−𝛼
2 ∗ 𝒬(𝑢))𝒬(𝑢) ≤

ℝ𝑁
𝐶1 (∫ |𝒬(𝑢)|

2𝑁
𝑁+𝛼

ℝ𝑁
)

1+
𝛼
𝑁

≤ 𝐶2 (∫ |𝑢|2 + |𝑢|
2𝑁
𝑁−2

ℝ𝑁
)

1+
𝛼
𝑁

 

≤ 𝐶3 (∫ |𝑢|2

ℝ𝑁
)

1+
𝛼
𝑁

+ (∫ |𝛻𝑢|2

ℝ𝑁
)

1+
𝛼+2
𝑁−2

. 

Hence, 𝜉 > 0, such that if 

∫ |∇𝑢|2 +
ℝ𝑁

|𝑢|2 ≤ 𝜉, 

then 

∫ ((−∆)𝐸

−𝛼
2 ∗ 𝒬(𝑢))𝒬(𝑢) ≤

ℝ𝑁

1

4
∫ |∇𝑢|2 +
ℝ𝑁

|𝑢|2. 
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Proposition 1.1. ([14], Proposition 3.1). Let 𝓆 ∈ ∁(ℝ;ℝ) fulfil condition (𝐻1), and suppose 𝑢 ∈

𝐻1(ℝ𝑁) represent a solution of Eq (1.2). Then, 𝑢 ∈ 𝑊𝑙𝑜𝑐
2,𝑝(ℝ𝑁) for all 𝑝 ≥ 1. 

Lemma 12.2. ([9], Lemma 2.3). Let 𝑞 ∈ [1,∞). If 
1

2
−
1

𝑁
≤
1

𝑞
≤
1

2
, then for all 𝑢 ∈ 𝑊1,2(ℝ𝑁), 

∫ |𝑢|𝑞 ≤ C( s𝑢𝑝
𝑥∈ℝ𝑁

∫ |𝑢|𝑞

𝐵1(𝑥)

)

1−
2
𝑞

(∫ |∇𝑢|2 +
ℝ𝑁

|𝑢|2)
ℝ𝑁

. 

Definition 1.1. (Equivalent Riesz fractional operator, [20]). Let ℑ be any of the spaces 𝐿𝑝, 𝑝 ∈
(0,∞). Let 𝑢 ∈ ℑ and 𝛼 ∈ (0,2), then 

(−∆)𝐸

−𝛼
2 𝑢 = −

1

|Γ (
𝛼
2
)|
∫ (𝑒𝑡∆𝑢 − 𝑢)
∞

0

𝑡−1+
𝛼
2𝑑𝑡, 

with Bochner’s integral of an 𝕴-valued function. 

2. Main results 

The energy functional associated with Eq (1.2) is given by 

𝒥(𝑢) =
1

2
∫ (|∇𝑢|2 + |𝑢|2) −

1

2
∫ ((−∆)𝐸

−𝛼

2 ∗ 𝒬(𝑢))𝒬(𝑢)𝑑𝑥.
ℝ𝑁ℝ𝑁

     (2.1) 

The derivative of the energy functional 𝒥(𝑢) is given by 

〈𝒥́(𝑢), 𝑢〉 = ∫ (|∇𝑢|2 +
ℝ𝑁

|𝑢|2) − ∫ ((−∆)𝐸

−𝛼

2 ∗ 𝒬(𝑢))𝓆(𝑢)𝑢𝑑𝑥.
ℝ𝑁

    (2.2) 

We refer to any weak solution 𝑢 of Eq (1.2), belonging to the Sobolev space 𝛨1(ℝN)\{0}, as a 

GSS of Eq (1.2) if it minimises the functional 𝒥 amongst all nonzero solutions. 

Hence, we can define the mountain pass level of 𝒥(𝑢) 

𝑐 = 𝑖𝑛𝑓
𝛾∈Γ

𝑚𝑎𝑥
𝜏∈[0,1]

𝒥( 𝛾(𝜏)) > 0, 

where 

Γ = {𝛾 ∈ 𝐶([0,1], 𝛨1(ℝ𝑁)) ∶ 𝛾(0) = 0, 𝒥(𝛾(1)) < 0}. 

Now, we recall the Nehari manifold 

𝒩 ∶= {𝑢 ∈ 𝛨1(ℝ𝑁)\{0} ∶ 〈𝒥́(𝑢), 𝑢〉 = 0}. 

Let 𝑐0 = i𝑛𝑓
𝑢∈𝒩

𝒥(𝑢). Moreover, by adopting an argument similar to that presented in Chapter 4 of [21], 

we establish the following result: 

𝑐 = 𝑖𝑛𝑓
𝛾∈Γ

𝑚𝑎𝑥
𝜏∈[0,1]

𝒥( 𝛾(𝜏)) = 𝑐0 = i𝑛𝑓
𝑢∈𝒩

𝒥(𝑢) = 𝑐∗ = 𝑖𝑛𝑓
𝑢∈Η1(ℝ𝑁) \{0}

𝑚𝑎𝑥
𝜏≥0

𝒥(𝑢𝜏). 

In the following step, we assume that the functional 𝒥(𝑢) possesses mountain pass geometry 

to construct a Palais–Smale sequence for it. 
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Theorem 2.1. Suppose that the functional 𝒥(𝑢) possesses a mountain pass. Then, 𝒥(𝑢) must fulfil 

the following requirements: 

(1) 𝜎,𝒷 > 0 exists such that 𝒥(𝑢)|𝛽𝜎 ≥ 𝒷 > 0, for all 𝑢 ∈ 𝛽𝜎 = {𝑢 ∈ 𝛨
1(ℝ𝑁): ‖𝑢‖ = 𝜎}; 

(2) for any 𝑢 ∈ 𝛨1(ℝ𝑁)\{0}, 𝜏 ∈ (0,∞) exists such that ‖𝑢𝜏‖ > 𝜎 and 𝒥(𝑢𝜏) < 0, where 𝜎 is 

given in (1). 

Proof. (1) By the definition of norm, the HLSI in Theorem 1.1, the upper bound (𝐻1) on 𝒬 and 

Lemma 1.1, we obtain 

𝒥(𝑢) =
1

2
∫ (|∇𝑢|2 + |𝑢|2) −

1

2
∫ ((−∆)𝐸

−𝛼
2 ∗ 𝒬(𝑢))𝒬(𝑢)𝑑𝑥

ℝ𝑁ℝ𝑁
 

=
1

2
‖𝑢‖2 −

1

2
𝐶1 (∫ |𝒬(𝑢)|

2𝑁
𝑁+𝛼

ℝ𝑁
)

1+
𝛼
𝑁

 

≥
1

2
‖𝑢‖2 −

1

2
(
1

4
∫ |∇𝑢|2 +
ℝ𝑁

|𝑢|2) 

≥
1

2
‖𝑢‖2 −

1

8
‖𝑢‖2 

≥
3

8
𝜎, 

then 𝒥(𝑢) ≥ 𝒷 > 0 for all ‖𝑢‖ =  𝜎 small enough. 

(2) For any nonzero 𝑢 ∈ 𝐻1(ℝ𝑁)\{0} and any positive value of 𝜏, we consider a function 𝑢 

within a family of functions 𝑢𝜏 ∈ 𝐻
1(ℝ𝑁), defined by 

𝑢𝜏 = 𝑣(
𝑥

𝜏
), for all 𝑥 ∈ ℝ𝑁. 

For this family, the following scaling identities hold for each 𝜏 > 0: 

∫ |∇𝑢𝜏|
2 =

ℝ𝑁
𝜏𝑁−2∫ |∇𝑣|2

ℝ𝑁
. 

∫ |𝑢𝜏|
2 =

ℝ𝑁
𝜏𝑁∫ |𝑣|2

ℝ𝑁
. 

A comprehensive derivation of these results is provided in [14], specifically in Proposition 2.1. The 

last term can be reformulated as 

∫ ((−∆)𝐸

−𝛼
2 ∗ 𝒬(𝑢𝜏))𝒬(𝑢𝜏)

ℝ𝑁
= ∫ ∫ 𝒬(

ℝNℝN
𝑢𝜏(𝑥)) 𝒬(𝑢𝜏(𝑦))(−∆)𝐸

−𝛼
2 𝑢𝜏(𝑥 − 𝑦)𝑑𝑥𝑑𝑦 

= ∫ ∫ 𝒬(
ℝNℝN

𝑣(
𝑥

𝜏
)) 𝒬(𝑣(

𝑦

𝜏
)) (𝑒𝑡∆𝑣 (

𝑥

𝜏
−
𝑦

𝜏
) − 𝑣 (

𝑥

𝜏
−
𝑦

𝜏
)) (𝑡)−1+

𝛼

2𝑑𝑥𝑑𝑦. 

Let 𝑧 =
𝑥

𝜏
 and 𝑤 =

𝑦

𝜏
. Then 

= ∫ ∫ 𝒬(
ℝNℝN

𝑣(𝑧)) 𝒬(𝑣(𝑤))(𝑒𝑡∆𝑣(𝑧 − 𝑤) − 𝑣(𝑧 − 𝑤))(𝑡)−1+
𝛼
2  𝜏2𝑁𝑑𝑧𝑑𝑤 

= 𝜏2𝑁∫ ((−∆)𝐸

−𝛼
2 ∗ 𝒬(𝑣))𝒬(𝑣).

ℝ𝑁
 

Thus, 
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𝒥(𝑢𝜏) =
𝜏𝑁−2

2
∫ |∇𝑣|2

ℝ𝑁
+
𝜏𝑁

2
∫ |𝑣|2

ℝ𝑁
−
𝜏2𝑁

2
∫ ((−∆)𝐸

−𝛼
2 ∗ 𝒬(𝑣))𝒬(𝑣).

ℝ𝑁
 

For 𝜏 > 0 large enough, 𝑙𝑖𝑚
𝜏→+∞

𝒥(𝑢𝜏) < 0. 

Theorem 2.2. Given 𝓆 ∈ ∁(ℝ;ℝ) satisfying condition (𝐻1) and 𝑢 ∈ 𝐻1(ℝ𝑁) that solves Eq (1.2), 

the following Pohožaev identities 𝒫 hold: 

𝒫(𝑢) =
𝑁−2

2
∫ |𝛻𝑢|2 +
ℝ𝑁

𝑁

2
∫ |𝑢|2 −

3𝑁

2
∫ ((−∆)𝐸

−𝛼

2 ∗ 𝒬(𝑢))𝒬(𝑢)
ℝ𝑁ℝ𝑁

.   (2.3) 

Proof. According to Proposition 1.1, 𝑢 ∈ 𝑊𝑙𝑜𝑐
2,2(ℝ𝑁). Select 𝔇 ∈ 𝐶𝑐

1(ℝ𝑁) such that 𝔇 = 1 in the 

neighbourhood around 0. For 𝜂 ∈ (0,∞) and 𝑥 ∈ ℝ𝑁, define the function 𝛿𝜂 ∈ 𝑊
1,2(ℝ𝑁) as 

𝛿𝜂 = 𝔇(𝜂𝑥)𝑥 ∙ ∇𝑢(𝑥). 

Utilising 𝛿𝜂 as the test function in the equation yields 

∫ ∇𝑢. ∇𝛿𝜂 +
ℝ𝑁

∫ 𝑢𝛿𝜂 = ∫ ((−∆)𝐸

−𝛼
2 ∗ 𝒬(𝑢)) (𝓆(𝑢)𝛿𝜂)

ℝ𝑁
.

ℝ𝑁
 

The evaluation of the left-hand side can be realised through integration by parts for each 𝜂 > 0 and 

by invoking Lebesgue’s dominated convergence. Given that 𝑢 ∈ 𝑊1,2(ℝ𝑁), the following limits are 

established: 

𝑙𝑖𝑚
𝜂→0

∫ ∇𝑢. ∇
ℝ𝑁

𝛿𝜂 = −
𝑁 − 2

2
∫ |∇𝑢|2

ℝ𝑁
. 

𝑙𝑖𝑚
𝜂→0

∫ 𝑢𝛿𝜂
ℝ𝑁

= −
𝑁

2
∫ |𝑢|2

ℝ𝑁
. 

A detailed exposition is shown in [22], proof of Proposition 11; [9], proof of Proposition 3.1; and [14], 
Proposition 3.5. In every 𝜂 > 0, the last term can be reformulated via integration by parts as 

follows: 

∫ ((−∆)𝐸

−𝛼
2 ∗ 𝒬(𝑢)) (𝓆(𝑢)𝛿𝜂)

ℝ𝑁
= ∫ ∫ (𝒬𝜊𝑢)(𝑦)(−∆)𝐸

−𝛼
2 (𝑥 − 𝑦)

ℝNℝN
𝔇(𝜂𝑥)𝑥. ∇(𝒬𝜊𝑢)(𝑥)𝑑𝑥𝑑𝑦 

=
1

2
∫ ∫ (−∆)𝐸

−𝛼
2 (𝑥 − 𝑦)

ℝNℝN
((𝒬𝜊𝑢)(y)𝔇(𝜂𝑥)𝑥. ∇(𝒬𝜊𝑢)(𝑥))𝑑𝑥𝑑𝑦 

+
1

2
∫ ∫ (−∆)𝐸

−𝛼
2 (𝑥 − 𝑦)

ℝNℝN
((𝒬𝜊𝑢)(𝑥)𝔇(𝜂𝑦)𝑦. ∇(𝒬𝜊𝑢)(𝑦))𝑑𝑥𝑑𝑦 

= −
1

2
∫ ∫ (𝒬𝜊𝑢)(𝑦)(−∆)𝐸

−𝛼
2 (𝑥 − 𝑦)

ℝNℝN
(𝑁𝔇(𝜂𝑥) + 𝜂𝑥∇𝔇(𝜂𝑥))(𝒬𝜊𝑢)(𝑥)𝑑𝑥𝑑𝑦 

−∫ ∫ (𝒬𝜊𝑢)(y)(−∆)𝐸

−𝛼
2 (𝑥 − 𝑦)

ℝNℝN
(𝑥𝔇(𝜂𝑥) − 𝑦𝔇(𝜂𝑦))(𝒬𝜊𝑢)(𝑥)𝑑𝑥𝑑𝑦 

We can therefore utilise Lebesgue’s dominated convergence to infer that 
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𝑙𝑖𝑚
𝜂→0

∫ ((−∆)𝐸

−𝛼
2 ∗ 𝒬(𝑢)) (𝓆(𝑢)𝛿𝜂)

ℝ𝑁
= −

3𝑁

2
∫ ((−∆)𝐸

−𝛼
2 ∗ 𝒬(𝑢))

ℝ𝑁
𝒬(𝑢). 

Theorem 2.3. Provided that 𝓆 ∈ 𝐶(ℝ;ℝ) fulfils conditions (𝐻1) and (𝐻3), there exists a sequence 

𝑢𝑛 in 𝐻1(ℝ𝑵) such that as 𝑛 → ∞, 

𝒥(𝑢𝑛) → 𝑐 > 0, 𝒥́(𝑢𝑛) → 0,𝒫(𝑢𝑛) → 0. 

Proof. To establish a Pohožaev–Palais–Smale sequence, with reference to Jeanjean ([23], Section 2), 

we define the mapping 

𝜓: ℝ × 𝐻1(ℝ𝑁) → 𝐻1(ℝ𝑁), 

for 𝜆 ∈ ℝ, 𝜅 ∈ 𝐻1(ℝ𝑁) and 𝑥 ∈ ℝ𝑁 by 

𝜓(𝜆, 𝜅)(𝑥) = 𝜅(𝑒−𝜆𝑥). 

Then, the functional 𝒥𝜊 𝜓 is computed as follows: 

𝒥(𝜓(𝜆, 𝜅)) =
𝑒(𝑁−2)𝜆

2
∫ |∇𝜅|2 +
ℝ𝑁

𝑒𝑁𝜆

2
∫ |𝜅|2 −
ℝ𝑁

𝑒2𝑁𝜆

2
∫ ((−∆)𝐸

−𝛼
2 ∗ 𝒬(𝜅))𝒬(𝜅)

ℝ𝑁
. 

Given hypothesis (𝐻1),  the composition 𝒥𝜊 𝜓  is continuously Fréchet differentiable on ℝ ×
𝐻1(ℝ𝑁). We denote the associated family of paths as 

Γ̃ = {𝛾̃ ∈ ∁([0,1];ℝ × 𝐻1(ℝ𝑁)): 𝛾̃(0) = (0, 0) 𝑎𝑛𝑑 𝒥𝜊 𝜓(𝛾̃(1) < 0}. 

The mountain pass levels of 𝒥 and 𝒥𝜊 𝜓 coincide as Γ = {𝜓𝜊𝛾̃: 𝛾̃ ∈ Γ̃}: 

𝑐 = 𝑖𝑛𝑓
𝛾̃∈𝛤̃

𝑠𝑢𝑝
𝑡∈[0,1]

(𝒥𝜊 𝜓)(𝛾̃(𝑡)). 

According to a minimax principle ([21], Theorem 2.9), one can identify a sequence (𝜆𝑛, 𝜅𝑛)𝑛∈𝑁 

within ℝ × 𝐻1(ℝ𝑁), such that as 𝑛 → ∞, the following holds: 

(𝒥𝜊 𝜓)(𝜆𝑛, 𝜅𝑛) → 𝑐, 

(𝒥𝜊 𝜓)′(𝜆𝑛, 𝜅𝑛) → 0 in (ℝ × 𝐻1(ℝ𝑁)∗. 

Given 𝑢𝑛 = 𝜓(𝜆𝑛, 𝜅𝑛), then as 𝑛 → ∞, 

𝒥(𝑢𝑛) → 𝑐 > 0, 𝒥́(𝑢𝑛) → 0,𝒫(𝑢𝑛) → 0.       (2.4) 

Theorem 2.4. Assume that 𝑢𝑛 is a sequence in 𝐻1(ℝ𝑁), 𝓆 ∈ 𝐶(ℝ;ℝ) fulfils (𝐻1) and (𝐻2), and 

𝒥(𝑢𝑛) is bounded. As 𝑛 → ∞, 

𝒥́(𝑢𝑛)
𝑠𝑡𝑟𝑜𝑛𝑔𝑙𝑦
→      0, in (𝐻1(ℝ𝑁))

′
, 𝒫(𝑢𝑛) → 0. 

Then, either 

(1)  𝑢𝑛
𝑠𝑡𝑟𝑜𝑛𝑔𝑙𝑦
→      0 in 𝐻1(ℝ𝑁), or 

(2)  there exists a function 𝑢 ∈ 𝐻1(ℝ𝑁)\{0} such that 𝒥́(𝑢𝑛) = 0 and the sequence (𝒪𝑛)𝑛∈ℕ of 

points within ℝ𝑁  such that, up to the subsequence, 𝑢𝑛(∙ −𝒪𝑛)
𝑤𝑒𝑎𝑘𝑙𝑦
→    𝑢 within 𝐻1(ℝ𝑁) as 

𝑛 → ∞. 
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Proof. Suppose that the initial component of the alternative condition is not satisfied, namely, 

𝑙𝑖𝑚
𝑛→∞

𝑖𝑛𝑓 ∫ |∇𝑢𝑛|
2 + |𝑢𝑛|

2
ℝ𝑁

> 0.        (2.5) 

Proof of claim (1). Now, we prove the boundedness of the sequence 𝑢𝑛 in 𝐻1(ℝ𝑁). For all 𝑛 ∈ ℕ, 

2𝑁 + 2

6𝑁
∫ |𝛻𝑢|2 +
ℝ𝑁

1

3
∫ |𝑢|2

ℝ𝑁
= 𝒥(𝑢𝑛) −

1

3𝑁
𝒫(𝑢𝑛). 

Given that our assumptions bound the right-hand side, the sequence 𝑢𝑛 is bounded within 𝐻1(ℝ𝑁). 

Proof of claim (2). Now, we prove the nonvanishing of the sequence. For 2 < 𝑝 <
2𝑁

𝑁−2
, 

𝑙𝑖𝑚
𝑛→∞

𝑖𝑛𝑓 s𝑢𝑝
𝑦∈ℝ𝑁

∫ |𝑢𝑛|
𝑝 > 0.

𝐵1(𝑦)

 

Through Eqs (2.3) and (2.5), we have 

𝑙𝑖𝑚
𝑛→∞

𝑖𝑛𝑓 ∫ ((−∆)𝐸

−𝛼

2 ∗ 𝒬(𝑢𝑛))𝒬(𝑢𝑛)ℝ𝑁
= 𝑙𝑖𝑚
𝑛→∞

𝑖𝑛𝑓
𝑁−2

3𝑁
∫ |𝛻𝑢|2 +

1

3
∫ |𝑢|2 −

2

3𝑁
𝒫(𝑢𝑛)ℝ𝑁ℝ𝑁

> 0. (2.6) 

For any 𝑛 ∈ ℕ, 𝑢𝑛 fulfils the following inequality ([4], Lemma 1.1; [9], Lemma 2.3; [21], 

Lemma 1.21) 

∫ |𝑢𝑛|
2 ≤ 𝐶 (∫ |∇𝑢𝑛|

2 + |𝑢𝑛|
2

ℝ𝑁
)

ℝ𝑁
( 𝑠𝑢𝑝
𝒪∈ℝ𝑁

∫ |𝑢𝑛|
𝑝

𝐵1(𝒪)

)

1−
2
𝑝

. 

Because 𝒬 is continuous and fulfils (𝐻1), for each 𝜀 > 0, there exists a constant 𝐶𝜀  such that for 

each 𝑠 ∈ ℝ, 

|𝒬(𝑠)|
2𝑁
𝑁+𝛼 ≤ 𝜀 (|𝑠|2 + |𝑠|

2𝑁
𝑁−2) + 𝐶𝜀|𝑠|

𝑝. 

Given that 𝑢𝑛 is bounded within 𝐻1(ℝ𝑁) and, via the Sobolev embedding, within 𝐿
2𝑁

𝑁−2, we have 

𝑙𝑖𝑚
𝑛→∞

𝑖𝑛𝑓 ∫ |𝒬(𝑢𝑛)|
2𝑁
𝑁+𝛼 ≤ 𝐶1𝜀 +

ℝ𝑁
𝐶𝜀 (𝑙𝑖𝑚

𝑛→∞
𝑖𝑛𝑓 𝑠𝑢𝑝

𝒪∈ℝ𝑁
∫ |𝑢𝑛|

𝑝

𝐵1(𝒪)

)

1−
2
𝑝

. 

Because 𝜀 > 0 is arbitrary, if 𝑙𝑖𝑚
𝑛→∞

𝑖𝑛𝑓 𝑠𝑢𝑝
𝒪∈ℝ𝑁

∫ |𝑢𝑛|
𝑝 = 0

𝐵1(𝒪)
, then 

𝑙𝑖𝑚
𝑛→∞

𝑖𝑛𝑓 ∫ |𝒬(𝑢𝑛)|
2𝑁
𝑁+𝛼 = 0.

ℝ𝑁
 

Furthermore, the HLSI indicates that 

𝑙𝑖𝑚
𝑛→∞

𝑖𝑛𝑓∫ ((−∆)𝐸

−𝛼
2 ∗ 𝒬(𝑢𝑛))𝒬(𝑢𝑛)

ℝ𝑁
=0, 

which is inconsistent with Eq (2.6). 

Theorem 2.5. If (𝐻1) −(𝐻3) hold, then there is at least one nontrivial solution to Eq (1.2). 
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Proof. Suppose that for some 2 < 𝑝 <
2𝑁

𝑁−2
, 

𝑙𝑖𝑚
𝑛→∞

𝑖𝑛𝑓∫ |𝑢𝑛|
𝑝 > 0.

𝐵1

 

According to Rellich’s theorem, up to a subsequence, 

𝑢𝑛
𝑤𝑒𝑎𝑘𝑙𝑦
→    𝑢, in 𝐻1(ℝ𝑁). 

As the sequence 𝑢𝑛 is bounded within 𝐻1(ℝ𝑁), it is also bounded within 𝐿2(ℝ𝑁) ∩ 𝐿
2𝑁

𝑁−2(ℝ𝑁) by a 

Sobolev embedding. Therefore, by (𝐻1), the sequence (𝒬 ∘ 𝑢𝑛) is bounded within 𝐿
2𝑁

𝑁+𝛼(ℝ𝑁). 

Because 

𝑢𝑛
𝑤𝑒𝑎𝑘𝑙𝑦
→    𝑢, in 𝐻1(ℝ𝑁), 

𝑢𝑛
𝑤𝑒𝑎𝑘𝑙𝑦
→    𝑢, in a.e. ℝ𝑁. 

According to 𝒬’s continuity, 

(𝒬 ∘ 𝑢𝑛) → (𝒬 ∘ 𝑢), in a. e. ℝ
𝑁. 

Hence, 

(𝒬 ∘ 𝑢𝑛)
𝑤𝑒𝑎𝑘𝑙𝑦
→    (𝒬 ∘ 𝑢), within 𝐿

2𝑁

𝑁+𝛼(ℝ𝑁). 

The Riesz potential is a linear and continuous map from 𝐿
2𝑁

𝑁+𝛼(ℝ𝑁) to 𝐿
2𝑁

𝑁−𝛼(ℝ𝑁), 

((−∆)𝐸

−𝛼

2 ∗ (𝒬 ∘ 𝑢𝑛))
𝑤𝑒𝑎𝑘𝑙𝑦
→    ((−∆)𝐸

−𝛼

2 ∗ (𝒬 ∘ 𝑢)), in 𝐿
2𝑁

𝑁+𝛼(ℝ𝑁). 

Conversely, by taking assumption (𝐻1) into account and applying Rellich’s theorem, we obtain 

(𝓆 ∘ 𝑢𝑛)
𝑠𝑡𝑟𝑜𝑛𝑔𝑙𝑦
→      (𝓆 ∘ 𝑢), in 𝐿𝑙𝑜𝑐

𝑝 (ℝ𝑁), 

for all 𝑝 ∈ [1,
2𝑁

𝛼+2
). We conclude that 

((−∆)𝐸

−𝛼

2 ∗ (𝒬 ∘ 𝑢𝑛)) (𝓆 ∘ 𝑢𝑛)
𝑤𝑒𝑎𝑘𝑙𝑦
→    ((−∆)𝐸

−𝛼

2 ∗ (𝒬 ∘ 𝑢)) (𝓆 ∘ 𝑢) in 𝐿𝑝(ℝ𝑁), 

for all 𝑝 ∈ [1,
2𝑁

𝑁+2
). Specifically, for each 𝜓 ∈ 𝐶𝑐

1(ℝ𝑁), 

∫ ∇𝑢 ∙ ∇𝜓 + ∫ 𝑢𝜓
ℝ𝑁ℝ𝑁

−∫ ((−∆)𝐸

−𝛼
2 ∗ (𝒬 ∘ 𝑢)) ((𝓆 ∘ 𝑢)𝜓)

ℝ𝑁

= 𝑙𝑖𝑚
𝑛→∞

∫ ∇𝑢𝑛 ∙ ∇𝜓 + ∫ 𝑢𝑛𝜓
ℝ𝑁ℝ𝑁

−∫ ((−∆)𝐸

−𝛼
2 ∗ (𝒬 ∘ 𝑢𝑛)) ((𝓆 ∘ 𝑢𝑛)𝜓)

ℝ𝑁
= 0, 

i.e. 𝑢 is a weak solution of Eq (1.2). 

Theorem 2.6. Consider the assumption that 𝑁 ≥ 3 and 𝛼 ∈ (0,2). Provided that 𝓆 ∈ 𝐶(ℝ,ℝ) 
fulfils (𝐻1)–(𝐻3), Eq (1.2) possesses a GSS. 
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Proof. Let (𝑢𝑛) denote a minimising sequence obtained as a consequence of Theorem 2.1, i.e. 

(𝑢𝑛) ⊂ 𝐻
1(ℝ𝑁) such that 

𝒥( 𝑢𝑛) → 𝑐,    𝒥́(𝑢𝑛) → 0, 

where 

𝑐 = 𝑐𝜊 = 𝑖𝑛𝑓 𝒥(𝑢) = 𝑐
∗ = 𝑖𝑛𝑓

𝑢∈𝛨1(ℝ𝑁)\{0}
𝑚𝑎𝑥
𝜏≥0

𝒥(𝑢𝜏). 

Then, we have 

𝑐𝜊 = 𝒥(𝑢𝑛) −
1

4
〈𝒥́(𝑢𝑛), 𝑢𝑛〉 =

1

2
∫ (|∇𝑢𝑛|

2 + |𝑢𝑛|
2) −

1

2
∫ ((−∆)𝐸

−𝛼
2 ∗ 𝒬(𝑢𝑛))𝒬(𝑢𝑛)

ℝ𝑁ℝ𝑁
 

−
1

4
∫ (|∇𝑢𝑛|

2 +
ℝ𝑁

|𝑢𝑛|
2) +

1

4
∫ ((−∆)𝐸

−𝛼
2 ∗ 𝒬(𝑢𝑛))𝓆(𝑢𝑛)𝑢𝑛

ℝ𝑁
 

=
1

4
∫ (|∇𝑢𝑛|

2 +
ℝ𝑁

|𝑢𝑛|
2) +

1

4
∫ ((−∆)𝐸

−𝛼
2 ∗ 𝒬(𝑢𝑛)) [𝓆(𝑢𝑛)𝑢𝑛 − 2𝒬(𝑢𝑛)]

ℝ𝑁
 

≥
1

4
‖𝑢𝑛‖

2. 

Consequently, (𝑢𝑛) is bounded. By employing standard methods, we can achieve the convergence 

of (𝑢𝑛). 

Next, let 

𝛿 ≔ 𝑙𝑖𝑚
𝑛→∞
̅̅ ̅̅ ̅ 𝑠𝑢𝑝

𝑦∈ℝ𝑁
∫ |𝑢𝑛|

2

𝐵1(𝑦)

. 

We claim 𝛿 > 0. On the contrary, on the basis of Lions’ concentration compactness principle, we 

have 𝑢𝑛 → 0 in 𝐿𝑝(ℝ𝑁) for 2 < 𝑝 <
2𝑁

𝑁−2
. By (𝐻1), 𝒬 is continuous and satisfies (𝐻2), for any 

𝜀 > 0, a constant 𝐶𝜀 > 0 exists such that 

𝑙𝑖𝑚
𝑛→∞
̅̅ ̅̅ ̅ ∫ ((−∆)𝐸

−𝛼
2 ∗ 𝒬(𝑢𝑛))𝓆(𝑢𝑛)(𝑢𝑛) ≤

ℝ𝑁
𝐶 𝑙𝑖𝑚
𝑛→∞
̅̅ ̅̅ ̅ (∫ |𝒬(𝑢𝑛)|

2𝑁
𝑁+𝛼

ℝ𝑁
)

1+
𝛼
𝑁

 

≤ 𝐶 𝑙𝑖𝑚
𝑛→∞
̅̅ ̅̅ ̅ (∫ |𝑢𝑛|

2 +∫ |𝑢𝑛|
2𝑁
𝑁−2

ℝ𝑁ℝ𝑁
)

1+
𝛼
𝑁

. 

Through Lemma 12.2, 

≤ 𝐶 𝑙𝑖𝑚
𝑛→∞
̅̅ ̅̅ ̅ [𝜀 (∫ |𝑢𝑛|

2 +∫ |𝑢𝑛|
2𝑁
𝑁−2

ℝ𝑁ℝ𝑁
) + 𝐶𝜀∫ |𝑢𝑛|

𝑝

ℝ𝑁
]

1+
𝛼
𝑁

 

≤ 𝐶 [𝜀𝐶1 + 𝐶𝜀 𝑙𝑖𝑚
𝑛→∞
̅̅ ̅̅ ̅ ∫ |𝑢𝑛|

𝑝

ℝ𝑁
]

1+
𝛼
𝑁

≤ 𝐶[𝜀𝐶2]
1+
𝛼
𝑁. 

Considering that 𝜀 is arbitrary, we obtain 

∫ ((−∆)𝐸

−𝛼
2 ∗ 𝒬(𝑢𝑛))𝓆(𝑢𝑛)(𝑢𝑛) = 0

ℝ𝑁
. 
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Combining with 𝒥́( 𝑢𝑛) → 0, we can generate 

0 = 〈𝒥́(𝑢𝑛), 𝑢𝑛〉 = ∫ (|∇𝑢𝑛|
2 +

ℝ𝑁
|𝑢𝑛|

2) − ∫ ((−∆)𝐸

−𝛼
2 ∗ 𝒬(𝑢𝑛))𝓆(𝑢𝑛)𝑢𝑛𝑑𝑥,

ℝ𝑁
 

which implies that 

∫ (|∇𝑢𝑛|
2 +

ℝ𝑁
|𝑢𝑛|

2) = ∫ ((−∆)𝐸

−𝛼
2 ∗ 𝒬(𝑢𝑛))𝓆(𝑢𝑛)𝑢𝑛𝑑𝑥.

ℝ𝑁
 

Then, we have 

∫ (|∇𝑢𝑛|
2 +

ℝ𝑁
|𝑢𝑛|

2) → 0, 

which indicates that (𝑢𝑛) → 0 in 𝐻1(ℝ𝑁). Accordingly, 𝑐𝜊 = 0, which contradicts the assumption 

that 𝑐𝜊 > 0. 
Therefore, there exists a positive constant 𝛿 > 0 and a sequence {𝑦𝑛} ∈ ℝ

𝑁 such that 

∫ |𝑢𝑛|
𝑝 ≥

𝛿

2
> 0.

𝐵1(𝑦𝑛)

 

We set 𝒱𝑛(𝑥) = 𝑢𝑛(𝑥 + 𝑦𝑛), 

‖𝒱𝑛‖ = ‖𝑢𝑛‖, 

∫ |𝒱𝑛|
𝑝𝑑𝑥 >

𝛿

2
,

𝐵1(0)

 

and 

𝒥( 𝒱𝑛) → 𝑐𝜊 = 𝑐,   𝒥́( 𝑢𝑛) → 0. 

Thus, 𝒱0 ≠ 0 exists such that 

𝒱𝑛 → 𝒱0 in 𝐻1(ℝ𝑁), 

𝒱𝑛 → 𝒱0 in 𝐿𝑝(ℝ𝑁), ∀𝑝 ∈ [2,
2𝑁

𝑁−2
), 

𝒱𝑛 → 𝒱0 a.e. on ℝ𝑁. 

Then, for any 𝜓 ∈ 𝐶0
∞(ℝ𝑁), we have 

0 = 〈𝒥́(𝒱𝑛), 𝜓〉 = 〈𝒥́(𝒱0), 𝜓〉, 

which means that 𝒱0 is a solution of Eq (1.2). 

Conversely, the application of Fatou’s lemma enables us to obtain 

𝑐𝜊 = 𝒥(𝒱𝑛) −
1

4
〈𝒥́(𝒱𝑛), 𝒱𝑛〉 =

1

2
∫ (|∇𝒱𝑛|

2 + |𝒱𝑛|
2) −

1

2
∫ ((−∆)𝐸

−𝛼
2 ∗ 𝒬(𝒱𝑛))𝒬(𝒱𝑛)

ℝ𝑁ℝ𝑁
 

−
1

4
∫ (|∇𝒱𝑛|

2 +
ℝ𝑁

|𝒱𝑛|
2) +

1

4
∫ ((−∆)𝐸

−𝛼
2 ∗ 𝒬(𝒱𝑛)) 𝓆(𝒱𝑛)𝒱𝑛

ℝ𝑁
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=
1

4
∫ (|∇𝒱𝑛|

2 +
ℝ𝑁

|𝒱𝑛|
2) +

1

4
∫ ((−∆)𝐸

−𝛼
2 ∗ 𝒬(𝒱𝑛)) [𝓆(𝒱𝑛)𝒱𝑛 − 2𝒬(𝒱𝑛)]

ℝ𝑁
 

≥
1

4
∫ (|∇𝒱0|

2 +
ℝ𝑁

|𝒱0|
2) +

1

4
∫ ((−∆)𝐸

−𝛼
2 ∗ 𝒬(𝒱0)) [𝓆(𝒱0)𝒱0 − 2𝒬(𝒱0)]

ℝ𝑁
 

= 𝒥( 𝒱0) −
1

4
〈𝒥́(𝒱0), 𝒱0〉 = 𝒥( 𝒱0). 

From the definition of 𝑐𝜊, 𝑐𝜊 ≤ 𝒥(𝒱0). Consequently, we can conclude that 𝒱0 is a GSS of Eq (1.2). 

Remark 1. This study examines the issue when 𝛼 is between (0,2), but not when 𝛼 is greater 

than 2. 

3. Conclusions 

In conclusion, our study investigated a GSS for a GNCE. Through rigorous analysis and the 

application of variational methods, we have successfully established the existence of GSS under 

certain conditions. Our main contribution consists of a novel alteration of the Riesz potential, an 

aspect that has not been previously examined in this context. This modification not only expands the 

theoretical understanding of such equations but also opens new avenues for practical applications, 

particularly in fields such as quantum mechanics and astrophysics, where nonlocal interactions play a 

crucial role. 

The theoretical implications of our findings extend beyond the realm of mathematical analysis, 

suggesting broader applications in understanding physical systems with nonlocal interactions. By 

showcasing the effectiveness of our approach in identifying GSS, we advocate for further exploration 

of nonlocal effects and their mathematical representations in various scientific domains. 

Whilst our study builds upon previous methodologies, our novel approach to modifying the 

Riesz potential underscores the importance of innovative thinking in advancing mathematical and 

scientific research. This study serves as a foundation for future research aimed at exploring the 

complexities of nonlinear Choquard equations and their implications across various disciplines. For 

instance, subsequent work could investigate the existence of GSSs for magnetic or other variants of 

the nonlinear Choquard equation when the Riesz potential is equivalent to a Riesz fractional operator. 
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