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Abstract: This work examines the existence of a ground state solution for the following general
nonlinear Choquard equation:

—Au+u= ((—A);Ta * Q(u)) g(u), inRN,

where N = 3, Q is the primitive function of g, @ € C'(R;R) fulfils the general Berestycki—Lions

conditions, and (—A)ET is the equivalent Riesz fractional operator of order a € (0,2). In this case,
the Riesz potential has not previously been investigated. The existence of a solution is established
through the application of variational techniques. This modification not only expands the theoretical
understanding of such equations but also opens up new avenues for practical applications,
particularly in fields such as quantum mechanics and astrophysics.
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1. Introduction and Preliminaries

The Choquard equation (CE), initially presented by Choquard in 1976, originally described the
behaviour of a single electron interacting with its electrostatic potential in a neutralising background.
CE appears in various fields of physics, such as self-gravitating matter [1], modelling of
one-component plasma [2] and quantum mechanics [3]. Recently, CE has garnered significant
academic interest owing to its emergence in multiple physical contexts. Now, we consider the
equation

—Au+u= (I, *Q())gw), nR", (1.1)

where N > 3,a € (O,N), g = 0,0 € CY(R;R), and I, represents the Riesz potential, defined for
all x € RV\{0} as
N—«a
r(~")

Ia(x) = N .
205 () mz|x|N @

Equation (1.1) represents a semilinear elliptic problem with a nonlocal nonlinearity. The
Choquard—Pekar equation receives considerable attention in specific cases in which ¢ =2, N =3

2
and Q({) = % [2,3]. It is also referred to as the Newton—Schrodinger equation or the stationary

Hartree equation [1]. In this context, Lieb, Lions and Menzala demonstrated the existence of

solutions using variational methods [2,4,5], as well as through techniques based on ordinary

differential equations [1,6,7]. In a more general case in which Q({) = Q, Eq (1.1) has a solution if

D
and only if % <p< % ([8], p. 457; [9], Theorem 1; [10], Lemma 2.7). Until now, existence

results have only been available in the following conditions:

» When the Riesz potential

a a ﬂ )
ar (7) 1z |x|N-a

considerable studies can be referred to [11-14].
» When the Riesz potential I, = In ﬁ, the authors, via asymptotic approximation, investigated the

positive solutions of the planar logarithmic CE [15].

» In the case in which I, = with 0 < { < min{N,4s},0 < s < 1, the authors investigated

1
PR
ground state solutions (GSSs) of Pohozaev type for fractional CEs with general nonlinearities by
combining the deformation lemma with the constrained variational method [16].

» When I, = ﬁ, with 0 < { < min{N,4},N > 3, the author investigated the GSS for a class

of CEs involving a general critical growth term whilst applying the Pohozaev constraint [17].

In this work, we study a new case for the Riesz potential to examine the existence of GSS. This
modification not only expands the theoretical understanding of such equations but also opens up new
avenues for practical applications, particularly in fields such as quantum mechanics and astrophysics.
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This work examines the existence of GSS for the following general nonlinear CE (GNCE):

-a

—Au+u= ((—A)ET * Q(u)) g(u), inRV, (1.2)

Where N >3, Q represents the primitive function of g, Q € C1(R;R) satisfies the general

Berestycki—Lions conditions [18], and (—A)ET represents the equivalent Riesz fractional operator of
order a € (0,2) defined by

%4

(~-0)Fu=- ﬁ [ " ey —w e,
2

. . sP . . .~ N+a N-a
In a more general case in which Q(s) = o Eq (1.2) has a solution if and only if — <r<45
In this context, we demonstrate the existence of solutions to Eq (1.2) under the assumption that the

nonlinearity g € C(R; R) satisfies the required growth condition:
N+a

(H;) A constant, ¢ > 0, exists. Accordingly, the inequality |sg(s)| < c (lsl% + |s|m) holds
forall s € R.
(H,) The antiderivative that for all s € R, Q:s — fos q(d) db satisfies subcritical properties,
evidenced by

S S
i S =0, lim S =0
|s| ™ |s|v=2

(H3) A nontrivial condition is met with the existence of s, € R\{0}. Consequently, Q(s,) # 0.

The innovative aspects of this study can be summarised as follows: Previous research defined
the Riesz potential
N—a
r(==9

2ar (%) nglxIN‘“.

Io(x) = (—A) T =

- -
In our investigation, we replace I, with (—A);7, where (—A)/ represents the equivalent Riesz
fractional operator

_Ta 1 ” tA ~145
Iy = () u=——f (e**u—uw)t™ "2dt.
0

@)

This substitution leads to challenges in establishing the necessary conditions for the validity of the
Pohozaev identity. Our principal contribution does not entail the development of a new method.
Instead, our research focuses on demonstrating the existence of a GSS under specific conditions
when the Riesz potential is altering. Our work is significant in providing valuable insights into
ground state phenomena within this context.

The purpose of this article is to address a gap in the existing literature. Previous studies have not
examined this particular class of nonlinearities in the context of the Riesz potential; consequently, the
equation introduced here is novel. It has potential applications across a wide range of phenomena
involving long-range interactions, including water waves, dislocations in crystals, anomalous
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diffusion, and non-local quantum theories. Moreover, the framework developed in this work opens
new avenues for future research into related properties across diverse branches of mathematics, such
as partial differential equations, potential theory, harmonic analysis, semigroup theory, function
spaces, and probability theory.

The paper is organised as follows. In the first section, we present essential theorems and
definitions. The second section is devoted to demonstrating that the functional J(u) exhibits a
mountain pass geometry, which is then used to derive a corresponding Palais—Smale sequence. In the
third section, we establish the necessary conditions for the existence of GSS, followed by the
sufficient conditions ensuring its existence.

In this section, we present some fundamental symbols which we will use. HX(RY) is the usual
Sobolev space. For all u,v € HY(RY), the inner product within H*(R") is defined as

(u,v) = (Vu - Vv + uv)dx,
]RN

whilst the norm within HX(RY) is represented as
Il = [ A+ fup?)
RN

Theorem 1.1. (Hardy—Littlewood—Sobolev inequality (HLSI)) Suppose s € (1, %), then for every

ed Ns
v € LS(RM), ((—A)Ez ] v) € Li-as(RY), and

Ns

—_a N-as L
(D)2 *v| < G(fnlvIs)V=, (1.3)

S

where G > 0 is a constant that depends only on a, N and ¢. This result is obtained by combining
the HLSI with the weak Young inequality, as stated in [19].

Lemma 1.1. For every u € HX(R"), by the upper bound (H;) on Q, the HLSI and Sobolev
embedding theorem

—a 2N 1+% 2N 1+%
j ((—A)Z *Q(u))Q(zoscl(j |Q(u>|zv—+a> sc2<j |u|2+|u|m>
RN RN RN

a+2

1+% 1+m
< C; <j |u|2> +<J |l7u|2> .
RN RN

fN'V“'Z Flu <
R

Hence, ¢ > 0, such that if

then

5 1
fRN ((_A)E * Q(U))Q(u) SZIRvaulz + |u|2
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Proposition 1.1. ([14], Proposition 3.1). Let ¢ € C(R; R) fulfil condition (H;), and suppose u €
HY(RM) represent a solution of Eq (1.2). Then, u € WP (RV) forall p > 1.

loc

Lemma 12.2. ([9], Lemma 2.3). Let g € [1,00). If 5 - ﬁ < i < %, then for all u € W12(RM),

2
1__
q
f |u|qsc(supf |u|q) (f |Vu|2+|u|2>.
RN x€RN JB, (x) RN

Definition 1.1. (Equivalent Riesz fractional operator, [20]). Let 3 be any of the spaces LP, p €
(0,00). Let u €3 and a € (0,2), then

-

(02 u=- ngﬂ I " (et —wy e 5,
2

with Bochner’s integral of an J-valued function.

2. Main results

The energy functional associated with Eq (1.2) is given by

(Z

I =2 [ u(IVul? + [ul? )——fRN(( N *Q(u)>Q(u)dx 2.1)

The derivative of the energy functional J(u) is given by

-a

(G, u) = fen(Vul® + [ul®) = fou ((—A)ET * Q(u)> g(Wudx. (2.2)

We refer to any weak solution u of Eq (1.2), belonging to the Sobolev space H!(RV)\{0}, as a
GSS of Eq (1.2) if it minimises the functional J amongst all nonzero solutions.
Hence, we can define the mountain pass level of J(u)

c= mf max J(y(@)) >0,

T€[0,1]
where
I ={y e c([01], H'(RM) : y(0) = 0,J(y(1)) < 0}.
Now, we recall the Nehari manifold
N = {u € H'(RM\{0} : (J(w), u) = 0}.
Let ¢y = irel ]]; J(u). Moreover, by adopting an argument similar to that presented in Chapter 4 of [21],
u

we establish the following result:

c =inf max J(y(1)) =co =inf Ju) =c* = inf max J(u,).
yer 7€[0,1] UEN

ueH1(RN) \{o} 720

In the following step, we assume that the functional J(u) possesses mountain pass geometry
to construct a Palais—Smale sequence for it.
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Theorem 2.1. Suppose that the functional J(u) possesses a mountain pass. Then, J(u) must fulfil

the following requirements:
(1) 0,4 > 0 exists such that J(u)|g, =6 >0, forall u € B, = {u € H*(RY): ||lu|| = o};

(2) for any u € HY(RM)\{0}, 7 € (0,0) exists such that ||u,|| > o and J(u,) <0, where o is
given in (1).

Proof. (1) By the definition of norm, the HLSI in Theorem 1.1, the upper bound (H;) on Q and
Lemma 1.1, we obtain

a

1 1 -
Jw) =5 j (Vul + Jul?) -5 j ((—A)EZ *Q(u)>Q(u)dx
RN RN

a

11 v \'*W

=5z =56 ( [ loaoiee
]RN

1 1/1
> 2_ " Z 2 2
> = llul 2(4JRN|W| + ful )

1
lull® = 5 llull?

[\
0| WN| -

v
S

then J(u) =6 > 0 forall ||u]| = o small enough.
(2) For any nonzero u € H1(RN)\{0} and any positive value of 7, we consider a function u
within a family of functions u, € HX(R"), defined by

u, = v(f), forall x € RV,

For this family, the following scaling identities hold for each 7 > 0:
j |Vu,|? =TN_2J |Vv)2.
RN RN

f|uf|2=er w2,
RN RN

A comprehensive derivation of these results is provided in [14], specifically in Proposition 2.1. The
last term can be reformulated as

j ((—A)? . Q(uf)) Q(uy) = j j 01ty (1)) QCaty (1)) (=8) 2 s (x — )dxdy
RN RN JRN
= Jin Jn Q) Q) (e (2= 2) = v (- 2)) (9 *Fdxay,

T T

Let z =§ and w = % Then
= [ [ 00 0w (ettuts - w) = v~ wi) @y wNaad
RN JRN
= TZNf ((—A)ET * Q(v)> Q(v).
RN

Thus,
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N-2

N 2N -a
g = [ el G [ =T [ ((—A)? * Q(v)>Q(v)-

For T > 0 large enough, lizrn J(u,) <0.
T—>+00

Theorem 2.2. Given g € C(R; R) satisfying condition (H;) and u € HY(R") that solves Eq (1.2),
the following Pohozaev identities P hold:

P) === ol Vul? +2 fonlul? == [ ((—A),? . Q(u)) Q). (2.3)

Proof. According to Proposition 1.1, u € W,2?(RN). Select D € C}(RY) such that ® = 1 in the
neighbourhood around 0. For 1 € (0,0) and x € R", define the function §, € W*(R") as

8, = D(Mx)x - Vu(x).

Utilising &, as the test function in the equation yields

J Vu. Vs, +f us, = J ((—A);T * Q(u)) (a(w)sy).
RN RN RN

The evaluation of the left-hand side can be realised through integration by parts for each n > 0 and
by invoking Lebesgue’s dominated convergence. Given that u € W12(RY), the following limits are
established:

, N -2 ,
lim | Vu.Vé, = - [Vul®.

n-0 RN RN
lim | ué,=-=| |ul®
n-0 JrN 2 JgN

A detailed exposition is shown in [22], proof of Proposition 11; [9], proof of Proposition 3.1; and [14],
Proposition 3.5. In every n > 0, the last term can be reformulated via integration by parts as
follows:

f ((—A);T*Q(u)> (a@s,) = f f QoW () (~) 2 (x — ) D(px)x. V(Qow) (x) dxdy
RN RN JRN
1 —a
- f j (=8) 2 (x — ) ((Qow) () D(nx)x. V(Qow) (x))dxdy
2 IRN ]RN
1 —a
+s f f (1) 2 (x — ) ((Qow) () D(y)y. V(Qow) (»)) dxdy
2 IRN ]RN

1 —a
= — —j f (Qow) (M) (—1)2 (x — y) (ND(1x) + nxVD(nx))(Qow) (x)dxdy
2 Jgn JgN

-[ Qow)(x)(~A) 2 (x — y) (xD(1x) — D)) (Qow) (x)dxdy
RN JRN

We can therefore utilise Lebesgue’s dominated convergence to infer that
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tim ((—A);T*Q(u)>(4(u)6n)=—¥ | ((—A)?*Q(u))Q(u).
RN

n-0 RN

Theorem 2.3. Provided that g € C(R; R) fulfils conditions (H;) and (H3), there exists a sequence
u, in H*(RM) such thatas n — oo,

Jw,) -»c>0,J(u,) - 0,P(u,) - 0.

Proof. To establish a Pohozaev—Palais—Smale sequence, with reference to Jeanjean ([23], Section 2),
we define the mapping

Y: R x HY(RV) - HY(RY),
for A€ R, k € HY(RY) and x € RN by
YA, Kk)(x) = K(e"lx).
Then, the functional Jo Y is computed as follows:

(N-2)7

e eNﬂ eZNﬂ _Ta
W) =5 [ 1w+ 5 | e =5 fRN((—mE *Q(K)>Q(K)-

Given hypothesis (H;), the composition Joy is continuously Fréchet differentiable on R X
HY(RYM). We denote the associated family of paths as

['={7 e c([0,1; R x H}(RY)): #(0) = (0,0) and Jo p(7(1) < 0}.
The mountain pass levels of J and Jo  coincideas I' = {1/)0)7: y € f}:
c=inf Sup](ﬂo P) (7 ().

yer te[o,1

According to a minimax principle ([21], Theorem 2.9), one can identify a sequence (A, Ky)nen
within R x H1(R"), such that as n - oo, the following holds:

(Jo ) (An, kn) = ¢,
(Jo ) (An, k) = 0 in (R X H'(RV)".
Given u, = ¥ (4,,k,), thenas n — oo,
J(uy) » ¢ >0, Ju,) - 0,P(u,) - 0. (2.4)

Theorem 2.4. Assume that u, is a sequence in H(R"), g € C(R;R) fulfils (H;) and (H,), and
J(u,) is bounded. As n — oo,

strongly

J(u) ——0, in (HL(RY)), P(u,) - 0.

Then, either
t l
1) w, —220 in HX(RM), or

(2) there exists a function u € H*(R¥)\{0} such that J(u,) = 0 and the sequence (0,),en Of

. - weakly oy
points within RM such that, up to the subsequence, u,(- —0,)) —— u within H1(R") as

n — o,

AIMS Mathematics Volume 10, Issue 11, 25489-25503.
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Proof. Suppose that the initial component of the alternative condition is not satisfied, namely,
lim inf [ n|Vun|® + lupl® > 0. (2.5)
n—-oo

Proof of claim (1). Now, we prove the boundedness of the sequence u,, in H*(RV). Forall n € N,

2N + 2
6N

1 1
24 2 S
J ol 3 [l = g - 5P

Given that our assumptions bound the right-hand side, the sequence u,, is bounded within H*(RY).

Proof of claim (2). Now, we prove the nonvanishing of the sequence. For 2 <p < %,

lim inf sup f |u,|P > 0.
B1(¥)

n—oo yeRN

Through Eqgs (2.3) and (2.5), we have

a

lim inf [y ((—A)Z : Q(un)> Q(uy) = lim inf 502 [onlVul? +5 fonlul® = 25 Pun) > 0. (2:6)

For any n € N, u, fulfils the following inequality ([4], Lemma 1.1; [9], Lemma 2.3; [21],

Lemma 1.21)
[ tual? sc( | |Vun|2+|un|2><sup I |un|p)
RN RN 0€eRN Jp, (0)

Because Q is continuous and fulfils (H;), for each ¢ > 0, there exists a constant C, such that for
each s € R,

2N 2N
1067 < 2 (Isf? + IsI7=2 ) + ClsI?.

2N
Given that u,, is bounded within H*(R") and, via the Sobolev embedding, within LN-z, we have

2

1
2N
lim inff |Q(uy)|N+a < Cie + C, <lim inf sup f Iun|p>
n—-oo RN n—-oo B1(0)

0€eRN

Because € > 0 is arbitrary, if lim inf sup fB |lu,|P = 0, then
n-oo 0eRN 1(0)
2N_
lim inff |Q(u,)|N+a = 0.
n—oo ]RN
Furthermore, the HLSI indicates that
-«
lim inff <(—A)E2 * Q(un)>Q(un) =0,
n—-oo ]RN

which is inconsistent with Eq (2.6).

Theorem 2.5. If (H;) —(H3) hold, then there is at least one nontrivial solution to Eq (1.2).

AIMS Mathematics Volume 10, Issue 11, 25489-25503.
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Proof. Suppose that for some 2 <p < %,

liminf | |u,|?P > 0.
n—-oo Bl

According to Rellich’s theorem, up to a subsequence,

weakly .
u, —— u, in H(RV).

2N
As the sequence u, is bounded within H'(RY), it is also bounded within L?(RN) n Lv-2(R") by a

2N
Sobolev embedding. Therefore, by (H,), the sequence (Q ou,) is bounded within LN+a(RN).
Because

weakly .
u, —— u, in HX(RN),

weakly . N
u, ——u, ina.e. R".

According to Q’s continuity,
(Qouy) - (Qou)ina.e.RY,

Hence,

weakly . 2N
(Q ou,) — (Q o u), within Lv+a(RN).
2N 2N
The Riesz potential is a linear and continuous map from Lv+a(RN) to Lv-«(RV),
-« weakly —“ . 2N
((—A)E2 *(Qe un)> — ((—A)E2 *(Qe u)>, in LN+a(RY).
Conversely, by taking assumption (H;) into account and applying Rellich’s theorem, we obtain

l
(@0 un) =93 (g ow), in L2, (RY),

loc

forall p € [1,%). We conclude that
@ weakly ¢ .
((—A)Ez *(Qe un)> (4 oup) — ((—A) P+ Qe u)) (g°u) in LP(RY),

forall p € [1,%). Specifically, for each ¥ € C(RV),

fRN Vu- VY + fRNutp - fRN ((—A);Ta % (Qo u)> ((g > W)

= lim Vun-V1p+J

n—-oo ]RN R

= | <(—A>;7 “(@- un)> ((@ o w)%) =0,

i.e. u is a weak solution of Eq (1.2).

Theorem 2.6. Consider the assumption that N > 3 and a € (0,2). Provided that g € C(R, R)
fulfils (H,)—(H3), Eq (1.2) possesses a GSS.
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Proof. Let (u,) denote a minimising sequence obtained as a consequence of Theorem 2.1, i.e.
(u,) € HY(RM) such that

J(up) » ¢, Juy) -0,
where

c=c,=infJw) =c* = inf max J(u,).
ueH1(RN)\{0} 7=0

Then, we have

1 . 1 1 -a
co = 90u) 3@ u) =3 [ (Pl 4l = | ((—A); *Q(un)>g<un)
]RN ]RN
1 1 -a
_ZfRNﬂVunIZ + |u,|?) + ZfRN ((—A)Ez * Q(un)> g(u)u,

= HRN('V”"'Z Flunl HRN <(—A>;Ta : Q(un)> [ty — 20(u,)]
> L 2
> <l

Consequently, (u,) is bounded. By employing standard methods, we can achieve the convergence
of (uy,).
Next, let

n—-oo yE]RN

5 == lim sup f lu,|%.
B1(y)

We claim § > 0. On the contrary, on the basis of Lions’ concentration compactness principle, we
have u, » 0 in LP(RY) for 2 <p < % By (H;), Q is continuous and satisfies (H,), for any

€ >0, aconstant C, > 0 exists such that

—a - 2N 1+%
nim ((—A)EZ * Q(un)> 3 (uy) (Uy) <Clim (f |Q(un)|m>
RN n=>0 \JRN

n—-oo
[24
ﬂ 1+N
<Clm f Iun|2+J |u, |N-2 .
n—-oo RN ]RN
Through Lemma 12.2,

a
oy 145
< Clm|e f |un|2+f |u, |N—2 +Cgf lu, |P
n—oo RN RN RN

a
1+N

eC;+Ccluim | |u,|P

a
I < C[eC,]** .
n—-oo ]RN

<C

Considering that ¢ is arbitrary, we obtain

j ((—A);T . Q(un)> () (ttn) = O.
RN

AIMS Mathematics Volume 10, Issue 11, 25489-25503.
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Combining with J(u,) — 0, we can generate

4

0= (j(un):un> = f (lvunlz + |un|2) - f ((_A)ET * Q(un)) ‘%(un)undx;
RN RN

which implies that

[ vl + 1w = | ((—A)? . Q(un)>4(un)undx.
RN RN

Then, we have

f (V7 - lug2) 0,
R

which indicates that (u,) = 0 in H!(RY). Accordingly, ¢, = 0, which contradicts the assumption

that ¢, > 0.
Therefore, there exists a positive constant § > 0 and a sequence

o)
f |lu,|P = E > 0.
B1(Yn)

We set V,(x) = u,(x + vp),
1Vl = [[un,]l,

)
f Ianpdx > E,
B1(0)

and
J(V) = co =¢, J(uy,) = 0.
Thus, V, # 0 exists such that
V, 5V, in HL(RM),
V, -V, in LP(RY), Vp € [2,
V, >V, a.e.onR".
Then, for any ¢ € C5°(R"), we have
0 =T, ¥) = (T Vo), ),

which means that V, is a solution of Eq (1.2).
Conversely, the application of Fatou’s lemma enables us to obtain

{y,} € RN such that

2N )
N-2)’

1 . 1 1 —_d
Co = J(Vn) - Z(J(Vn)' Vn) = EJ. (lvvnlz + |Vn|2) - E.f ((_A)EZ * Q(Vn)>Q(Vn)
RN RN

%4

_1 2 2 1 —A) 2 &
2L AT e+ 5 fRN<( ISERYIUS
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%4

1 ) o 1 —a
= Zf}RN(IVVnI +[Val®) + ZIRN ((—A)Ez x Q(Vn)> [V )V, —20(V,)]

4

1 1 —a
> ZJ.RNUVVO'Z +[Vol?) + Z.fRN ((—A)Ez * Q(V0)> [a(V)Vy — 20(Vy)]

1 .
=J(Vo) — Z(J(Vo);vo> = J(Vo).
From the definition of c,, ¢, < J(V,). Consequently, we can conclude that V, is a GSS of Eq (1.2).

Remark 1. This study examines the issue when a is between (0,2), but not when «a is greater
than 2.

3. Conclusions

In conclusion, our study investigated a GSS for a GNCE. Through rigorous analysis and the
application of variational methods, we have successfully established the existence of GSS under
certain conditions. Our main contribution consists of a novel alteration of the Riesz potential, an
aspect that has not been previously examined in this context. This modification not only expands the
theoretical understanding of such equations but also opens new avenues for practical applications,
particularly in fields such as quantum mechanics and astrophysics, where nonlocal interactions play a
crucial role.

The theoretical implications of our findings extend beyond the realm of mathematical analysis,
suggesting broader applications in understanding physical systems with nonlocal interactions. By
showcasing the effectiveness of our approach in identifying GSS, we advocate for further exploration
of nonlocal effects and their mathematical representations in various scientific domains.

Whilst our study builds upon previous methodologies, our novel approach to modifying the
Riesz potential underscores the importance of innovative thinking in advancing mathematical and
scientific research. This study serves as a foundation for future research aimed at exploring the
complexities of nonlinear Choquard equations and their implications across various disciplines. For
instance, subsequent work could investigate the existence of GSSs for magnetic or other variants of
the nonlinear Choquard equation when the Riesz potential is equivalent to a Riesz fractional operator.
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