Research article

Hyers-Ulam stability of coupled systems for stochastic differential equations with random impulses driven by Poisson jumps

  • Published: 05 November 2025
  • MSC : 34A37, 34F05, 34G20, 47H10, 60H10

  • The problem of existence, uniqueness, and stability in the Hyers-Ulam sense of solutions for random impulsive stochastic functional differential equations driven by Poisson jumps with finite delays is considered. Based on techniques combining the generalized Banach fixed-point theorem and the expansion of the Perov-type fixed-point theorem, two significant quantitative and qualitative results are analyzed, and then an example is presented to illustrate our results.

    Citation: Yasir A. Madani, Tayeb Blouhi, Fatima Zohra Ladrani, Mohamed Bouye, Khaled Zennir, Keltoum Bouhali, Amin Benaissa Cherif. Hyers-Ulam stability of coupled systems for stochastic differential equations with random impulses driven by Poisson jumps[J]. AIMS Mathematics, 2025, 10(11): 25358-25379. doi: 10.3934/math.20251123

    Related Papers:

  • The problem of existence, uniqueness, and stability in the Hyers-Ulam sense of solutions for random impulsive stochastic functional differential equations driven by Poisson jumps with finite delays is considered. Based on techniques combining the generalized Banach fixed-point theorem and the expansion of the Perov-type fixed-point theorem, two significant quantitative and qualitative results are analyzed, and then an example is presented to illustrate our results.



    加载中


    [1] A. Anguraj, K. Ravikumar, Existence and stability of impulsive stochastic partial neutral functional differential equations with infinite delays and Poisson jumps, Discontinuity, Nonlinearity, and Complexity, 9 (2020), 245–255. https://doi.org/10.5890/DNC.2020.06.006 doi: 10.5890/DNC.2020.06.006
    [2] M. Benchohra, J. Henderson, S. K. Ntouyas, Impulsive differential equations and inclusions, New York: Hindawi Publishing Corporation, 2006.
    [3] R. Precup, A. Viorel, Existence results for systems of nonlinear evolution equations, International Journal of Pure and Applied Mathematics, 47 (2008), 199–206.
    [4] V. Lakshmikantham, D. D. Bainov, P. S. Simeonov, Theory of impulsive differential equations, Singapore: World Scientific, 1989. https://doi.org/10.1142/0906
    [5] J. R. Graef, J. Henderson, A. Ouahab, Impulsive differential inclusions: a fixed point approach, Berlin: de Gruyter, 2013. https://doi.org/10.1515/9783110295313
    [6] D. Wang, L. Li, Fixed-time stability analysis of discontinuous impulsive systems, Commun. Nonlinear Sci., 120 (2023), 107153. https://doi.org/10.1016/j.cnsns.2023.107153 doi: 10.1016/j.cnsns.2023.107153
    [7] A. C. J. Luo, Discontinuous dynamical systems, Berlin, Heidelberg: Springer, 2012. https://doi.org/10.1007/978-3-642-22461-4
    [8] A. B. Cherif, F. Z. Ladrani, A new introduction to Riemann-Liouville fractional Sobolev spaces within time scale frameworks, Mathematical Structures and Computational Modeling, 1 (2025), 51–59.
    [9] A. B. Cherif, F. Z. Ladrani, Unified functional spaces for time-scale analysis of Delta-Nabla equations, Journal of Time Scales Analysis, 1 (2025), 85–91. https://doi.org/10.64721/k9t4cf94 doi: 10.64721/k9t4cf94
    [10] Z. He, S. Wang, J. Shi, D. Liu, X Duan, Y. Shang, Physics-informed neural network supported wiener process for degradation modeling and reliability prediction, Reliab. Eng. Syst. Safe., 258 (2025), 110906. https://doi.org/10.1016/j.ress.2025.110906 doi: 10.1016/j.ress.2025.110906
    [11] Z. He, S. Wang, D. Liu, A nonparametric degradation modeling method based on generalized stochastic process with B-spline function and Kolmogorov hypothesis test considering distribution uncertainty, Comput. Ind. Eng., 203 (2025), 111036. https://doi.org/10.1016/j.cie.2025.111036 doi: 10.1016/j.cie.2025.111036
    [12] Z. He, S. Wang, D. Liu, A degradation modeling method based on artificial neural network supported Tweedie exponential dispersion process, Adv. Eng. Inform., 65 (2025), 103376. https://doi.org/10.1016/j.aei.2025.103376 doi: 10.1016/j.aei.2025.103376
    [13] G. Da Prato, J. Zabczyk, Stochastic equations in infinite dimensions, Cambridge: Cambridge University Press, 1992. https://doi.org/10.1017/CBO9780511666223
    [14] G. A. Pavliotis, Introduction to stochastic differential equations, In: Stochastic processes and applications, New York: Springer, 2014, 55–85. https://doi.org/10.1007/978-1-4939-1323-7_3
    [15] K. Sobczyk, Stochastic differential equations with applications to physics and engineering, Dordrecht: Springer, 1991. https://doi.org/10.1007/978-94-011-3712-6
    [16] A. Friedman, Stochastic differential equations and applications, In: Stochastic differential equations, Berlin, Heidelberg: Springer, 2010, 75–148. https://doi.org/10.1007/978-3-642-11079-5_2
    [17] B. Øksendal, Stochastic differential equations: an introduction with applications, Berlin: Springer, 2003. https://doi.org/10.1007/978-3-642-14394-6
    [18] A. Anguraj, K. Ramkumar, E. M. Elsayed, Existence, uniqueness and stability of impulsive stochastic partial neutral functional differential equations with infinite delays driven by a fractional Brownian motion, Discontinuity, Nonlinearity, and Complexity, 9 (2020), 327–337. https://doi.org/10.5890/DNC.2020.06.012 doi: 10.5890/DNC.2020.06.012
    [19] S. Li, L. Shu, X.-B. Shu, F. Xu, Existence and Hyers-Ulams stability of random impulsive stochastic functional differential equations with finite delays, Stochastics, 91 (2019), 857–872. https://doi.org/10.1080/17442508.2018.1551400 doi: 10.1080/17442508.2018.1551400
    [20] E. H. Lakhel, Exponential stability for stochastic neutral functional differential equations driven by Rosenblatt process with delay and Poisson jumps, Random Operat. Stoch. Equ., 24 (2016), 113–127. https://doi.org/10.1515/rose-2016-0008 doi: 10.1515/rose-2016-0008
    [21] N. Zhang, X. Wang, W. Li, Stability for multi-linked stochastic delayed complex networks with stochastic hybrid impulses by Dupire Ito's formula, Nonlinear Anal.-Hybri., 45 (2022), 101200. https://doi.org/10.1016/j.nahs.2022.101200 doi: 10.1016/j.nahs.2022.101200
    [22] N. Zhang, Z. Wang, J. H. Park, W. Li, Semi-global synchronization of stochastic mixed time-delay systems with Lévy Noise under aperiodic intermittent delayed sampled-data control, Automatica, 171 (2025), 111963. https://doi.org/10.1016/j.automatica.2024.111963 doi: 10.1016/j.automatica.2024.111963
    [23] T. Blouhi, M. Ferhat, Coupled system of second-order stochastic neutral differential inclusions driven by Wiener process and Poisson jumps, Differ. Equ. Dyn. Syst., 30 (2022), 1011–1025. https://doi.org/10.1007/s12591-018-00450-y doi: 10.1007/s12591-018-00450-y
    [24] S. Mekki, T. Blouhi, J. J. Nieto, A. Ouahab, Some existence results for systems of impulsive stochastic differential equations, Ann. Math. Sile., 35 (2021), 260–281. https://doi.org/10.2478/amsil-2020-0028 doi: 10.2478/amsil-2020-0028
    [25] S. J. Wu, Y. Zhou, Existence and uniqueness of stochastic differential equations with random impulses and Markovian switching under non-lipschitz conditions, Acta. Math. Sin.-English Ser., 27 (2011), 519–536. https://doi.org/10.1007/s10114-011-9753-z doi: 10.1007/s10114-011-9753-z
    [26] A. Pazy, Semigroups of linear operators and applications to partial differential equations, New York: Springer, 1983. https://doi.org/10.1007/978-1-4612-5561-1
    [27] D. Applebaum, Lévy processes and stochastic calculus, 2 Eds., Cambridge: Cambridge University Press, 2009. https://doi.org/10.1017/CBO9780511809781
    [28] B. Øksendal, Stochastic differential equations: an introduction with applications, 6 Eds., Berlin: Springer, 2010. https://doi.org/10.1007/978-3-642-14394-6
    [29] R. Precup, The role of matrices that are convergent to zero in the study of semilinear operator systems, Math. Comput. Model., 49 (2009), 703–708. https://doi.org/10.1016/j.mcm.2008.04.006 doi: 10.1016/j.mcm.2008.04.006
    [30] R. Precup, Methods in nonlinear integral equations, Dordrecht: Springer, 2002. https://doi.org/10.1007/978-94-015-9986-3
    [31] A. Pazy, Semigroups of linear operators and applications to partial differential equations, New York: Springer, 1983. https://doi.org/10.1007/978-1-4612-5561-1
    [32] N. Hassan, W. Rzymowski, On the Cauchy problem for ordinary differential equations with discontinuous right-hand sides, J. Math. Anal. Appl., 152 (1990), 1–5. https://doi.org/10.1016/0022-247X(90)90088-W doi: 10.1016/0022-247X(90)90088-W
    [33] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA, 27 (1941), 222–224. https://doi.org/10.1073/pnas.27.4.222 doi: 10.1073/pnas.27.4.222
    [34] A. Boudaoui, T. Caraballo, A. Ouahab, Existence of mild solutions to stochastic delay evolution equations with a fractional Brownian motion and impulses, Stoch. Anal. Appl., 33 (2015), 244–258. https://doi.org/10.1080/07362994.2014.981641 doi: 10.1080/07362994.2014.981641
    [35] I. A. Rus, M.-A. Şerban, Basic problems of the metric fixed point theory and the relevance of a metric fixed point theorem, Carpathian J. Math., 29 (2013), 239–258.
    [36] P. Hu, H. Ma, Pareto efficiency of finite-horizon mean-field cooperative stochastic differential games with Poisson jumps, J. Franklin I., 360 (2023), 14746–14760. https://doi.org/10.1016/j.jfranklin.2023.08.006 doi: 10.1016/j.jfranklin.2023.08.006
    [37] Y. Lin, Linear quadratic open-loop Stackelberg game for stochastic systems with Poisson jumps, J. Franklin I., 358 (2021), 5262–5280. https://doi.org/10.1016/j.jfranklin.2021.04.048 doi: 10.1016/j.jfranklin.2021.04.048
    [38] J. Moon, Linear-quadratic stochastic stackelberg differential games for jump-diffusion systems, SIAM J. Control Optim., 59 (2021), 954–976. https://doi.org/10.1137/20M1352314 doi: 10.1137/20M1352314
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(263) PDF downloads(27) Cited by(0)

Article outline

Figures and Tables

Figures(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog