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1. Introduction and position of problem

Although the first studies considering the impact of aftereffects/delays on the dynamics of systems
of various classes began in the mid-20th century, such studies have only recently started to develop
intensively, primarily due to practical needs. Many areas of application for such problems can be
found in real life, including, in particular, management, mechanics, physics, chemistry, economics,
biology, medicine, nuclear energy, and information theory; please see [1-3].
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Many real phenomena and complex processes allow for their mathematical formulation in the form
of abstract differential equations with impulse action in the case of an infinite phase space. Examples of
such abstract equations include delay, hysteresis, and distributed parameter systems. Impulse ordinary
differential equations and systems of such evolution equations are studied in depth in [4—6], where a
classification of such systems is provided depending on the nature of the actions. There exist three
different classes (types) of such systems: - systems subjected to impulse action at fixed moments in
time; - systems subjected to impulse action at the moment when the representative point P hits the
given surfaces of the extended phase space; - discontinuous dynamic systems; see [7-9]. For the
abstract equations, one cannot proceed from this classification; therefore, it is necessary to introduce
the concept of a solution in a different way. Hence, analysis of the qualitative behavior of the stability
of such a system has attracted many researchers in recent years; see [10-12].

Differential and integral equations have become standard models for financial quantities, such
as asset prices, interest rates, and their derivatives. Unlike deterministic models, such as ordinary
differential equations, which have a unique solution for each corresponding initial condition, stochastic
differential equations have solutions that are continuous-time stochastic processes. Methods for solving
stochastic differential equations are based on similar techniques used for solving ordinary differential
equations but are generalized to accommodate stochastic dynamics; see [13—15]. A stochastic system
for drug distribution in a different real-life context can be found in [16, 17].

This paper deals with a coupled system of impulsive stochastic functional differential equations
given for z > 1y as

dy(t) = fi(t.y2) + 81y 2)dBO) + [ (1,2, KA1, ds), 1%

dZ(t) = fZ(t’ Yt Zt) + g2(t’ Vi, Zt)dB(l) + Jj{ hZ(t’ Vis Xty S)(]((dl’ dS), t# /lk

YA = b&oy(A;), keN,

2 = bi&)zA;), keN, (1.1)

Yo = @i ={wi(@):ac€[-1,0]}

Zy = @ ={w(a): ac€[-1,0]}

Let Q be an open domain of RY, d > 1, t; > 0. Here ¢ is a random variable defined from Q to M =
(0,di), Yk € N, where 0 < d < +oo. Assume that {; and {; are independent fori # j, i, j € {1,2},....
Suppose that T € (%, +o0); the functional

fis fo i [to, TIX Dy x Dy — R,
21,82 ¢ [to, T1 X Dy x Dy — R,

hi,hy : [to, T]1 X Dy X A — R,

and
by, by : My — R™,

are Borel functions that are measurable. Let (2, P, ?,,P) be a complete probability space, furnished
with a family of continuous and increasing o-algebras {#,,t € J} such that P, ¢ P. By u, = (y;,2,) we
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mean the segment solution; if
y(', ~)a Z(" ) : [_tla T] X Q - Rd’ tl > T’

then
yt('a ')7 Zl('a ) : [_tl,()] X Q - Rda

is defined as
yila,B) = y(t + a,p), a € [-1,0], Be€Q,

and
z(a,B) = z(t + a, B), a€[-t,0], BeQ.

Let us define D, as the space of all piecewise continuous processes
@, [-1,0]xQ - RY, 1= (1,2},

such that @(a, .) is Py-measurable for a € [—-¢;, 0] where

0
f Elw,(1)|*dt < co.

1
In Dy, the norm:
0
@ (D)l = f Elaw(t)Pdt,
-h

is considered. For T' > 0, we introduce the space

0
Dr =1{y:ye€C(=t;, T; L*(Q;RY)) : supE(ly(t)]*) < o0, such that f El@ (7)]*dt < oo},
[0,T] -t
with the norm

lullp, = sup VE(u®P) + ll@illp,-
[0,T]

The impulsive moments A, form a strictly increasing sequence

/lo</11</12<---</1k<---</}im/lk=00,

—00

and
y(A;) = lim y().
t—Aj—0

Let
Ao =tg, A = A1 + &, k=1,2,....

Then {4,} is a process with independent increments. Let {K(z), ¢ > 0} be the simple counting process
generated by {1}, and let {B(¢),t > 0} be a given m-dimensional Brownian motion. Denoting by SDED
the o-algebra generated by {K(¢) : ¢t > 0}, and let sz) be the o-algebra generated by {B(s) : s > t};
see [18-20]. We have

uAv=min(y,v) and u Vv =max(u,v).
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The work [21] investigated the stability of multi-linked stochastic delayed complex networks that
are subject to stochastic hybrid impulses. This study utilized Dupire’s functional 1t6 calculus to analyze
systems with path-dependent dynamics and impulsive effects, focusing primarily on the stability of
such networks under stochastic hybrid impulses and time delays. In [22], semi-global synchronization
of stochastic mixed time-delay systems influenced by Lévy noise is considered. The authors proposed
a control strategy based on aperiodic intermittent delayed sampled-data control, aiming to achieve
synchronization despite the challenges posed by jump noise and mixed delays. These two works
used Dupire’s functional It calculus and specialized control methodologies for synchronization. Our
manuscript, on the other hand, develops maximal inequalities for stochastic integrals with respect to
compensated Poisson random measures and investigates the filtration structures related to Lévy jumps,
thereby providing fundamental probabilistic tools.

This article is structured as follows. Some useful notation and necessary preliminaries are stated in
Section 2, and the main results related to quantitative studies are presented and proved in Section 3.
We provide the type of stability of the problem in Section 4.

2. Preliminaries and fixed-point results

Let (Q,%P,P) be a probability space with filtration #,}, ¢ > 0 such that P, = 505“ \Y% 7’52) and
denoting by B,(R?) the Borel o-algebra of R?; see [23-25]. Let (p(f))=0 be an R%-valued, o-finite
stationary &,-adapted Poisson point process on (€2, ¥, {&}:0, P). The counting random measure K is
given by

K(t1, 1], xAB) = Z La(p(s)(B)), for any A € B, (R —{0}).

11 <s<f

where 0 ¢ A. We will denote this by K(z, A) = K((0,1] X A). A o-finite measure A is given by

— 1Tl 1T k
P(K (1, A) = k) = L2200

{ E(K(t, A)) = (A,

where the measure 7 is the Lévy measure. The compensated Poisson random measure K is given as
K0, 1] x A) = K((0, 1] x A)er(U).

Here, dt7(A) is the compensator; for more details, see [26].

Theorem 2.1. [27, Theorem 4.4.23] Let p > 0. Then, for all processes y, we have

t
f [Y[(s)ds < oo, 1 € [0, 00),
0

t % t 14 t %
c,,E( f |Y|2(s)ds) SE(sup f y(s)dB(s)) sc,,E( f |Y|2(s)ds) : (2.1)
0 s€[0,t] JO 0

where c,,C,, > 0.

we have
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Lemma 2.1. [28, Theorem 7.3.2] Let p € {1,2} and o : R* x RY — R? be measurable functions
(progressively) such that
!
f E(f lo(s, y)|pT(dy)ds) < 0.
0 A
Then, for ¢, > 0, we have
X 5 p !
E[sup (f fa(s, VK (ds, dy)) ] < EpEf fla(s, WP r(dy)ds. (2.2)
0<s<t 0 Z 0 JZ

The classical contraction principles were improved for contractive maps in spaces endowed with

vector-valued metrics, and the fixed point theorem in a complete generalized metric space can be
found in [29-31].

Definition 2.1. [32] Let T € (ty, +0), an R? X R~ valued stochastic process u = (y,z) € Dr X Dr,
be a solution of (1.1) in (Q,P,P), if

1) u(t) is P,-adapted for t > t,

2) u(t) is right continuous and has a limit on the left almost surely;
3) u(ty + s) = (@ (s), @2()) for s € [-11,0]

4) u(t) satisfies, fort € [—-t;,T],B € Q

1
P(f f \h(r, yrs 2 s)lgr(ds)dr < oo) =1,
0 Ja

k k k ) ;
)’(f) = [H b,l(gz)wl(o) + Zl Hb}(gj) J/Zl_tl fl(s’ysa Zs)ds + Lk fl(S,ys, Zs)ds
i=1 j=i

+
8

=~
Il

0 |i=1

+
M»

k _ ,
16K [ 810,35 2)dB(s) + [} 15,5 2,)dB(s)

-
k , - y -
LB [}, Jahn vz K ds) + [} [z 9, ds)]

XI(,]k Qi 1](l) P-a.s,

2(t) = z[nb%g)wz(owznbz(g) f Fas,y520ds + [} fo(s,y5 2ds

k=0 [i=1 i=1 j=i

i

||M»L

(2.3)

+ 2 n bA(¢;) f 22(5,y5, 2)dB(s) + [} 825,y 2)dB(s)

i=1 ] i
+ Z Hbz(f;)f f ho(r, vy, 2, S)K(dr, ds) + f f ha(r,y,, 20, $)K(dr, ds)]
i=1 j=

Xl (), P-a.s,

here .
[T2:¢) = bu@obi @~ 1.
j=i

and /;(.) is given by

1, iftekE,
1zt ‘{ 0, ifr¢E.
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Definition 2.2. [33] Let (5(1), Z(t)) be an R x R%valued stochastic process. We say that the coupled
impulsive stochastic functional differential system (1.1) is Hyers-Ulam stable if there exists a constant
n > 0 such that for every &1,&, > 0, whenever a pair of adapted processes (y,7) satisfies, for all
t € [t,T],

s - @600 <e. Bl - 0:6.20| < e

where ® and ©, denote the stochastic integral operators associated with system (1.1). Then there
exists an exact solution (y(t), z(t)) of (1.1) such that

Elly(r) - YOI < n max{z,, £}, Ellz(t) -zl < n max{e, &}, Vi€ [1,T].
3. Quantitative analysis of solution

Here, we consider the existence and uniqueness of a mild solution for (1.1) based on the Perov fixed
point theorem. The following hypotheses are assumed.

(H;) There exist constants ay, by, c;, € R foreach [ = 1,2, Vt € [y, T], such that

EIlfi(t, y,2) = filt, 3, DIP < aglly = 3%, + bylle = 22,
Ellfi(t,y, DIF < ¢ (1 + I, + N2l )

where y, z, 7,7 € Dy.
(H,) Let g € L? ([to,T] X Do X Dy : R"X’") be continuous function. Then, there exist constants
Ay, by, cq € RT foreach [ € {1,2}, for all ¢ € [y, T] such that

E”gl(t’y? Z) - gl(t’.)_)? Z)”2 < agl”y - }_)H%O + bg1||Z - Z”%(J’
Bllgi(t,y, DI < ¢ (1+ V1R, + [l ).
where y, z, y, 7 € Dy.
(H;) Let by : [ty, T] X Dy X Dy X A — R? be a function. Then there exist constants ap, by, cp € RY
foreach [ € {1,2}, and t € [ty, T] where

[ Bl v, 2, 8) = (0,5, 2, DIPT(ds) < aplly = 51, + billz — 21 ,
[ Bl y. 2, )P(ds) < e, (1+ 13, + lI213,) -

(H4) The condition

% 2
E[ngx {ﬂ ||b,(§j>||}] :
J=i
is uniformly bounded. Then, there exist constants B > O where
p 2
E[n;gx {]—[ ||b,»<§j)||}] < B,
Jj=i
andgj € D]s ] € {1,2,}
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Theorem 3.1. Let (H,)—(H4) hold and introduce the matrix

where

and

mp mp

Mtrice =
ms  nsj

), m; 20, j=12,3,4,

= (3 max{1, B} ((l - lo)Zafl + Co(t — l())Clgl + Co(t — l‘())zah1 ))E

-

rol—

my = (3max{1, B} ((t = 10)°by, + Ca(t — to)bg, + Ex(t — 10)°by, )" .

my = (3max{1, B} ((t - to)’ay, + Ca(t — to)ag, + Ex(t — 10)’an,))’ .

1

my = (3max{1, B} ((t = 10)°by, + Ca(t — to)bg, + Ex(t — 10)°by,))" -

If M converges to O, then (1.1) admits a unique solution.

Proof. Consider the operator

defined by

where

7(1()7,2) =

and

7(2()]’ Z) =

«I@TXZ)T—)DTXZ)T’

W()’, Z) = (7<1(y’ Z)’«Z(y7 Z))’ (y7 Z) € Z)T X DT,

@10, 1€ (=0, 0]
5 |16/ @@i0)+ 3 Hbl(g“,) [ s yezdds + [ fi(s,ys2ds

kOll i=1 j=i
k

t2 H BAE) [;' 81(5,702)dB(s) + [} 1(5,Y52,)dB(s)

k k . ~ ~
+ 21161 L iy 9K @rds) + [ [ iy 2 9K (dr, ds)

i=1 ] i
XI(/lk,/lk—l](t)9 P-a.s,

TD'Q(t), re [—tl,O]
+oo | k
S| 1102@)@20) + 3 Hbz(g“,) I B yezds + [} f(s.y.02)ds

kOll i=1 j=i
k

Z‘ ];[ bi(Z)) f/j_ll 82(8,y5,2,)dB(s) + Lk 22(5, Vs, 25)dB(s)

k k . ~ ~
+ X T161&) L Loy 9K drds) + [ [ o,y 2 9K (dr, ds)

l— ] l
XI(/lk,/lkq](t)» P-a.s.

As in [32], we shall use the fixed-point theorem in a complete generalized metric space to prove that
‘K has a fixed point. In fact, let (y, z), (7,2) € Dr X Dr. Then, for t € [ty — t;, T], we get

AIMS Mathematics
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< 3E

k 2 2
n}ix{l,ﬂ||b}<§j>||}] ( f Enfl(s,ys,zs)—f1<s,ys,zs>||ds)

=i

2 ' 2
+3E max{ ]—[nb (4,>||} ( f Engl(s,yx,zs)—g1<s,ys,zs>||dB(s>)
+3E max{ H||b (g,)u}

By (2.2) and Burkholder-type inequality, we obtain

2

t 2
(f E”hl(r’ Vrs Zrs S) - hl(r’ }_)r’ Zr, S)||7?(dra dS)) .

fo

EJI% (7, 2)(0) = K0 5, DI
< 3max{l, Bl(t - 1)’ (aplly: = 5%, + bsllz, = Zl13,)

+3max(1, BICo(t = to) (ag Ve = Fillfy, + beyllz = 23, )
+3max{1, Blea(t — t0)? (an v = 5, + i llzr = Z3,) -

Since (y,z) = (,2) in [~1,, 0], then

1K1 (v, 2) = K0, DI, < milly = llp, + m3llz =23,
and

17y, 2) = Ko, DI, < m3lly = llp, + millz — 2, -
Then

1K, 2) ~ K, Dl (”7(1 (.9 - %G, Z)nm)

172, 2) = Ko (3, Dllo,

(ml mz) (ny—inm)
my my)\llz—Zlp, |

Ky, 2) = KO, Do, < Miice (Hﬁ ~ ;H?), for all (y,2), (y,2) € Dr X Dr.
T

Therefore, we arrive at

Due to the Preov fixed point theorem, the mapping K has a unique fixed (y, z) € Dy X Dy that is exactly
the unique solution of (1.1). O

4. Hyers-Ulam stability

The stability through the continuous dependence of solutions on the initial conditions is
investigated.

Theorem 4.1. Let (y(1),z(t)), (3(t),7Z(t)) be the solutions of (1.1) with initial values (w,, ;) and
(@, @,), respectively. According to the assumptions of Theorem 3.1, the solution of (1.1) is stable
in mean square.
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Proof. Let (y(1),z(t)) and (3(¢), Z(¢)) be the two solutions of the system (1.1). Then, we have
k
Blly(t) - 5@IP < 4Emax {1, ||b}(4,-)||2} Bllw, - &1l

i=1

- L _2 y 2
+4E m,aX{L IIb}(éj)II} fEllfl(s,ys,zx)—fl(s,?x,zs)lldS)

ik .
L J=t

_ i 12 . )
+4B m_ax{l, ||b}-<§,->||} f Engl(s,ys,zs)—g1<s,ys,zs>||d8(s))

i,k
| j=i To

J=i

_ L 12 , )
+4E maX{l, IIb}(éj)Il} fE||h1(r,yr,zr,S)—hl(r,)_’r,Zr,S)ll‘K(dr,dS))-

| ik o
Using inequality (2.2) and the hypotheses (H,)—(H,), we get

SUPci,y_, 7y EIV(@) = FOIP < 4 max {1, B} El|w — @[

+(4 max(1, BY((t — t0)%ay, + Calt = to)ag, + &(t = t0Yay, )) [ (f Sup,eqr—, 1 Ely(s) = 5(s)IPds

+(4 max{1, BY((t = 10)*by, + Calt = to)bg, + Ea(t = 10)*by,)) J! sup ey, Bllz(s) = Zs)|Pds

< 4max {1, B}Ellw) - &P + 7 [ sup,;,  Ely(s) = 3()Pds + 7 [ sup,e,_,, 1 Ellz(s) - Z(s)IPds.

In a similar way, we deduce that

sup Ellz(t) - 20 < 4max {1, B|Elw, - @I
telto—1,T]
++ (4max{1, BY((t - t0)’ap, + Calt = to)a,
f
+or(t - to)%a,)) f sup Elly(s) — 5(s)|ds
to SE[t—11,]
+ + (4max{1, BY((t — 10)°by, + Calt = to)b,
f
+ea(t - 16)°by,)) f sup Ellz(s) — Z(s)|Pds

to SE[t—11,]

IA

3
4max 1, B} Ellw, — @l + s f sup Elly(s) - 5(s)IPds

ty s€lt=t1,1]

t
+imy f sup Ellz(s) - Z(s)|l*ds.
fo

s€(t—11,1]
So, we get
PN NT
sup (Elly() - 50)IP + Ellz(r) - 20)I1)
te[to—11,T]

< K (Bllw) - @l + Ellw, - @)

T
K f sup_(Elly(s) = 5 + Ellz(s) — Z(s)I*) ds.

[t—t1,1]
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If we denote

K, = 4max{1,B},

and

K, = max{ﬁl + ;n\g, ﬁz + /7;14}

Owing to Grownwall’s inequality, we have the following.

sup_(Elly() = 5Ol + Elle(t) - 20)IP)

te[to—t1,T]
K (Bllw, - @l + Ellw, — @) exp(K»)

M (Bl — @ + Ellw, - @),

IA

IA

where

M = K, exp(K3).

Lete>0and 6 = 8/1\71 so that

-2
Ellw, — @l|° < 0,

and
Ellw,; — @l < 6.
Then
sup  Elly(®) =3I <&,
teltg—11,T]
and
sup  Ellz(t) - 20| < .
tefto—11,T}
In summarizing the above, (1.1) is stable in the mean square. This completes the proof. O

Our next main result regarding the Hyers-Ulam stability of the system (1.1) with assumptions (H;)—
(H,) is presented.

Theorem 4.2. Assumption that (H,)—(H,) holds. Then, ( 1.1) is stable in the Ulam-Hyers sense.

AIMS Mathematics Volume 10, Issue 11, 25358-25379.
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Proof. Let us define (3(¢), z(¢)) as the solution of the system (1.1).

+00

k
= 3 Hbl(g,)wl(onznbl(g) f A8, 55 20ds + [} fils, 5. Z)ds

k()zl i=1 j=i

+ 2 H bI(¢;) f 21(5, 55, Z)dB(s) + [} 81(5, 35, Z)dB(s)

lljl

+2Hb @) [ [y 502 YR r,ds) + [ [ i3, 2 YK (dr, ds)

i=1 j=
Xluk,akfl](t), P—a.s,

k

(t) = kzo nlb%@,)wz(0>+znb2(4> f (5,95 Zs)ds + f Fo(5, 55, Z5)ds
1 i=1 j=i
k

+ z [15%¢)) f 22(5, 55, Z)dB(s) + [ &a(5,$s,Z)dB(s)

l—l]l

+ z Hbz({,) L Lo 32 YR ds) + [ [ ha(r, 5.2, YK (dr, ds)

i=1 j=
XI(Ak,Ak_l](l), P—a.s.

Then
k

E |[y(®) — Z [Hb (&)@ (0) + Z l_[bl(éj)f Ji(s, ¥, Z9)ds +f Si1(s, s, Z5)ds

i=1 j=i

+ZHb D) f 2105, 35, Z)dB(5) + [} 21(5, 5, Z)dB(s)

i=1 j=i

k . ~ - 2
2110/ [ LG50z, 9K r,ds) + [ [ 10502 9K (@r,ds)] L@ <&

||M>-

Similarly,

Ell:() - 3 [Hb2<§,>wz<0>+z 1Hb2<§,> f fo(8, 95, Z5)ds + f Fo(8, 95, Z5)ds

k=0 | i=1

+ z H bA(¢;) f 825,35, Z)dB(5) + [} 82(5, 34, Z)dB(s)

i=1 j=i

# S TTBE) [} Lo 502 K ds) 4[] [ a5 2 YK )] T <

i=1 j=
when ¢t € [ty — 11, tp], we have

Elly(1) - y(0)II* = 0,
and

Eliz(1) — z(0)II* =

Hence for each ¢ € [¢y, T], we have
Ell5(1) — yOII*
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< 2F

y(t)—Z{Hb(&)wl(OHZﬂb @) f fis, 500 2)ds + f fi(5.502)ds

k=0 i=1 j=i

k k ¢
+Zﬂb(g) gl(s 95> Z)dB(s) + f 21(s, 35, 2,)dB(s)

1 j=i i Ak

+
:”
@‘
=~
s
%
%
=
>
';<
L
S
A
QL
>
QU
=
+
—
%
=
>
';<
L
S
by
QL
>
Q
=
e—
=
,5"
;E‘
+
é

i=1 j=i

f fl(s Vs Zs) fl(s ys,Zs)]dS"' Z l—lb (éj) [gl(s ys’Zs) gl(S ys,Zs)]dB(s)

, f (6105, 0.25) — 8105, 5, Z0)]dB(s)

/lk

S He f [ 0302009 = 505 1
i=1 j=i

2

" f f (s Y 202 ) — B 51020, s)]%(dr,dw] T ®

Ay JA
< 28+2A1,
and then

Bliz(f) — z(D)|]* < 2¢& + 2A,.

We first estimate the third part

k k A
ML) f [fi(5.30:20) = fi(5. 5. Z)1ds

i1 j=i

+00
B,

k=0

f fl(s ys’Zs) f](S ys,zs)]ds+ Z nb ({j)f gl(s Ys» Zs) gl(s ysazs)]dB(S)
A

i=1 j=i Ai-

f[gl(s Ys» Zs) gl(s ys’ Zs)]dB(S)
Ak

S f [ 00310505 = 5,91 )

i=1 j=i
2

+ f f [hl(r,yr,zr,S)—hl(r,)‘/r,Zr,S)]‘k(dr,dS)]Iuk,g,ﬁ.](t)
Ay JA

< 3(71 + 72 + 73),
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AQZE

+oo [ kK A
Z |: l_lbtz(gj) f [fZ(S’ys, Zs) - f2(s’)_)S9 Zv)]ds
i Ai-1

k=0 |i=1 j=i

t k k A
# [ Utz = Azl e Y [T [tz - o655 2)1B05)
Ak Ai-1

i=1 j=i

+ f [gZ(S’ Vs ZS) - gZ(S, .)_;S’ Z\)]dB(s)

Ak

k k A .
NBES L ) L U2, 31214 ) = ha(r, 31 2y IR (dr, ds)

=1 j=i
2

1
+ f f[hz(”, VrsZrs 8) = o (1, 3, 2, $)1K(dr, ds)] Loy (1)
A Ja

IA

30, + 1, + Ty).

First

=~
I

E

+oo | kK k A
Z[ l_[bll(é/j)f [fl(s’ys’zs)_fl(s’)_]bzs)]ds
i — Ai-1

k=0 [ i=1 j=i
2

+ f [fl(s9 Vs ZS) - fl(s’ _)_)S’ ZY)]dS] I(/lk,/lk+1](t)
Ak

IA

f f
2(B* + 1)(T - 1) (afl f llys — Fsl*ds + by, f llzs — zs||2ds).
to Ty
Similarly, we have
. _ ! !
I} < 2B + 1T - 1) (afz f Iys - lPds + by, f e, - zsnzds) .
fo 4]

By condition (H,) and using inequality (2.1), we obtain

+oo | kK Kk A
> [Z [ |6 f [91(5, 35> 25) = 81(5, 35, Z)1dB(s)
Ai-

k=0 [ i=1 j=i

I, E

2

+ f [gl(s9 Vs ZS) - g(S, )_)S’ ZS)]dB(S):| I(/lk,/lk+1](t)

Ak

IA

1 !
2C,(B* + 1)(T - 1) (ag] f llys = FslPds + by, f llzs — ZsllzdS) :
1o 4]

Similarly,

) _ t 1
I, < 2C5(B* + 1)(T - 1) (agz f llys = ¥slPds + by, f llzs — Zs||2dS).
o 1o
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Finally, by the inequality (2.2) and (H3) and (H,),

+00 k k A B
> [Z BELS f U017, 2200 8) = a7, 37 20 9)IK (dr, dis)
Ai-

k=0 | i=1 j=i

E

~
%)
Il

2

!
+ f (A1 (r, Yy, 20, 8) = M (7, $rs 2, $)IK (T, ds)] Lo a1 (®)
Ak

IA

t
(B> + I)(T - 1), [f f Ellai (7, Yrs 2rs 8) = 11 (5, 31, 2o OIPV(ds)dr
1o A

t
+ (f f E”hl(r’ Vs Zrs S) - hl(ra )_’r, Zr’ S)”zv(ds)dr)]
to A

t t
< 2B+ )T - 10)&, (ahl f llys = ¥slPds + by, f llzs — ZsllzdS),
1) fo

and ) .
=3 - -
I, <2(B* + 1)(T - )2, (ah2 f llys = ¥,llPds + by, f llzs — ZsllzdS).
0 to
Then,
t !
El[j(t) - yOII* < 2 + 2K, f llys = ¥slPPds + 2K, f llzy — Z,lI*ds,
o fo
where
Ky =3B + 1)T - to) (ay, + Caag, + Eraan, ).
and
Ky = 3(2(B* + 1)(T = to) (bj, + Caby, + Exby,).
Similarly,
! !
Eliz(t) - zOI* < 2, + 2K, f llys — Fsl*ds + 21?2[ llzs — ZlI*ds,
to ]
where
Ky =3B + 1)T - to) (ap, + Caag, + Caain,)
and
Ky =3B + 1)(T - 19) (by, + Caby, + Eaby,).
Considering

!
f sup El[i(s + @) — y(s + @)|*ds
I

o @€[—s,0]

f [15(s) = y()llp,ds

t
sup f Ellj(s + @) — y(s + a)|’ds
Iy

ael-s,0]
I+a
= Supf Ell3(s) — y(s)I*ds.
a€[-s5,0] Jr+a

When ¢ € [ty — 11, ty], we have
Ell3(1) - y(0)II* = 0.
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Then,

t t+a
f 155 — yillp,ds sup f Elly(s) — y(s)Ids
to a€[-s5,0] Jy

f E[5(s) - y(s)Ids.

fo

Then, we obtain that
EMﬁ—ﬂmF+Em0—dese+MJnm%ﬂ—ﬂwfﬂm9—dwﬂd&
where

&= 2(81 + 82), M = max{2K1 + 21_{1, 2K, + 21_{2}

By applying Gronwall’s inequality, we have
Elly(®) - yOI + Eliz(0) — z0)I* < sexp(M).
Therefore, there exists 7 = exp(ﬁ), such that

Elly(r) = y)I” < ne,

and
Ellz(t) — z(0)II* < ne.

Then, (1.1) is Hyers-Ulam stable. O

4.1. Examples

Example 4.1. Consider the stochastic differential equations with random impulses driven by Poisson
jumps
dlu(®)] = [f_(il () (u(t + a) + v(t + a/))da/] dr + [f_(il (@) (u(t + ) + v(t + a))a | dB(1)
#| [0 Lo 05@u + @)+ 300 + e | Kdrds), 12 0,1 % A,
dvol = | [ o@Dy dr | [ oae22a | ao

#| [, @@ s o | Rdr ds), 12 0,1 % A (4.1)

u(A) = bi(HGuA), k=1,2,..,

() = ba(K)Gv(A), k=1,2,..,
Uy = ﬂ] = {/l((l) —h fa< O},
Vo = /12 = {/l(a) - <a< 0}

Let r > 0, u, v in R-valued stochastic process,

A€ Dy =C([-1.01, AQR)).
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& is given from Q to Dy = (0,dy), Yk = 1,2,.... Let {; follow an Erlang distribution, and {; and
{j are independent as i # j, i,j € N, tp = dg < A} < A < ... < A& < ..., and A = A + {i
for k € N. Let B(t) € R be a one-dimensional Brownian motion, where b is a function of k. Let
P, 1,105 1 [—t1,0] = R be continuous functions. Define

fis fo i [to, TI X Dy x Dy — R,

21,82 ¢ [to, T1 X Dy x Dy — R,
h],h2 te, T1 X Dy X A — Rd,
by by : Dy — R,

by
0
A0, 20)) = f 91t + @) + (¢ + a))dal.),
0
211, y(0), D)) = f 9ot + @) + (¢ + a))dal.),
0
ha(1, (0, 2()() = f 93(u(t + @) +v(t + a))da(.),
and o
A0, 20)() = f ﬁl(”(”“);”’”))da(.),
0
226, y(1), 20)() = f ﬂz(u(t+a);V(t+a))dC¥(-),
0
ho(t, y(0), 2D)(.) = f ﬂ«”mmgv(t”))da(.).
For

u(t + a), vt + a) € Dy,

we assume that

k
i) maXi,k{H_Ellbl(j)(éfj)llz} <oo, [le{l,2}.

Jj=i
) f_(i. 91(@)’da < e, f_(; (@) da < oo, f_otl Fi(a)*da < oo.

Suppose that the states (i) and (ii) are held, and then the assumptions (H,)—(Hy) hold. Then, the system
(4.1) has a unique solution (y, z) and is stable.
Thus, the system (4.1) has a unique mild solution.

Example 4.2. We consider the coupled stochastic system
dy(t) = [—a1y(t) + cz(D)] dt + o1 y(1) dB(1) + J1(2) dN(2),
dz(t) = [—ayz(t) + cy(t)] dt + 0,z(t) dB(t) + Jo(t) dAN(¢),
YA = A+ p)y(A),  2(4) = (1 + p2)z(2p),

AIMS Mathematics Volume 10, Issue 11, 25358-25379.



25374

where B(t) is a Brownian motion and N(t) a Poisson process with intensity A. The parameters used
are:a1=1,a,=12,¢=05,0,=0.2,0,=025 1=0.8, p; =p, =0.1.

Using an Euler—-Maruyama scheme implemented in R, we simulate two trajectories with initial
conditions y(0) = yg and y.(0) = yo + &, 2(0) = z0, 2.(0) = 20 + &.

The numerical results show that

(@) = 3@ + |2(2) = 20|

remains bounded and decays over time despite the impulsive and jump perturbations, confirming the
Hyers-Ulam stability of the system; see Figures I and 2.

y(t) and y(t)

1.0

04 08 08
| |

0.2

0.0

0.2

y(®) - y(t)l

Difference
003 004 005
] | |

0.0z
|

0.01
|

0.00
|

t

Figure 1. The Hyers-Ulam stability of the system in y(z).
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z(t) and 2(t)

04 08
1

02

0.0

0.2

[z(t) - z(t)]

Difference
003 004 005
| | |

0.0z
1

0.01
|

0.00
|

t

Figure 2. The Hyers-Ulam stability of the system in z(¢).

5. Conclusions

The quantitative and qualitative studies of the coupled system are investigated for stochastic
differential equations with random impulses driven by Poisson jumps. The existence and uniqueness
are established using the generalized Banach contraction mapping principle; together with some
estimates, the result is given in theorem 3.1; see [34, 35]. Additionally, a Hyers-Ulam sense of
solutions is given in theorem 4.2 by the expansion of the Perov-type fixed-point theorem under
assumptions (H;)-(H4). The presence of the functions f;, g; and h;,i = 1,2, makes the system more
interesting from an application point of view due to their great importance and extensive applications
in real life. Potential topics include, but are not limited to: Stochastic differential games; Inverse
stochastic differential equations; Random walks in random media; Stochastic analysis in biology
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and biomedicine; Markov processes; Population and evolutionary models; Random networks; and
Stochastic analysis in finance. It can be applied in the field of ecological and biological modeling,
particularly to stochastic predator-prey systems; please see [36—38].
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