In this paper, we considered a predator-prey model with self-feedback delay to investigate its Hopf bifurcation and control. First, non-negativity, boundedness, and the existence and uniqueness of solutions were discussed. Next, the conditions of the existence of the unique positive equilibrium were analyzed. Then, by using delay as the bifurcation parameter, the local stability of the positive equilibrium, and the existence and characteristics of Hopf bifurcation were investigated. Furthermore, by designing a hybrid controller integrating linear time-delayed state feedback and parametric regulation, the local asymptotic stability at the positive equilibrium was achieved within the target delay interval. Finally, numerical simulations verified the theoretical results. From the perspectives of unknown and known control gains, the stability switching mechanism and the maximum stable delay interval were explored. The results demonstrated that the proposed hybrid controller maintains system stability over a wider delay range and eliminates population extinction risks, providing a theoretical basis for stability regulation in ecosystem management.
Citation: Jiao-Guo Wang, Xin-You Meng. Hopf bifurcation and hybrid control in a delayed predator-prey model[J]. AIMS Mathematics, 2025, 10(11): 25380-25405. doi: 10.3934/math.20251124
In this paper, we considered a predator-prey model with self-feedback delay to investigate its Hopf bifurcation and control. First, non-negativity, boundedness, and the existence and uniqueness of solutions were discussed. Next, the conditions of the existence of the unique positive equilibrium were analyzed. Then, by using delay as the bifurcation parameter, the local stability of the positive equilibrium, and the existence and characteristics of Hopf bifurcation were investigated. Furthermore, by designing a hybrid controller integrating linear time-delayed state feedback and parametric regulation, the local asymptotic stability at the positive equilibrium was achieved within the target delay interval. Finally, numerical simulations verified the theoretical results. From the perspectives of unknown and known control gains, the stability switching mechanism and the maximum stable delay interval were explored. The results demonstrated that the proposed hybrid controller maintains system stability over a wider delay range and eliminates population extinction risks, providing a theoretical basis for stability regulation in ecosystem management.
| [1] |
A. J. Lotka, Analytical note on certain rhythmic relations in organic systems, Proc. Natl. Acad. Sci. U.S.A., 6 (1920), 410–415. https://doi.org/10.1073/pnas.6.7.410 doi: 10.1073/pnas.6.7.410
|
| [2] |
V. Volterra, Fluctuations in the abundance of a species considered mathematically, Nature, 118 (1926), 558–560. https://doi.org/10.1038/118558a0 doi: 10.1038/118558a0
|
| [3] |
S. G. Mortoja, P. Panja, S. K. Mondal, Dynamics of a predator-prey model with nonlinear incidence rate, Crowley-Martin type functional response and disease in prey population, Ecological Genetics and Genomics, 10 (2019), 100035. https://doi.org/10.1016/j.egg.2018.100035 doi: 10.1016/j.egg.2018.100035
|
| [4] |
X. Wang, L. Zanette, X. Zou, Modelling the fear effect in predator-prey interactions, J. Math. Biol., 73 (2016), 1179–1204. https://doi.org/10.1007/s00285-016-0989-1 doi: 10.1007/s00285-016-0989-1
|
| [5] |
H. Zhang, Y. Cai, S. Fu, W. Wang, Impact of the fear effect in a prey-predator model incorporating a prey refuge, Appl. Math. Comput., 356 (2019), 328–337. https://doi.org/10.1016/j.amc.2019.03.034 doi: 10.1016/j.amc.2019.03.034
|
| [6] |
L. Y. Ning, D. Wu, T. C. Feng, S. J. Hu, G.-L. Feng, Y. P. Wu, The role of weak prey refuge in the cooperation-competition balance of prey-predator systems, Nonlinear Dyn., 113 (2025), 7535–7552. https://doi.org/10.1007/s11071-024-10498-x doi: 10.1007/s11071-024-10498-x
|
| [7] |
D. Hu, H. Cao, Stability and bifurcation analysis in a predator-prey system with Michaelis-Menten type predator harvesting, Nonlinear Anal. Real, 33 (2017), 58–82. https://doi.org/10.1016/j.nonrwa.2016.05.010 doi: 10.1016/j.nonrwa.2016.05.010
|
| [8] |
J. G. Wang, X. Y. Meng, L. Lv, J. Li, Stability and bifurcation analysis of a Beddington-DeAngelis prey-predator model with fear effect, prey refuge and harvesting, Int. J. Bifurcat. Chaos, 33 (2023), 2350013. https://doi.org/10.1142/S021812742350013X doi: 10.1142/S021812742350013X
|
| [9] |
W. Li, W. Zhao, J. Cao, L. Huang, Dynamics of a linear source epidemic system with diffusion and media impact, Z. Angew. Math. Phys., 75 (2024), 144. https://doi.org/10.1007/s00033-024-02271-2 doi: 10.1007/s00033-024-02271-2
|
| [10] |
S. X. Wu, X. Y. Meng, Hopf bifurcation analysis of a multiple delays stage-structure predator-prey model with refuge and cooperation, Electron. Res. Arch., 33 (2025), 995–1036. https://doi.org/10.3934/era.2025045 doi: 10.3934/era.2025045
|
| [11] |
N. H. Gazi, M. Bandyopadhyay, Effect of time delay on a harvested predator-prey model, J. Appl. Math. Comput., 26 (2008), 263–280. https://doi.org/10.1007/s12190-007-0015-2 doi: 10.1007/s12190-007-0015-2
|
| [12] |
Y. Wang, X.-Y. Meng, Bifurcation and control of a delayed Leslie-Gower fractional-order predator-prey model with fear effect and prey refuge, Adv. Cont. Discr. Mod., 2025 (2025), 103. https://doi.org/10.1186/s13662-025-03959-z doi: 10.1186/s13662-025-03959-z
|
| [13] |
W. J. Li, L. A. Yang, J. D. Cao, Threshold dynamics of a degenerated diffusive incubation period host–pathogen model with saturation incidence rate, Appl. Math. Lett., 160 (2025), 109312. https://doi.org/10.1016/j.aml.2024.109312 doi: 10.1016/j.aml.2024.109312
|
| [14] | X.-Y. Meng, Z.-W. Liang, Dynamics analysis of a delayed diffusive predator-prey model with memory-based diffusion and fear effect of prey, Int. J. Biomath., In press. https://doi.org/10.1142/S1793524525501013 |
| [15] |
X. Han, F. Xia, P. Ji, Q. Bi, J. Kurths, Hopf-bifurcation-delay-induced bursting patterns in a modified circuit system, Commun. Nonlinear Sci., 36 (2016), 517–527. https://doi.org/10.1016/j.cnsns.2016.01.001 doi: 10.1016/j.cnsns.2016.01.001
|
| [16] |
Q. Xue, G. Q. Sun, C. Liu, Z.-G. Guo, Z. Jin, Y.-P. Wu, et al., Spatiotemporal dynamics of a vegetation model with nonlocal delay in semi-arid environment, Nonlinear Dyn., 99 (2020), 3407–3420. https://doi.org/10.1007/s11071-020-05486-w doi: 10.1007/s11071-020-05486-w
|
| [17] | Z. Zhu, R. Wu, F. Chen, Z. Li, Dynamic behaviors of a Lotka-Volterra commensal symbiosis model with non-selective Michaelis-Menten type harvesting, IAENG Int. J. Appl. Math., 50 (2020), 396–404. |
| [18] |
D. M. Anderson, Turning back the harmful red tide, Nature, 388 (1997), 513–514. https://doi.org/10.1038/41415 doi: 10.1038/41415
|
| [19] |
S. Pandey, U. Ghosh, D. Das, S. Chakraborty, A. Sarkar, Rich dynamics of a delay-induced stage-structure prey-predator model with cooperative behaviour in both species and the impact of prey refuge, Math. Comput. Simul., 216 (2024), 49–76. https://doi.org/10.1016/j.matcom.2023.09.002 doi: 10.1016/j.matcom.2023.09.002
|
| [20] | G. Chen, D. J. Hill, X. Yu, Bifurcation control: theory and applications, 1 Eds., Heidelberg: Springer, 2003. https://doi.org/10.1007/b79665 |
| [21] |
R. M. May, Biological populations with nonoverlapping generations: stable points, stable cycles, and chaos, Science, 186 (1974), 645–647. https://doi.org/10.1126/science.186.4164.645 doi: 10.1126/science.186.4164.645
|
| [22] |
A. Q. Khan, M. L. Alsulami, Complicate dynamical analysis of a discrete predator-prey model with a prey refuge, AIMS Math., 8 (2023), 15035–15057. https://doi.org/10.3934/math.2023768 doi: 10.3934/math.2023768
|
| [23] |
L. Zhang, Q. Han, Z. Fang, S. Peng, Anti-control of Hopf bifurcation for the Willamowski-Rössler system, Int. J. Dyn. Control, 12 (2024), 1562–1570. https://doi.org/10.1007/s40435-023-01264-9 doi: 10.1007/s40435-023-01264-9
|
| [24] |
M. S. Shabbir, Q. Din, M. De la Sen, J. F. Gómez-Aguilar, Exploring dynamics of plant-herbivore interactions: bifurcation analysis and chaos control with Holling type-Ⅱ functional response, J. Math. Biol., 88 (2024), 8. https://doi.org/10.1007/s00285-023-02020-5 doi: 10.1007/s00285-023-02020-5
|
| [25] |
S. Biswas, P. K. Tiwari, S. Pal, Delay-induced chaos and its possible control in a seasonally forced eco-epidemiological model with fear effect and predator switching, Nonlinear Dyn., 104 (2021), 2901–2930. https://doi.org/10.1007/s11071-021-06396-1 doi: 10.1007/s11071-021-06396-1
|
| [26] |
T. Vijayalakshmi, R. Senthamarai, Application of homotopy perturbation and variational iteration methods for nonlinear imprecise prey-predator model with stability analysis, J. Supercomput., 78 (2022), 2477–2502. https://doi.org/10.1007/s11227-021-03956-5 doi: 10.1007/s11227-021-03956-5
|
| [27] |
D. Li, H. Liu, H. Zhang, M. Ma, Y. Ye, Y. Wei, Bifurcation analysis in a predator-prey model with an Allee effect and a delayed mechanism, Acta Math. Sci., 43 (2023), 1415–1438. https://doi.org/10.1007/s10473-023-0324-z doi: 10.1007/s10473-023-0324-z
|
| [28] |
Y. Lu, M. Xiao, J. Liang, J. Ding, Y. Zhou, Y. Wan, et al., Hybrid control synthesis for Turing instability and Hopf bifurcation of marine planktonic ecosystems with diffusion, IEEE Access, 9 (2021), 111326–111335. https://doi.org/10.1109/ACCESS.2021.3103446 doi: 10.1109/ACCESS.2021.3103446
|
| [29] |
Q. Cui, C. Xu, W. Ou, Y. Pang, Z. Liu, P. Li, et al., Bifurcation behavior and hybrid controller design of a 2D Lotka-Volterra commensal symbiosis system accompanying delay, Mathematics, 11 (2023), 4808. https://doi.org/10.3390/math11234808 doi: 10.3390/math11234808
|
| [30] |
Y. Mu, W. C. Lo, Y. Tan, Z. Liu, Hybrid control for the prey in a spatial prey-predator model with cooperative hunting and fear effect time lag, Appl. Math. Comput., 491 (2025), 129217. https://doi.org/10.1016/j.amc.2024.129217 doi: 10.1016/j.amc.2024.129217
|
| [31] |
L. Pei, S. Wang, Double Hopf bifurcation of differential equation with linearly state-dependent delays via MMS, J. Appl. Math. Comput., 341 (2019), 256–276. https://doi.org/10.1016/j.amc.2018.08.040 doi: 10.1016/j.amc.2018.08.040
|
| [32] |
P. Li, R. Gao, C. Xu, J. Shen, S. Ahmad, Y. Li, Exploring the impact of delay on Hopf bifurcation of a type of BAM neural network models concerning three nonidentical delays, Neural Process. Lett., 55 (2023), 11595–11635. https://doi.org/10.1007/s11063-023-11392-0 doi: 10.1007/s11063-023-11392-0
|
| [33] |
W. Ou, C. Xu, Q. Cui, Y. Pang, Z. Liu, J. Shen, et al., Hopf bifurcation exploration and control technique in a predator-prey system incorporating delay, AIMS Math., 9 (2024), 1622–1651. https://doi.org/10.3934/math.2024080 doi: 10.3934/math.2024080
|
| [34] | S. Wiggins, Introduction to applied nonlinear dynamical systems and chaos, 2 Eds., New York: Springer, 2003. https://doi.org/10.1007/b97481 |
| [35] | A. Granas, J. Dugundji, Fixed point theory, 1 Eds., New York: Springer, 2003. https://doi.org/10.1007/978-0-387-21593-8 |
| [36] | J. E. Marsden, M. McCracken, The Hopf bifurcation and its applications, 1 Eds., New York: Springer, 1976. https://doi.org/10.1007/978-1-4612-6374-6 |
| [37] | Y. Kuang, Delay differential equations with applications in population dynamics, Boston: Academic Press, 1993. |