Chaotic systems play a crucial role in science and engineering due to their complex and unpredictable behavior. In this study, we investigated a nonlinear chaotic system known as the multi-bond orbital chaotic attractor (MBOCA), which we modeled using the Caputo Fabrizio fractional operators. We first established the existence and uniqueness of solutions for the system after applying these operators to the MBOCA. We then presented a numerical scheme and analyzed its stability and convergence. To validate the proposed numerical scheme, we performed numerical simulations to visualize the system's behavior for both integer and fractional order cases. The results confirmed that the generated bond-orbital attractors exhibit chaotic behavior, highlighting the influence of fractional order operators on the system's dynamic complexity.
Citation: Elekanyani Madia, Anastacia Dlamini, Emile Franc D. Goufo, Melusi Khumalo. Fractional order modeling and simulation of a multi-bond orbital chaotic system via Caputo-Fabrizio operators[J]. AIMS Mathematics, 2025, 10(11): 25406-25433. doi: 10.3934/math.20251125
Chaotic systems play a crucial role in science and engineering due to their complex and unpredictable behavior. In this study, we investigated a nonlinear chaotic system known as the multi-bond orbital chaotic attractor (MBOCA), which we modeled using the Caputo Fabrizio fractional operators. We first established the existence and uniqueness of solutions for the system after applying these operators to the MBOCA. We then presented a numerical scheme and analyzed its stability and convergence. To validate the proposed numerical scheme, we performed numerical simulations to visualize the system's behavior for both integer and fractional order cases. The results confirmed that the generated bond-orbital attractors exhibit chaotic behavior, highlighting the influence of fractional order operators on the system's dynamic complexity.
| [1] |
M. Abu-Shady, M. K. A. Kaabar, A generalized definition of the fractional derivative with applications, Math. Probl. Eng., 2021 (2021), 1–9. https://doi.org/10.1155/2021/9444803 doi: 10.1155/2021/9444803
|
| [2] |
K. Diethelm, V. Kiryakova, Y. Luchko, J. A. T. Machado, V. E. Tarasov, Trends, directions for further research, and some open problems of fractional calculus, Nonlinear Dyn., 107 (2022), 3245–3270. https://doi.org/10.1007/s11071-021-07158-9 doi: 10.1007/s11071-021-07158-9
|
| [3] |
G. Huang, H. Y. Qin, Q. Chen, Z. Shi, S. Jiang, C. Huang, Research on application of fractional calculus operator in image underlying processing, Fractal Fract., 8 (2024), 37. https://doi.org/10.3390/fractalfract8010037 doi: 10.3390/fractalfract8010037
|
| [4] |
E. Viera-Martin, J. F. Gómez-Aguilar, J. E. Solís-Pérez, J. A. Hernández-Pérez, R. F. Escobar-Jiménez, Artificial neural networks: A practical review of applications involving fractional calculus, Eur. Phys. J.-Spec. Top., 231 (2022), 2059–2095. https://doi.org/10.1140/epjs/s11734-022-00455-3 doi: 10.1140/epjs/s11734-022-00455-3
|
| [5] |
L. C. de Barros, M. M. Lopes, F. S. Pedro, E. Esmi, J. P. C. dos Santos, D. E. Sánchez, The memory effect on fractional calculus: An application in the spread of COVID-19, Comput. Appl. Math., 40 (2021), 1–21. https://doi.org/10.1007/s40314-021-01456-z doi: 10.1007/s40314-021-01456-z
|
| [6] | R. E. Gutierrez, J. M. Rosario, J. A. T. Machado, Fractional order calculus: basic concepts and engineering applications, Math. Probl. Eng., 2010 (2010). https://doi.org/10.1155/2010/375858 |
| [7] |
M. I. Syam, M. Al-Refai, Fractional differential equations with Atangana–Baleanu fractional derivative: Analysis and applications, Chaos Soliton. Fract., 2 (2019), 100013. https://doi.org/10.1016/S2590-1486(19)30013-5 doi: 10.1016/S2590-1486(19)30013-5
|
| [8] |
A. Ali, S. Das, Applications of neuro-computing and fractional calculus to blood streaming conveying modified trihybrid nanoparticles with interfacial nanolayer aspect inside a diseased ciliated artery under electroosmotic and Lorentz forces, Int. Commun. Heat Mass, 152 (2024), 107313. https://doi.org/10.1016/j.icheatmasstransfer.2024.107313 doi: 10.1016/j.icheatmasstransfer.2024.107313
|
| [9] |
T. Alinei-Poiana, E. H. Dulf, L. Kovacs, Fractional calculus in mathematical oncology, Sci. Rep., 13 (2023), 10083. https://doi.org/10.1038/s41598-023-37196-9 doi: 10.1038/s41598-023-37196-9
|
| [10] |
C. Da Silva, M. Peces, A. Jaques, J. J. Muñoz, J. Dosta, S. Astals, Fractional calculus as a generalized kinetic model for biochemical methane potential tests, Bioresource Technol., 396 (2024), 130412. https://doi.org/10.1016/j.biortech.2024.130412 doi: 10.1016/j.biortech.2024.130412
|
| [11] |
M. A. Hernández-Pérez, G. Delgado-Reyes, V. Borja-Jaimes, J. S. Valdez-Martínez, M. Cervantes-Bobadilla, An adaptation of a sliding mode classical observer to a fractional-order observer for disturbance reconstruction of a UAV model: A Riemann–Liouville fractional calculus approach, Mathematics, 11 (2023), 4876. https://doi.org/10.3390/math11244876 doi: 10.3390/math11244876
|
| [12] | H. Pratap, S. Kumar, G. Singh, Brief history of fractional calculus: A survey, Migr. Lett., 21 (2024), 238–243. |
| [13] |
R. Hilfer, Fractional diffusion based on Riemann-Liouville fractional derivatives, J. Phys. Chem. B, 104 (2000), 3914–3917. https://doi.org/10.1021/jp9936289 doi: 10.1021/jp9936289
|
| [14] | A. Atangana, K. M. Owolabi, New numerical approach for fractional differential equations, Math. Model. Nat. Pheno., 13 (2018), 3. Available from: https://www.mmnp-journal.org/10.1051/mmnp/2021039. |
| [15] | A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model, arXiv preprint, 2016. https://doi.org/10.48550/arXiv.1602.03408 |
| [16] |
R. B. Albadarneh, I. M. Batiha, A. Adwai, N. Tahat, A. K. Alomari, Numerical approach of Riemann-Liouville fractional derivative operator, Int. J. Electr. Comput. Eng., 11 (2021), 5367–5378. https://doi.org/10.11591/IJECE.V11I6.PP5367-5378 doi: 10.11591/IJECE.V11I6.PP5367-5378
|
| [17] |
G. Farid, Bounds of Riemann-Liouville fractional integral operators, Comput. Methods Diffe., 9 (2021), 637–648. https://doi.org/10.22034/cmde.2020.32653.1516 doi: 10.22034/cmde.2020.32653.1516
|
| [18] |
M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Diff. Appl., 1 (2015), 73–85. http://dx.doi.org/10.12785/pfda/010201 doi: 10.12785/pfda/010201
|
| [19] | A. Atangana, Application of fractional calculus to epidemiology, Fract. Dyn., 2015,174–190. |
| [20] |
I. Ahmed, E. F. D. Goufo, A. Yusuf, P. Kumam, P. Chaipanya, K. Nonlaopon, An epidemic prediction from analysis of a combined HIV-COVID-19 co-infection model via ABC-fractional operator, Alex. Eng. J., 60 (2021), 2979–2995. https://doi.org/10.1016/j.aej.2021.01.041 doi: 10.1016/j.aej.2021.01.041
|
| [21] | R. Hilfer, Applications of fractional calculus in physics, World scientific, 2000. |
| [22] |
E. M. Lotfi, H. Zine, D. F. M. Torres, N. Yousfi, The power fractional calculus: First definitions and properties with applications to power fractional differential equations, Mathematics, 10 (2022), 3594. https://doi.org/10.3390/math10193594 doi: 10.3390/math10193594
|
| [23] |
G. Boeing, Visual analysis of nonlinear dynamical systems: chaos, fractals, self-similarity and the limits of prediction, Systems, 4 (2016), 37. https://doi.org/10.3390/systems4040037 doi: 10.3390/systems4040037
|
| [24] | T. K. Debnath, The effect of chaos theory in the field of business: A review, Int. J. Prog. Res. Sci. Eng., 3 (2022), 88–92. |
| [25] | A. Hastings, C. L. Hom, S. Ellner, P. Turchin, H. C. J. Godfray, Chaos in ecology: is mother nature a strange attractor?, Annu. Rev. Ecol. S., 1993, 1–33. |
| [26] |
R. G. L. Pryor, J. E. H. Bright, Chaos, complexity and COVID-19: The chaos theory of careers in 2022, Aust. J. Career Dev., 31 (2022), 201–205. https://doi.org/10.1177/10384162221120710 doi: 10.1177/10384162221120710
|
| [27] |
D. Rickles, P. Hawe, A. Shiell, A simple guide to chaos and complexity, J. Epidemiol. Commun. H., 61 (2007), 933–937. https://doi.org/10.1136/jech.2006.054254 doi: 10.1136/jech.2006.054254
|
| [28] | J. M. Ginoux, R. Meucci, J. Llibre, J. C. Sprott, The jerk dynamics of Lorenz model, In: International Conference on Nonlinear Dynamics and Applications, Springer, 2023,121–129. https://doi.org/10.1007/978-3-031-50635-2_12 |
| [29] | E. N. Lorenz, Deterministic nonperiodic flow, J. Atmos. Sci., 20 (1963), 130–141. |
| [30] | T. N. Palmer, E. N. Lorenz, May 1917-16 April 2008 Biogr, Mems. Fell. R. Soc., 55 (2009), 189–205. |
| [31] |
B. W. Shen, A Review of Lorenz's Models from 1960 to 2008, Int. J. Bifurcat. Chaos, 33 (2023), 2330024. https://doi.org/10.1142/S0218127423300240 doi: 10.1142/S0218127423300240
|
| [32] | M. S. Larruy, Chaotic dynamical systems. Applications to engineering and communications, B.S. thesis, Universitat Politècnica de Catalunya, 2024. |
| [33] |
M. Borah, A. Gayan, J. S. Sharma, Y. Chen, Z. Wei, V.-T. Pham, Is fractional-order chaos theory the new tool to model chaotic pandemics as Covid-19?, Nonlinear Dyn., 109 (2022), 1187–1215. https://doi.org/10.1007/s11071-021-07196-3 doi: 10.1007/s11071-021-07196-3
|
| [34] |
A. Fernández-Díaz, Overview and perspectives of chaos theory and its applications in economics, Mathematics, 12 (2024), 92. https://doi.org/10.3390/math12010092 doi: 10.3390/math12010092
|
| [35] |
D. Guegan, Chaos in economics and finance, Annu. Rev. Control, 33 (2009), 89–93. https://doi.org/10.1016/j.arcontrol.2009.01.002 doi: 10.1016/j.arcontrol.2009.01.002
|
| [36] |
T. A. Al-Maadeed, I. Hussain, A. Anees, M. T. Mustafa, A image encryption algorithm based on chaotic Lorenz system and novel primitive polynomial S-boxes, Multimed. Tools App., 80 (2021), 24801–24822. https://doi.org/10.1007/s11042-021-10695-5 doi: 10.1007/s11042-021-10695-5
|
| [37] |
W. Alexan, M. ElBeltagy, A. Aboshousha, Rgb image encryption through cellular automata, s-box and the lorenz system, Symmetry, 14 (2022), 443. https://doi.org/10.3390/sym14030443 doi: 10.3390/sym14030443
|
| [38] |
F. Bagnoli, M. Baia, Synchronization, control and data assimilation of the Lorenz system, Algorithms, 16 (2023), 213. https://doi.org/10.3390/a16040213 doi: 10.3390/a16040213
|
| [39] |
N. Stankevich, Stabilization and complex dynamics initiated by pulsed force in the Rössler system near saddle-node bifurcation, Nonlinear Dyn., 112 (2024), 2949–2967. https://doi.org/10.1007/s11071-023-09183-2 doi: 10.1007/s11071-023-09183-2
|
| [40] |
N. Kuznetsov, T. Mokaev, V. Ponomarenko, E. Seleznev, N. Stankevich, L. Chua, Hidden attractors in Chua circuit: Mathematical theory meets physical experiments, Nonlinear Dyn., 111 (2023), 5859–5887. https://doi.org/10.1007/s11071-022-08078-y doi: 10.1007/s11071-022-08078-y
|
| [41] |
X. Zhang, C. Li, A novel type of chaotic attractor with a multiunit structure: From multiscroll attractors to multi-bond orbital attractors, Eur. Phys. J. Plus, 137 (2022), 1048. https://doi.org/10.1353/mln.2022.0076 doi: 10.1353/mln.2022.0076
|
| [42] |
A. Dlamini, E. F. D. Goufo, M. Khumalo, On the Caputo-Fabrizio fractal fractional representation for the Lorenz chaotic system, AIMS Math., 6 (2021), 12395–12421. http://dx.doi.org/10.3934/math.2021717 doi: 10.3934/math.2021717
|
| [43] | A. Dlamini, E. F. D. Goufo, M. Khumalo, Strongly perturbed bondorbital attractors for generalized systems, Chaos, 35 (2025). https://doi.org/10.1063/5.0249237 |
| [44] |
S. Saber, Control of Chaos in the Burke-Shaw system of fractal-fractional order in the sense of Caputo-Fabrizio, J. Appl. Math. Comput. Mech., 23 (2024), 83–96. https://doi.org/10.17512/jamcm.2024.1.07 doi: 10.17512/jamcm.2024.1.07
|
| [45] |
N. Almutairi, S. Saber, On chaos control of nonlinear fractional Newton-Leipnik system via fractional Caputo-Fabrizio derivatives, Sci. Rep., 13 (2023), 22726. https://doi.org/10.1038/s41598-023-49541-z doi: 10.1038/s41598-023-49541-z
|
| [46] |
A. M. Alqahtani, S. Sharma, A. Chaudhary, A. Sharma, Application of Caputo-Fabrizio derivative in circuit realization, AIMS Math., 10 (2025), 2415–2443. https://dx.doi.org/10.3934/math.2025113 doi: 10.3934/math.2025113
|
| [47] |
A. I. Arik, I. S. Araz, Delay differential equations with fractional differential operators: Existence, uniqueness and applications to chaos, Commun. Anal. Mech., 16 (2024), 169–192. http://dx.doi.org/10.3934/cam.2024008 doi: 10.3934/cam.2024008
|
| [48] |
Y. Şahin, M. Merdan, New numerical solutions for Caputo–Fabrizio fractional differential multidimensional diffusion problems, Int. J. Math. Math. Sci., 2025 (2025), 5554516. https://doi.org/10.1155/ijmm/5554516 doi: 10.1155/ijmm/5554516
|
| [49] |
S. M. S. Rana, M. J. Uddin, A. Q. Khan, Bifurcation and chaos in a discrete fractional order reduced Lorenz model with Caputo and conformable derivatives, J. Appl. Anal. Comput., 15 (2025), 1241–1271. https://doi.org/10.11948/20240181 doi: 10.11948/20240181
|
| [50] |
P. A. Glendinning, D. J. W. Simpson, Robust chaos and the continuity of attractors, Trans. Math. Appl., 4 (2020), tnaa002. https://doi.org/10.1093/imatrm/tnaa002 doi: 10.1093/imatrm/tnaa002
|
| [51] | C. Letellier, L. F. Olsen, S. Mangiarotti, Chaos: From theory to applications for the 80th birthday of Otto E. Rössler, Chaos, 31 (2021). https://doi.org/10.1063/5.0058332 |
| [52] |
F. Li, J. Zeng, Multi-scroll attractor and multi-stable dynamics of a three-dimensional jerk system, Energies, 16 (2023), 2494. https://doi.org/10.3390/en16052494 doi: 10.3390/en16052494
|
| [53] |
Y. Ye, J. He, Constructing a new multi-scroll chaotic system and its circuit design, Mathematics, 12 (2024), 1931. https://doi.org/10.3390/math12131931 doi: 10.3390/math12131931
|
| [54] | E. Kreyszig, Introductory functional analysis with applications, Wiley, 1989. |
| [55] |
F. Jarad, T. Abdeljawad, Applications of the Caputo–Fabrizio fractional derivative to the modeling of real-world phenomena, Chaos Soliton. Fract., 123 (2019), 275–286. https://doi.org/10.1016/j.urology.2018.04.048 doi: 10.1016/j.urology.2018.04.048
|
| [56] | K. Diethelm, The analysis of fractional differential equations, Springer, 2010. |