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these operators to the MBOCA. We then presented a numerical scheme and analyzed its stability and
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Keywords: chaotic systems; multi-bond orbital chaotic attractor (MBOCA); Caputo–Fabrizio
fractional derivative; fractional differential equations; existence and uniqueness; numerical
simulation; Adams–Bashforth method
Mathematics Subject Classification: 26A33, 34A08, 34D45, 37D45, 65P20

1. Introduction

Fractional calculus, which generalizes the concepts of differentiation and integration to non-integer
orders, has attracted considerable research interest due to its broad applicability in science and
engineering [1–4]. It offers a powerful and flexible framework for modeling complex systems with
memory effects, hereditary properties, and fractal geometries, and it is particularly well-suited for
capturing chaotic dynamics [5–7]. Numerous studies have demonstrated the advantages of fractional
calculus over classical integer order models [4, 8–11], with a detailed historical overview provided
in [12].

Among the fractional derivatives most studied are the Riemann-Liouville (RL) [13], Caputo-
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Fabrizio (CF) [14], and Atangana-Baleanu (AB) [15] operators. The RL derivative, one of the
earliest formulations, employs singular-kernel integral operators [1, 16, 17]. In contrast, Caputo and
Fabrizio introduced a smooth, non-singular exponential kernel in 2015 [18], and Atangana and Baleanu
proposed a non-singular, nonlocal kernel in 2016 [15]. Each of these formulations possesses distinct
mathematical characteristics that make them suitable for applications in physics and engineering.

The CF and AB operators have been successfully applied to a range of models, including
those involving heat transfer [15] and epidemiological dynamics [19]. For instance, Ahmed et
al. [20] employed the AB derivative to model the co-infection dynamics of HIV and COVID-19,
demonstrating that fractional operators can significantly improve model accuracy and predictive
capabilities. The broad utility of fractional calculus is further evidenced by its growing presence across
disciplines [2, 4, 5, 8, 21, 22].

Chaos theory studies nonlinear systems with extreme sensitivity to initial conditions. Although
governed by deterministic laws, such systems often behave unpredictably and exhibit complex long-
term dynamics [23–27]. Pioneered by Edward Lorenz through a simplified meteorological model,
chaos theory revealed how minor variations in initial states could lead to drastically different long-term
outcomes [28–32]. Originally developed for weather prediction, chaos theory now finds applications
in diverse fields such as medicine [33], chemistry [34], and economics [35]. Notable examples of
chaotic systems include the Lorenz system [36–38], the Rössler system [39], Chua’s circuit [40], and
multiscroll chaotic systems [41].

In recent years, researchers have increasingly explored the interplay between chaos and fractional
calculus. For example, Dlamini et al. [42] applied the CF operator to the Lorenz system, developing
a numerical scheme and analyzing its behavior under various parameter settings. The same authors
later extended this approach to a four-dimensional system with multi-bond orbital chaotic attractors
(MBOCA) [43]. Similarly, Saber et al. [44] used the CF operator to stabilize the Burke-Shaw system,
demonstrating its effectiveness in controlling complex chaotic dynamics. In another study, Almutairi
et al. [45] modeled the Newton-Leipnik system using fractional-order CF derivatives and showed that
linear controllers could stabilize its chaotic trajectories, highlighting the advantages of non-singular
kernels in chaos control. Additional applications of fractional calculus in chaotic systems can be
found in [46–49], collectively emphasizing the potential of fractional-order operators to enhance the
modeling, analysis, and stabilization of chaotic dynamics.

Attractors play a fundamental role in the study of chaotic systems, describing the sets toward
which a system’s trajectory converges over time [50]. They are generally categorized as non-strange,
strange non-chaotic, or strange chaotic [34, 50, 51]. Famous examples such as the Hénon, Lorenz, and
multiscroll attractors exhibit intricate geometries and strong sensitivity to initial conditions [50,51]. In
particular, multiscroll attractors involve multiple equilibrium points, increasing both their complexity
and unpredictability [52,53]. These characteristics have made them attractive for applications in secure
communications and encryption technologies involving images, video, and audio signals [53].

Although fractional calculus has been applied to a variety of chaotic systems, to the best of
our knowledge, no prior research has been conducted for the three-dimensional multi-bond orbital
chaotic attractor (MBOCA) introduced in [41] using fractional-order CF operators. Zhang et al. [41]
examined the MBOCA system in its integer-order form, but its behavior under CF derivatives remains
unexplored. This gap in the literature is our primary motivation for this study.

The remainder of the paper is structured as follows. In Section 2, we provide the mathematical
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preliminaries. In Section 3, we introduce the three-dimensional chaotic system. In Section 4, we
formulate its fractional-order model and establish the existence and uniqueness results. In Section 5, we
present the numerical scheme, while in Section 6, we analyze convergence and stability. In Section 7,
we provide numerical simulations and graphical representations. In Section 8, we discuss the results
and in Section 9, we conclude the paper.

2. Mathematical preliminaries

In this section, we provide the essential definitions and notation for the fractional-order framework
used in this paper. Let R denote the set of real numbers and let C([0,T ],Rn) represent the Banach space
of continuous vector-valued functions on [0,T ] equipped with the norm

‖x‖∞ := sup
t∈[0,T ]

‖x(t)‖

(see [54]).
Let T > 0 be a fixed final time, and let 0 < ψ < 1 denote the fractional order. We employ the

Caputo-Fabrizio (CF) fractional derivative, which has been widely applied due to its non-singular and
non-local kernel [15, 18].

2.1. Caputo-Fabrizio fractional derivative

The CF fractional derivative of order ψ of a function x(t) is defined as

CF Dψ
t x(t) =

M(ψ)
1 − ψ

∫ t

0
x′(s) exp

(
−

ψ

1 − ψ
(t − s)

)
ds,

where M(ψ) is a normalization function satisfying M(0) = M(1) = 1. This operator avoids the singular
kernel of classical fractional derivatives and better models memory effects in real-world systems [18,
55].

2.2. Banach fixed-point framework and contraction condition

To prove the existence and uniqueness of solutions, we apply the Banach fixed-point theorem [54].
A mapping T : X → X is called a contraction if there exists L ∈ (0, 1) such that

‖T (x) − T (y)‖ ≤ L‖x − y‖, ∀x, y ∈ X.

Then, T admits a unique fixed point in X.
For the Caputo-Fabrizio fractional system, the contraction condition becomes:(

1 −
ψ

M(ψ)

)
L +

ψ

M(ψ)
LT < 1,

where L is the Lipschitz constant of the nonlinear function G(ξ), and LT relates to the time discretization
of the system.

This inequality ensures the system remains contractive under fractional dynamics. The memory
weight ψ scales the influence of past values, and M(ψ) ensures normalization. Physically, the inequality
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means that the system’s memory must not overwhelm its local stability. Numerically, it guarantees
convergence of the iteration scheme. This type of contraction analysis is commonly used in fractional
stability studies [56]. We will apply this contraction principle to the fractional order chaotic system in
Section 4.

2.3. Lipschitz continuity

The nonlinear function G(ξ) is defined as

G(ξ) = −ξ + f (ξ), f (ξ) = (Q − P) +

P∑
i=1

sign (ξ + (2i − 1)) +

Q∑
j=1

sign (ξ − (2 j − 1)) ,

and is assumed to be Lipschitz continuous with constant LG, satisfying

‖G(ξ1) −G(ξ2)‖ ≤ LG‖ξ1 − ξ2‖.

This guarantees well-posedness for the fractional order formulation [56].

2.4. Notation

We use the standard Euclidean norm ‖ · ‖ in R3 and denote time derivatives with a dot; for example,
ẋ = dx/dt. All fractional derivatives are understood in the Caputo-Fabrizio sense unless otherwise
stated. Let C([0,T ],Rn) be the Banach space of continuous vector-valued functions on [0,T ], with
norm

‖x‖∞ = sup
t∈[0,T ]

‖x(t)‖,

as described in standard functional analysis references [54].
The mapping G(ξ) is defined as

G(ξ) = −ξ + f (ξ), f (ξ) = (Q − P) +

P∑
i=1

sign (ξ + (2i − 1)) +

Q∑
j=1

sign (ξ − (2 j − 1)) ,

and is assumed to satisfy a Lipschitz condition with constant LG [56].
The contraction constant for the Banach fixed-point theorem is denoted L, and the normalization

function for the CF derivative is M(ψ), satisfying M(0) = M(1) = 1 [18].

3. The three-dimensional chaotic system

In this section, we introduce the three-dimensional chaotic system considered in this work. The
system was originally presented by Zhang et al. [41], and it is defined as follows:

ξ̇ = rη,

η̇ = sζ,

ζ̇ = −η −Cζ + G(ξ, P,Q), (3.1)
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where r, s, and C are system parameters with C ∈ (0.45, 0.7), and s a positive real constant. The
variables ξ, η, and ζ represent the state variables. The nonlinear function G(ξ, P,Q) is defined as

G(ξ, P,Q) = −ξ + Q − P +

P∑
p=1

sgn (ξ + 2p − 1) +

Q∑
q=1

sgn (ξ − 2q + 1) , (3.2)

where P and Q are positive integers used for step adjustment.

4. Existence and uniqueness

In this section, we apply the contraction condition introduced in Section 2 to establish the existence
and uniqueness of solutions for the system under the Caputo-Fabrizio fractional derivative. We adopt
the approach presented in [14]. The fractional order formulation is given by:

CF
0 Dψ

t ξ(τ) = F1(ξ, η, ζ, τ),
CF
0 Dψ

t η(τ) = F2(ξ, η, ζ, τ),
CF
0 Dψ

t ζ(τ) = F3(ξ, η, ζ, τ), (4.1)

with the initial conditions:
ξ(τ0) = ξ0, η(τ0) = η0, ζ(τ0) = ζ0.

The functions on the right-hand side are defined as

F1(ξ, η, ζ, τ) = rη, F2(ξ, η, ζ, τ) = sζ, F3(ξ, η, ζ, τ) = −η −Cζ + G(ξ, P,Q).

In integral form, these equations become:

M(ψ)
1 − ψ

∫ t

0
ξ′(σ) exp

(
−ψ

1 − ψ
(t − σ)

)
dσ = F1(ξ, η, ζ, τ),

M(ψ)
1 − ψ

∫ t

0
η′(σ) exp

(
−ψ

1 − ψ
(t − σ)

)
dσ = F2(ξ, η, ζ, τ),

M(ψ)
1 − ψ

∫ t

0
ζ′(σ) exp

(
−ψ

1 − ψ
(t − σ)

)
dσ = F3(ξ, η, ζ, τ). (4.2)

By applying the fundamental theorem of calculus, we obtain the following expressions:

ξ(τ) = ξ(0) +
1 − ψ
M(ψ)

F1(ξ, η, ζ, τ) +
ψ

M(ψ)

∫ t

0
F1(ξ, η, ζ, σ)dσ,

η(τ) = η(0) +
1 − ψ
M(ψ)

F2(ξ, η, ζ, τ) +
ψ

M(ψ)

∫ t

0
F2(ξ, η, ζ, σ)dσ,

ζ(τ) = ζ(0) +
1 − ψ
M(ψ)

F3(ξ, η, ζ, τ) +
ψ

M(ψ)

∫ t

0
F3(ξ, η, ζ, σ)dσ. (4.3)

AIMS Mathematics Volume 10, Issue 11, 25406–25433.



25411

We define the operators T1, T2, and T3 acting on functions ξ(τ), η(τ), and ζ(τ), respectively, as:

(T1ξ)(τ) = ξ0 +
1 − ψ
M(ψ)

F1(ξ, η, ζ, τ) +
ψ

M(ψ)

∫ t

0
F1(ξ, η, ζ, σ)dσ,

(T2η)(τ) = η0 +
1 − ψ
M(ψ)

F2(ξ, η, ζ, τ) +
ψ

M(ψ)

∫ t

0
F2(ξ, η, ζ, σ)dσ, (4.4)

(T3ζ)(τ) = ζ0 +
1 − ψ
M(ψ)

F3(ξ, η, ζ, τ) +
ψ

M(ψ)

∫ t

0
F3(ξ, η, ζ, σ)dσ.

We aim to show that T1, T2, and T3 are contraction mappings in the Banach space of continuous
functions C([0,T ]) with the norm

‖ξ‖∞ = sup
τ∈[0,T ]

|ξ(τ)|.

To apply the Banach fixed-point theorem, we verify the Lipschitz condition:

‖G (Λ1) − G (Λ2)‖ ≤ L‖Λ1 − Λ2‖

for some Lipschitz constant L > 0, where Λ = (ξ, η, ζ), and G (Λ) is defined as:

G (Λ) =


rη
sζ

−η −Cζ + G(ξ, P,Q)

 .
For each component, we verify:

|rη1 − rη2| = |r| |η1 − η2| ⇒ L1 = |r|,

|sζ1 − sζ2| = |s| |ζ1 − ζ2| ⇒ L2 = |s|.

For the third component:

|(−η1 −Cζ1 + G(ξ1, P,Q)) − (−η2 −Cζ2 + G(ξ2, P,Q))|
≤ |η1 − η2| + |C||ζ1 − ζ2| + |G(ξ1, P,Q) −G(ξ2, P,Q)|,

where the function G(ξ, P,Q) includes sign functions. Since sgn(·) is piecewise constant, G(ξ) is
Lipschitz with:

|G(ξ1) −G(ξ2)| ≤ 2(P + Q)⇒ LG ≤ 2(P + Q).

Hence,
L3 = max(1, |C|, LG).

Applying the contraction condition, for T1:

‖T1ξ1 − T1ξ2‖ ≤

(
1 − ψ
M(ψ)

L1 +
ψ

M(ψ)
L1T

)
‖η1 − η2‖.

Similarly, for T2:

‖T2η1 − T2η2‖ ≤

(
1 − ψ
M(ψ)

L2 +
ψ

M(ψ)
L2T

)
‖ζ1 − ζ2‖.
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Additionally, for T3:

‖T3ζ1 − T3ζ2‖ ≤

(
1 − ψ
M(ψ)

L3 +
ψ

M(ψ)
L3T

)
(‖η1 − η2‖ + ‖ζ1 − ζ2‖).

Thus, the combined contraction condition is:

1 − ψ
M(ψ)

L +
ψ

M(ψ)
LT < 1.

Therefore, the operators T1,T2, and T3 satisfy the contraction mapping principle, confirming the
existence and uniqueness of the solution using the Banach fixed-point theorem.

5. Numerical scheme

In this section, we present a numerical scheme for solving fractional order differential equations
based on the Caputo-Fabrizio fractional derivative. To achieve this, we transform the equations in (4.2)
by applying the fundamental theorem of calculus, following the method outlined in [14], to obtain:

ξ(τ) − ξ(0) =
1 − ψ
M(ψ)

F1(ξ, η, ζ, τ) +
ψ

M(ψ)

∫ τ

0
F1(ξ, η, ζ, σ) dσ,

η(τ) − η(0) =
1 − ψ
M(ψ)

F2(ξ, η, ζ, τ) +
ψ

M(ψ)

∫ τ

0
F2(ξ, η, ζ, σ) dσ,

ζ(τ) − ζ(0) =
1 − ψ
M(ψ)

F3(ξ, η, ζ, τ) +
ψ

M(ψ)

∫ τ

0
F3(ξ, η, ζ, σ) dσ. (5.1)

At τn+1, we obtain:

ξ(τn+1) − ξ(0) =
1 − ψ
M(ψ)

F1(ξn, ηn, ζn, τn) +
ψ

M(ψ)

∫ τn+1

0
F1(ξ, η, ζ, τ) dτ,

η(τn+1) − η(0) =
1 − ψ
M(ψ)

F2(ξn, ηn, ζn, τn) +
ψ

M(ψ)

∫ τn+1

0
F2(ξ, η, ζ, τ) dτ,

ζ(τn+1) − ζ(0) =
1 − ψ
M(ψ)

F3(ξn, ηn, ζn, τn) +
ψ

M(ψ)

∫ τn+1

0
F3(ξ, η, ζ, τ) dτ. (5.2)

Similarly, at τn, we have:

ξ(τn) − ξ(0) =
1 − ψ
M(ψ)

F1(ξn−1, ηn−1, ζn−1, τn−1) +
ψ

M(ψ)

∫ τn

0
F1(ξ, η, ζ, τ) dτ,

η(τn) − η(0) =
1 − ψ
M(ψ)

F2(ξn−1, ηn−1, ζn−1, τn−1) +
ψ

M(ψ)

∫ τn

0
F2(ξ, η, ζ, τ) dτ,

ζ(τn) − ζ(0) =
1 − ψ
M(ψ)

F3(ξn−1, ηn−1, ζn−1, τn−1) +
ψ

M(ψ)

∫ τn

0
F3(ξ, η, ζ, τ) dτ. (5.3)

Subtracting the two equations yields:

ξ(τn+1) − ξ(τn) =
1 − ψ
M(ψ)

[
F1(ξn, ηn, ζn, τn) −F1(ξn−1, ηn−1, ζn−1, τn−1)

]
AIMS Mathematics Volume 10, Issue 11, 25406–25433.
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+
ψ

M(ψ)

∫ τn+1

τn

F1(ξ, η, ζ, τ) dτ,

η(τn+1) − η(τn) =
1 − ψ
M(ψ)

[
F2(ξn, ηn, ζn, τn) −F2(ξn−1, ηn−1, ζn−1, τn−1)

]
+

ψ

M(ψ)

∫ τn+1

τn

F2(ξ, η, ζ, τ) dτ,

ζ(τn+1) − ζ(τn) =
1 − ψ
M(ψ)

[
F3(ξn, ηn, ζn, τn) −F3(ξn−1, ηn−1, ζn−1, τn−1)

]
+

ψ

M(ψ)

∫ τn+1

τn

F3(ξ, η, ζ, τ) dτ. (5.4)

The integral terms are given by:∫ τn+1

τn

F1(ξ, η, ζ, τ) dτ ≈
3h
2

F1(ξn, ηn, ζn, τn) −
h
2
F1(ξn−1, ηn−1, ζn−1, τn−1),∫ τn+1

τn

F2(ξ, η, ζ, τ) dτ ≈
3h
2

F2(ξn, ηn, ζn, τn) −
h
2
F2(ξn−1, ηn−1, ζn−1, τn−1),∫ τn+1

τn

F3(ξ, η, ζ, τ) dτ ≈
3h
2

F3(ξn, ηn, ζn, τn) −
h
2
F3(ξn−1, ηn−1, ζn−1, τn−1). (5.5)

Thus, we obtain:

ξ(τn+1) − ξ(τn) =
1 − ψ
M(ψ)

[
F1(ξn, ηn, ζn, τn) −F1(ξn−1, ηn−1, ζn−1, τn−1)

]
+

3ψh
2M(ψ)

F1(ξn, ηn, ζn, τn) −
ψh

2M(ψ)
F1(ξn−1, ηn−1, ζn−1, τn−1),

η(τn+1) − η(τn) =
1 − ψ
M(ψ)

[
F2(ξn, ηn, ζn, τn) −F2(ξn−1, ηn−1, ζn−1, τn−1)

]
+

3ψh
2M(ψ)

F2(ξn, ηn, ζn, τn) −
ψh

2M(ψ)
F2(ξn−1, ηn−1, ζn−1, τn−1),

ζ(τn+1) − ζ(τn) =
1 − ψ
M(ψ)

[
F3(ξn, ηn, ζn, τn) −F3(ξn−1, ηn−1, ζn−1, τn−1)

]
+

3ψh
2M(ψ)

F3(ξn, ηn, ζn, τn) −
ψh

2M(ψ)
F3(ξn−1, ηn−1, ζn−1, τn−1). (5.6)

Hence, the numerical scheme is derived as:

ξn+1 = ξn + AF1(ξn, ηn, ζn, τn) + BF1(ξn−1, ηn−1, ζn−1, τn−1),
ηn+1 = ηn + AF2(ξn, ηn, ζn, τn) + BF2(ξn−1, ηn−1, ζn−1, τn−1),
ζn+1 = ζn + AF3(ξn, ηn, ζn, τn) + BF3(ξn−1, ηn−1, ζn−1, τn−1), (5.7)

where

A =
1 − ψ
M(ψ)

+
3ψh

2M(ψ)
, B = −

(
1 − ψ
M(ψ)

+
ψh

2M(ψ)

)
.

We obtain a two-step Adams-Bashforth scheme for approximating the solutions of fractional order
differential systems involving the Caputo-Fabrizio derivative.
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6. Convergence and stability results

In this section, we examine the stability and convergence of the numerical scheme introduced in
Section 5.

Let ξ(τ), η(τ) and ζ(τ) be a solution of CF
0 Dψ

t ξ(τ) = F1(ξ, η, ζ, τ), CF
0 Dψ

t η(τ) = F2(ξ, η, ζ, τ) and
CF
0 Dψ

t ζ(τ) = F3(ξ, η, ζ, τ) where F1, F2 and F3 are continuous functions bounded for the Caputo-
Fabrizio fractional derivatives, respectively, we have

ξn+1 = ξn +
(1 − ψ

M(ψ)
+

3ψh
2M(ψ)

)
F1(ξn, ηn, ζn, τn)

+
(1 − ψ

M(ψ)
+

ψh
2M(ψ)

)
F1(ξn−1, ηn−1, ζn−1, τn−1) + Rn

1,ψ

ηn+1 = ηn +
(1 − ψ

M(ψ)
+

3ψh
2M(ψ)

)
F2(ξn, ηn, ζn, τn)

+
(1 − ψ

M(ψ)
+

ψh
2M(ψ)

)
F2(ξn−1, ηn−1, ζn−1, τn−1) + Rn

2,ψ (6.1)

ζn+1 = ζn +
(1 − ψ

M(ψ)
+

3ψh
2M(ψ)

)
F3(ξn, ηn, ζn, τn)

+
(1 − ψ

M(ψ)
+

ψh
2M(ψ)

)
F3(ξn−1, ηn−1, ζn−1, τn−1) + Rn

3,ψ

where ‖Rn
1,ψ‖ ≤ M, ‖Rn

2,ψ‖ ≤ M, and ‖Rn
3,ψ‖ ≤ M.

According to the definition of the Caputo-Fabrizio, we have

ξ(τ) − ξ(0) =
1 − ψ
M(ψ)

F1(ξ, η, ζ, τ) +
ψ

M(ψ)

∫ τ

0
F1(ξ, η, ζ, σ)dσ

η(τ) − η(0) =
1 − ψ
M(ψ)

F2(ξ, η, ζ, τ) +
ψ

M(ψ)

∫ τ

0
F2(ξ, η, ζ, σ)dσ (6.2)

ζ(τ) − ζ(0) =
1 − ψ
M(ψ)

F3(ξ, η, ζ, τ) +
ψ

M(ψ)

∫ τ

0
F3(ξ, η, ζ, σ)dσ.

At τn+1, we get

ξ(τn+1) =
1 − ψ
M(ψ)

F1(ξn, ηn, ζn, τn) +
ψ

M(ψ)

∫ τn+1

0
F1(ξ, η, ζ, τ)dτ

η(τn+1) =
1 − ψ
M(ψ)

F2(ξn, ηn, ζn, τn) +
ψ

M(ψ)

∫ τn+1

0
F2(ξ, η, ζ, τ)dτ (6.3)

ζ(τn+1) =
1 − ψ
M(ψ)

F3(ξn, ηn, ζn, τn) +
ψ

M(ψ)

∫ τn+1

0
F3(ξ, η, ζ, τ)dτ

and at τn , we have

ξ(τn) =
1 − ψ
M(ψ)

F1(ξn−1, ηn−1, ζn−1, τn−1) +
ψ

M(ψ)

∫ τn

0
F1(ξ, η, ζ, τ)dτ

η(τn) =
1 − ψ
M(ψ)

F2(ξn−1, ηn−1, ζn−1, τn−1) +
ψ

M(ψ)

∫ τn

0
F2(ξ, η, ζ, τ)dτ (6.4)
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ζ(τn) =
1 − ψ
M(ψ)

F3(ξn−1, ηn−1, ζn−1, τn−1) +
ψ

M(ψ)

∫ τn

0
F3(ξ, η, ζ, τ)dτ.

Thus,

ξ(τn+1) − ξ(τn) =
1 − ψ
M(ψ)

[
F1(ξn, ηn, ζn, τn) −F1(ξn−1, ηn−1, ζn−1, τn−1)

]
+

ψ

M(ψ)

∫ τn+1

τn

F1(ξ, η, ζ, τ)dτ

=
1 − ψ
M(ψ)

[
F1(ξn, ηn, ζn, τn) −F1(ξn−1, ηn−1, ζn−1)

]
+

ψ

M(ψ)

{F1(ξn, ηn, ζn, τn)
h

(τ − τn−1)

−
F1(ξn−1, ηn−1, ζn−1, τn−1)

h
(τ − τn) +

n∑
i=2

n∏
i=2

(τ − τi)
h(−1)i F1(ξi, ηi, ζi, τi)

}
dτ

η(τn+1) − η(τn) =
1 − ψ
M(ψ)

[
F2(ξn, ηn, ζn, τn) −F2(ξn−1, ηn−1, ζn−1, τn−1)

]
+

ψ

M(ψ)

∫ τn+1

τn

F2(ξ, η, ζ, τ)dτ

=
1 − ψ
M(ψ)

[
F2(ξn, ηn, ζn, τn) −F2(ξn−1, ηn−1, ζn−1)

]
+

ψ

M(ψ)

{F2(ξn, ηn, ζn, τn)
h

(τ − τn−1)

−
F2(ξn−1, ηn−1, ζn−1, τn−1)

h
(τ − τn) +

n∑
i=2

n∏
i=2

(τ − τi)
h(−1)i F2(ξi, ηi, ζi, τi)

}
dτ

ζ(τn+1) − ζ(τn) =
1 − ψ
M(ψ)

[
F3(ξn, ηn, ζn, τn) −F3(ξn−1, ηn−1, ζn−1, τn−1)

]
+

ψ

M(ψ)

∫ τn+1

τn

F3(ξ, η, ζ, τ)dτ

=
1 − ψ
M(ψ)

[
F3(ξn, ηn, ζn, τn) −F3(ξn−1, ηn−1, ζn−1)

]
+

ψ

M(ψ)

{F3(ξn, ηn, ζn, τn)
h

(τ − τn−1)

−
F1(ξn−1, ηn−1, ζn−1, τn−1)

h
(τ − τn) +

n∑
i=2

n∏
i=2

(τ − τi)
h(−1)i F3(ξi, ηi, ζi, τi)

}
dτ (6.5)

so that

ξn+1 = ξn +
(1 − ψ

M(ψ)
+

3ψh
2M(ψ)

)
F1(ξn, ηn, ζn, τn) +

(1 − ψ
M(ψ)

+
ψh

2M(ψ)

)
F1(ξn−1, ηn−1, ζn−1, τn−1)

+
ψ

M(ψ)

∫ τn+1

τn

n∑
i=2

n∏
i=2

(τ − τi)
h(−1)i F1(ξi, ηi, ζi, τi)dτ
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ηn+1 = ηn +
(1 − ψ

M(ψ)
+

3ψh
2M(ψ)

)
F2(ξn, ηn, ζn, τn)

(1 − ψ
M(ψ)

+
ψh

2M(ψ)

)
F2(ξn−1, ηn−1, ζn−1, τn−1) (6.6)

+
ψ

M(ψ)

∫ τn+1

τn

n∑
i=2

n∏
i=2

(τ − τi)
h(−1)i F2(ξi, ηi, ζi, τi)dτ

ζn+1 = ζn +
(1 − ψ

M(ψ)
+

3ψh
2M(ψ)

)
F3(ξn, ηn, ζn, τn) +

(1 − ψ
M(ψ)

+
ψh

2M(ψ)

)
F3(ξn−1, ηn−1, ζn−1, τn−1)

+
ψ

M(ψ)

∫ τn+1

τn

n∑
i=2

n∏
i=2

(τ − τi)
h(−1)i F3(ξi, ηi, ζi, τi)dτ.

We denote the error terms by

Rn
1,ψ =

ψ

M(ψ)

∫ τn+1

τn

n∑
i=2

n∏
i=2

(τ − τi)
h(−1)i F1(ξi, ηi, ζi, τi)dτ

Rn
2,ψ =

ψ

M(ψ)

∫ τn+1

τn

n∑
i=2

n∏
i=2

(τ − τi)
h(−1)i F2(ξi, ηi, ζi, τi)dτ

Rn
3,ψ =

ψ

M(ψ)

∫ τn+1

τn

n∑
i=2

n∏
i=2

(τ − τi)
h(−1)i F3(ξi, ηi, ζi, τi)dτ.

Thus,

‖Rn
1,ψ‖∞ =

ψ

M(ψ)

∥∥∥∥∥∥
∫ τn+1

τn

n∑
i=2

n∏
i=2

(τ − τi)
h(−1)i F1(ξi, ηi, ζi, τi)dτ

∥∥∥∥∥∥
∞

≤
ψ

M(ψ)

∫ τn+1

τn

∥∥∥∥∥∥ n∑
i=2

n∏
i=2

(τ − τi)
h(−1)i F1(ξi, ηi, ζi, τi)dτ

∥∥∥∥∥∥
∞

≤
ψ

M(ψ)

∫ τn+1

τn

n∑
i=2

n∏
i=2

∣∣∣∣∣∣ (τ − τi)
h(−1)i

∣∣∣∣∣∣
∥∥∥∥∥∥F1(ξi, ηi, ζi, τi)dτ

∥∥∥∥∥∥
∞

<
ψ

M(ψ)

∫ τn+1

τn

n∑
i=2

n∏
i=2

|(τ − τi)|
h

sup
i ∈ I

{ max
i ∈ I|F1(ξi, ηi, ζi, τi)|

}
<

ψ

M(ψ)
(n + 1)!hn+1

4
M.

‖Rn
2,ψ‖∞ =

ψ

M(ψ)

∥∥∥∥∥∥
∫ τn+1

τn

n∑
i=2

n∏
i=2

(τ − τi)
h(−1)i F2(ξi, ηi, ζi, τi)dτ

∥∥∥∥∥∥
∞

≤
ψ

M(ψ)

∫ τn+1

τn

∥∥∥∥∥∥ n∑
i=2

n∏
i=2

(τ − τi)
h(−1)i F2(ξi, ηi, ζi, τi)dτ

∥∥∥∥∥∥
∞

≤
ψ

M(ψ)

∫ τn+1

τn

n∑
i=2

n∏
i=2

∣∣∣∣∣∣ (τ − τi)
h(−1)i

∣∣∣∣∣∣
∥∥∥∥∥∥F2(ξi, ηi, ζi, τi)dτ

∥∥∥∥∥∥
∞

<
ψ

M(ψ)

∫ τn+1

τn

n∑
i=2

n∏
i=2

|(τ − τi)|
h

sup
i ∈ I

{ max
i ∈ I|F2(ξi, ηi, ζi, τi)|

}
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<
ψ

M(ψ)
(n + 1)!hn+1

4
M.

‖Rn
3,ψ‖∞ =

ψ

M(ψ)

∥∥∥∥∥∥
∫ τn+1

τn

n∑
i=2

n∏
i=2

(τ − τi)
h(−1)i F3(ξi, ηi, ζi, τi)dτ

∥∥∥∥∥∥
∞

≤
ψ

M(ψ)

∫ τn+1

τn

∥∥∥∥∥∥ n∑
i=2

n∏
i=2

(τ − τi)
h(−1)i F3(ξi, ηi, ζi, τi)dτ

∥∥∥∥∥∥
∞

≤
ψ

M(ψ)

∫ τn+1

τn

n∑
i=2

n∏
i=2

∣∣∣∣∣∣ (τ − τi)
h(−1)i

∣∣∣∣∣∣
∥∥∥∥∥∥F3(ξi, ηi, ζi, τi)dτ

∥∥∥∥∥∥
∞

<
ψ

M(ψ)

∫ τn+1

τn

n∑
i=2

n∏
i=2

|(τ − τi)|
h

sup
i ∈ I

{ max
i ∈ I|F3(ξi, ηi, ζi, τi)|

}
<

ψ

M(ψ)
(n + 1)!hn+1

4
M.

Hence,

‖Rn
1,ψ‖∞ <

ψ

M(ψ)
(n + 1)!hn+1M.

‖Rn
2,ψ‖∞ <

ψ

M(ψ)
(n + 1)!hn+1M.

‖Rn
3,ψ‖∞ <

ψ

M(ψ)
(n + 1)!hn+1M.

Let ξ(τ), η(τ) and ζ(τ) be a solution of CF
0 Dψ

t ξ(τ) = F1(ξ, η, ζ, τ), CF
0 Dψ

t η(τ) = F2(ξ, η, ζ, τ), and
CF
0 Dψ

t ζ(τ) = F3(ξ, η, ζ, τ) for every n ∈ N

‖ξn+1 − ξn‖∞ <
1 − ψ
M(ψ)

‖F1(ξn, ηn, ζn, τn) −F1(ξn−1, ηn−1, ζn−1, τn−1)‖∞

+
ψhn+1(n + 1)!

4M(ψ)

‖ηn+1 − ηn‖∞ <
1 − ψ
M(ψ)

‖F2(ξn, ηn, ζn, τn) −F2(ξn−1, ηn−1, ζn−1, τn−1)‖∞

+
ψhn+1(n + 1)!

4M(ψ)

‖ζn+1 − ζn‖∞ <
1 − ψ
M(ψ)

‖F3(ξn, ηn, ζn, τn) −F3(ξn−1, ηn−1, ζn−1, τn−1)‖∞

+
ψhn+1(n + 1)!

4M(ψ)
such that if ‖F1(ξn, ηn, ζn, τn) −F1(ξn−1, ηn−1, ζn−1, τn−1)‖∞ → 0 as n→ ∞,

then ‖ξn+1 − ξn‖∞ → 0 as n→ ∞,

‖F2(ξn, ηn, ζn, τn) −F2(ξn−1, ηn−1, ζn−1, τn−1)‖∞ → 0 as n→ ∞,

then ‖ηn+1 − ηn‖∞ → 0 as n→ ∞,
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‖F3(ξn, ηn, ζn, τn) −F3(ξn−1, ηn−1, ζn−1, τn−1)‖∞ → 0 as n→ ∞,

then ‖ζn+1 − ζn‖∞ → 0 as n→ ∞.

Proof.

‖ξ(τn+1) − ξ(τn)‖ =

∥∥∥∥∥∥1 − ψ
M(ψ)

[
F1(ξn, ηn, ζn, τn) −F1(ξn−1, ηn−1, ζn−1, τn−1)

]
+

ψ

M(ψ)

∫ τn+1

τn

F1(ξ, η, ζ, τ)dτ

∥∥∥∥∥∥
∞

≤
1 − ψ
M(ψ)

‖F1(ξn, ηn, ζn, τn) −F1(ξn−1, ηn−1, ζn−1, τn−1)‖

+
ψ

M(ψ)

∥∥∥∥∥∥
∫ τn+1

τn

F1(ξ, η, ζ, τ)dτ

∥∥∥∥∥∥
∞

≤
1 − ψ
M(ψ)

‖F1(ξn, ηn, ζn, τn) −F1(ξn−1, ηn−1, ζn−1, τn−1)‖

+
ψ

M(ψ)

∫ τn+1

τn

∣∣∣∣∣∣ n∑
i=0

n∏
i=0

(τ − τi)
h(−1)

∣∣∣∣∣∣
∞

dτ

<
1 − ψ
M(ψ)

‖F2(ξn, ηn, ζn, τn) −F2(ξn−1, ηn−1, ζn−1, τn−1)‖∞ +
ψhn+1(n + 1)!

4M(ψ)

‖η(τn+1) − η(τn)‖ =

∥∥∥∥∥∥1 − ψ
M(ψ)

[
F2(ξn, ηn, ζn, τn) −F2(ξn−1, ηn−1, ζn−1, τn−1)

]
+

ψ

M(ψ)

∫ τn+1

τn

F2(ξ, η, ζ, τ)dτ

∥∥∥∥∥∥
∞

≤
1 − ψ
M(ψ)

‖F2(ξn, ηn, ζn, τn) −F2(ξn−1, ηn−1, ζn−1, τn−1)‖

+
ψ

M(ψ)

∥∥∥∥∥∥
∫ τn+1

τn

F2(ξ, η, ζ, τ)dτ

∥∥∥∥∥∥
∞

≤
1 − ψ
M(ψ)

‖F2(ξn, ηn, ζn, τn) −F2(ξn−1, ηn−1, ζn−1, τn−1)‖

+
ψ

M(ψ)

∫ τn+1

τn

∣∣∣∣∣∣ n∑
i=0

n∏
i=0

(τ − τi)
h(−1)

∣∣∣∣∣∣
∞

dτ (6.7)

<
1 − ψ
M(ψ)

‖F2(ξn, ηn, ζn, τn) −F2(ξn−1, ηn−1, ζn−1, τn−1)‖∞ +
ψhn+1(n + 1)!

4M(ψ)

‖ζ(τn+1) − ζ(τn)‖ =

∥∥∥∥∥∥1 − ψ
M(ψ)

[
F3(ξn, ηn, ζn, τn) −F3(ξn−1, ηn−1, ζn−1, τn−1)

]
+

ψ

M(ψ)

∫ τn+1

τn

F3(ξ, η, ζ, τ)dτ

∥∥∥∥∥∥
∞

≤
1 − ψ
M(ψ)

‖F3(ξn, ηn, ζn, τn) −F3(ξn−1, ηn−1, ζn−1, τn−1)‖
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+
ψ

M(ψ)

∥∥∥∥∥∥
∫ τn+1

τn

F3(ξ, η, ζ, τ)dτ

∥∥∥∥∥∥
∞

≤
1 − ψ
M(ψ)

‖F3(ξn, ηn, ζn, τn) −F3(ξn−1, ηn−1, ζn−1, τn−1)‖

+
ψ

M(ψ)

∫ τn+1

τn

∣∣∣∣∣∣ n∑
i=0

n∏
i=0

(τ − τi)
h(−1)

∣∣∣∣∣∣
∞

dτ

<
1 − ψ
M(ψ)

‖F3(ξn, ηn, ζn, τn) −F3(ξn−1, ηn−1, ζn−1, τn−1)‖∞ +
ψhn+1(n + 1)!

4M(ψ)

So if ‖F1(ξn, ηn, ζn, τn) −F1(ξn−1, ηn−1, ζn−1, τn−1)‖∞ → 0 as n→ ∞,

then ‖ξn+1 − ξn‖∞ → 0 as n→ ∞,

‖F2(ξn, ηn, ζn, τn) −F2(ξn−1, ηn−1, ζn−1, τn−1)‖∞ → 0 as n→ ∞,

then ‖ηn+1 − ηn‖∞ → 0 as n→ ∞,

‖F3(ξn, ηn, ζn, τn) −F3(ξn−1, ηn−1, ζn−1, τn−1)‖∞ → 0 as n→ ∞,

then ‖ζn+1 − ζn‖∞ → 0 as n→ ∞.

From the analysis, we have shown that the proposed numerical scheme satisfies the necessary
conditions for stability and convergence. By ensuring the boundedness of Rn

1,ψ, Rn
2,ψ and Rn

3,ψ ensure
stability. The method’s second-order convergence and compatibility with non-singular fractional
operators make it a suitable approach for simulating chaotic systems with memory effects governed
by Caputo-Fabrizio derivatives.

7. Numerical simulation

In this section, we implement the numerical scheme from Section 5 to generate graphical
representations of the multi-bond orbital chaotic attractor governed by the Caputo–Fabrizio fractional
derivative. All simulations are carried out using a fixed step size of h = 0.01. The parameter
values used in this study (r, s, C, P, and Q) are selected based on the work of Zhang et al. [41],
who demonstrated that these configurations produce multi-bond orbital chaotic attractors with rich
dynamical characteristics, including sustained chaotic oscillations and multiscroll topologies.

7.1. The classical case, when ψ = 1.

In this section, we consider the classical case, that is, when ψ = 1. When we substitute ψ = 1
in (5.7), we obtain the following systems of equations:

ξn+1 = ξn +
3h
2

F1(ξn, ηn, ζn, τn) +
h
2
F1(ξn−1, ηn−1, ζn−1, τn−1)

ηn+1 = ηn +
3h
2

F2(ξn, ηn, ζn, τn) +
h
2
F2(ξn−1, ηn−1, ζn−1, τn−1) (7.1)

ζn+1 = ζn +
3h
2

F3(ξn, ηn, ζn, τn) +
h
2
F3(ξn−1, ηn−1, ζn−1, τn−1)
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Substituting the same value of ψ = 1 into Eq (4.1) yields the integer order derivative, which brings
us back to the equation in (3.1). Using Eq (7.1), different parameter values, and initial conditions, we
obtain the following graphical simulations.

7.2. The fractional case when 0 < ψ < 1

In this section, we consider the fractional case when ψ , 1. This means we use the following system
of equations to obtain our graphical simulations for different values of ψ. Hence, we use the systems
of equations in (5.7) defined as follows:

ξn+1 = ξn +
(1 − ψ

M(ψ)
+

3ψh
2M(ψ)

)
F1(ξn, ηn, ζn, τn)

+
(1 − ψ

M(ψ)
+

ψh
2M(ψ)

)
F1(ξn−1, ηn−1, ζn−1, τn−1)

ηn+1 = ηn +
(1 − ψ

M(ψ)
+

3ψh
2M(ψ)

)
F2(ξn, ηn, ζn, τn)

+
(1 − ψ

M(ψ)
+

ψh
2M(ψ)

)
F2(ξn−1, ηn−1, ζn−1, τn−1)

ζn+1 = ζn +
(1 − ψ

M(ψ)
+

3ψh
2M(ψ)

)
F3(ξn, ηn, ζn, τn)

+
(1 − ψ

M(ψ)
+

ψh
2M(ψ)

)
F3(ξn−1, ηn−1, ζn−1, τn−1)

Bifurcation analysis

To explore the nonlinear behavior of the fractional-order MBOCA system, we perform a bifurcation
analysis by varying the system parameter r while keeping other parameters fixed.

8. Discussion

In this work, we have analyzed the multi-bond orbital chaotic attractor (MBOCA) under both integer
order and fractional order formulations. For the fractional case, the Caputo-Fabrizio fractional operator
is adopted to solve the system. To recover the classical integer order case, we set ψ = 1, producing
the graphical results presented in Figures 1–8. For the fractional order case, where 0 < ψ < 1, the
corresponding results are depicted in Figures 9–14, using various parameter configurations.

In the integer order scenario (ψ = 1), we observe that different phase portraits emerge as system
parameters vary. For example, with initial conditions [ξ(0), η(0), ζ(0)] = [2.972, 0.1, 0] and parameter
values r = −1.45, s = 1.45, C = 0.7, and P = Q = 4, the phase portrait exhibits a twofold scroll
structure (see Figure 2). When changing to initial conditions [1.5, 0.9, 0] while maintaining r = −1.45,
s = 1.45, C = 0.6, and P = Q = 4, a threefold structure is obtained, as shown in Figure 4.

Furthermore, Figure 6 demonstrates a fourfold attractor, which is obtained using the same
parameters as Figure 4 but with initial conditions [0.1, 0.8, 0]. These results highlight that both C
and the initial conditions strongly influence the number of scrolls generated. When the sign of r
is changed, the results depicted in Figures 7 and 8 emerge. Notably, Figure 8 reveals a nine-scroll
structure. These multiple scroll structures are more distinctly observable in the ξ–η, ξ–ζ, and ξ–η–ζ
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projections, compared to the η–ζ plane. Collectively, these findings confirm that the structure of the
MBOCA is highly sensitive to coupling parameter C and the initial conditions, with the number of
scrolls increasing as these parameters vary.

In the fractional order case (0 < ψ < 1), the system exhibits phase portraits qualitatively distinct
from their integer order counterparts. From Figures 9–14, it is evident that varying ψ enables the
generation of attractors with different scroll patterns, even under identical initial conditions [1.5, 0.9, 0].
These observations suggest that fractional calculus provides an enhanced modeling framework for
chaotic systems, introducing greater flexibility and tunability through the fractional order parameter
ψ. To further investigate the system’s nonlinear dynamics under the fractional-order framework, a
bifurcation analysis is performed by varying the system parameter r, as shown in Figure 15. The
bifurcation diagram reveals distinct transitions from periodic to chaotic behavior as r increases,
demonstrating the system’s sensitivity to this parameter. These results complement the phase portraits
and confirm that not only the initial conditions and fractional order ψ, but also specific system
parameters such as r, significantly influence the qualitative behavior of the MBOCA system.

Figure 1. Time series of the MBOCA system variables with initial condition [2.972, 0.1, 0]
and parameters r = −1.45, s = 1.45, C = 0.70, P = Q = 4, and ψ = 1. The plots show the
evolution of (top) ξ(τ), (middle) η(τ), and (bottom) ζ(τ) over the time interval [0, 600].
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Figure 2. Phase portraits of the MBOCA system exhibiting a twofold chaotic structure,
generated using parameters r = −1.45, s = 1.45, C = 0.70, P = Q = 4, and ψ = 1, with
initial condition [2.972, 0.1, 0]. The figure shows 2D projections in the (ξ, η), (ξ, ζ), and
(η, ζ) planes, along with the 3D trajectory colored by simulation time.

Figure 3. Time series of the MBOCA system variables with initial condition [1.5, 0.9, 0]
and parameters r = −1.45, s = 1.45, C = 0.60, P = Q = 4, and ψ = 1. The plots show the
evolution of (top) ξ(τ), (middle) η(τ), and (bottom) ζ(τ) over the time interval [0, 600].
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Figure 4. Phase portraits of the MBOCA system exhibiting a threefold chaotic structure,
generated using parameters r = −1.45, s = 1.45, C = 0.60, P = Q = 4, and ψ = 1, with
initial condition [1.5, 0.9, 0]. The figure shows 2D projections in the (ξ, η), (ξ, ζ), and (η, ζ)
planes, along with the 3D trajectory colored by simulation time.

Figure 5. Time series of the MBOCA system variables with initial condition [1.1, 0.8, 0]
and parameters r = −1.45, s = 1.45, C = 0.60, P = Q = 4, and ψ = 1. The plots show the
evolution of (top) ξ(τ), (middle) η(τ), and (bottom) ζ(τ) over the time interval [0, 600].
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Figure 6. Phase portraits of the MBOCA system exhibiting a fourfold chaotic structure,
generated using parameters r = −1.45, s = 1.45, C = 0.60, P = Q = 4, and ψ = 1, with
initial condition [0.1, 0.8, 0]. The figure shows 2D projections in the (ξ, η), (ξ, ζ), and (η, ζ)
planes, along with the 3D trajectory colored by simulation time.

Figure 7. Time series of the MBOCA system variables with initial condition [1.5, 0.9, 0]
and parameters r = 1.45, s = 1.45, C = 0.60, P = Q = 4, and ψ = 1. The plots show the
evolution of (top) ξ(τ), (middle) η(τ), and (bottom) ζ(τ) over the time interval [0, 600].
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Figure 8. Phase portraits of the MBOCA system, generated using parameters r = 1.45,
s = 1.45, C = 0.60, P = Q = 4, and ψ = 1, with initial condition [1.5, 0.9, 0]. The figure
shows 2D projections in the (ξ, η), (ξ, ζ), and (η, ζ) planes, along with the 3D trajectory
colored by simulation time.

Figure 9. Time series of the MBOCA system variables with initial condition [1.5, 0.9, 0]
and parameters r = 1.45, s = 1.45, C = 0.70, P = Q = 4, and ψ = 0.89. The plots show the
evolution of (top) ξ(τ), (middle) η(τ), and (bottom) ζ(τ) over the time interval [0, 600].
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Figure 10. Phase portraits of the MBOCA system, generated using parameters r = 1.45,
s = 1.45, C = 0.70, P = Q = 4, and ψ = 0.89, with initial condition [1.5, 0.9, 0]. The figure
shows 2D projections in the (ξ, η), (ξ, ζ), and (η, ζ) planes, along with the 3D trajectory
colored by simulation time.

Figure 11. Time series of the MBOCA system variables with initial condition [1.5, 0.9, 0]
and parameters r = 1.45, s = 1.45, C = 0.70, P = Q = 4, and ψ = 0.95. The plots show the
evolution of (top) ξ(τ), (middle) η(τ), and (bottom) ζ(τ) over the time interval [0, 600].
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Figure 12. Phase portraits of the MBOCA system, generated using parameters r = 1.45,
s = 1.45, C = 0.70, P = Q = 4, and ψ = 0.95, with initial condition [1.5, 0.9, 0]. The figure
shows 2D projections in the (ξ, η), (ξ, ζ), and (η, ζ) planes, along with the 3D trajectory
colored by simulation time.

Figure 13. Time series of the MBOCA system variables with initial condition [1.5, 0.9, 0]
and parameters r = 1.45, s = 1.45, C = 0.70, P = Q = 4, and ψ = 0.98. The plots show the
evolution of (top) ξ(τ), (middle) η(τ), and (bottom) ζ(τ) over the time interval [0, 600].
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Figure 14. Phase portraits of the MBOCA system, generated using parameters r = 1.45,
s = 1.45, C = 0.70, P = Q = 4, and ψ = 0.98, with initial condition [1.5, 0.9, 0]. The figure
shows 2D projections in the (ξ, η), (ξ, ζ), and (η, ζ) planes, along with the 3D trajectory
colored by simulation time.

Figure 15. Bifurcation diagram of the MBOCA system with respect to parameter r,
generated using the Caputo-Fabrizio fractional derivative with order ψ = 0.98. The system
is simulated with fixed parameters s = 1.45, C = 0.70, and P = Q = 4, and initial condition
[1.5, 0.9, 0]. The plot shows the long-term values of the state variable ξ, revealing transitions
from periodic to chaotic behavior as r increases.
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9. Conclusions

In this paper, we have investigated the multi-bond orbital chaotic attractor (MBOCA) by extending
its classical integer-order formulation to a fractional-order model using the Caputo-Fabrizio fractional
derivative. We established existence and uniqueness results for the fractional-order system, derived
a suitable numerical scheme, and analyzed its convergence and stability. Numerical simulations
confirmed that the fractional-order parameter introduces significant flexibility and enriches the
dynamic behavior of the system. In particular, the results demonstrated how varying the fractional-
order parameter ψ can produce qualitatively distinct chaotic attractors compared to the integer-
order case, highlighting the sensitivity of the system to initial conditions and control parameters.
Furthermore, bifurcation analysis revealed how changes in ψ influence the transition between
dynamical regimes, including periodic and chaotic states. This reinforces the role of fractional-order
parameters as effective tools for modulating system complexity. These findings suggest that fractional
operators, especially those with non-singular kernels like Caputo-Fabrizio, offer powerful tools for
enhancing the modeling and analysis of complex chaotic systems. Future research may entail the
application of other fractional operators, parameter identification techniques, and control strategies to
further understand and leverage the complex behavior of MBOCA systems for engineering and secure
communication applications.
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