Research article Special Issues

A note on some stability results for stochastic delay differential equations

  • Published: 04 November 2025
  • MSC : 34K50, 90B15, 93D20

  • We investigate the stability of stochastic delay differential equations (SDDEs) that describe systems affected by both memory effects and stochastic disturbances. By adopting a comparison principle approach, we derive unified criteria for $ p $-th moment, asymptotic, and exponential stability under conditions that relax the conventional requirement of a negative diffusion operator. The proposed results broaden the applicability of classical methods and are validated through illustrative numerical examples, demonstrating their potential relevance to engineering and applied sciences.

    Citation: Yao Lu, Dehao Ruan, Quanxin Zhu. A note on some stability results for stochastic delay differential equations[J]. AIMS Mathematics, 2025, 10(11): 25346-25357. doi: 10.3934/math.20251122

    Related Papers:

  • We investigate the stability of stochastic delay differential equations (SDDEs) that describe systems affected by both memory effects and stochastic disturbances. By adopting a comparison principle approach, we derive unified criteria for $ p $-th moment, asymptotic, and exponential stability under conditions that relax the conventional requirement of a negative diffusion operator. The proposed results broaden the applicability of classical methods and are validated through illustrative numerical examples, demonstrating their potential relevance to engineering and applied sciences.



    加载中


    [1] Z. Cai, L. Huang, Generalized Lyapunov approach for functional differential inclusions, Automatica, 113 (2020), 108740. https://doi.org/10.1016/j.automatica.2019.108740 doi: 10.1016/j.automatica.2019.108740
    [2] T. Caraballo, J. Real, L. Shaikhet, Method of Lyapunov functionals construction in stability of delay evolution equations, J. Math. Anal. Appl., 334 (2007), 1130–1145. https://doi.org/10.1016/j.jmaa.2007.01.038 doi: 10.1016/j.jmaa.2007.01.038
    [3] Z. Fan, M. Song, M. Liu, The $a$-th moment stability for the stochastic pantograph equation, J. Comput. Appl. Math., 233 (2009), 109–120. https://doi.org/10.1016/j.cam.2009.04.024 doi: 10.1016/j.cam.2009.04.024
    [4] A. F. Filippov, Differential equations with discontinuous righthand sides, Matematicheskii Sbornik, 93 (1960), 909–128.
    [5] A. V. Gikhman, A. V. Skorokhod, Stochastic differential equations, In: The Theory of Stochastic Processes Ⅲ, Grundlehren der mathematischen Wissenschaften, New York: Springer, 232 (1972). https://doi.org10.1007/978-1-4615-8065-2_2
    [6] L. Huang, X. Mao, Delay-dependent exponential stability of neutral stochastic delay systems, IEEE T. Automat. Contr., 54 (2009), 147–152. https://doi.org/10.1109/TAC.2008.2007178 doi: 10.1109/TAC.2008.2007178
    [7] S. Janković, J. Randjelović, M. Jovanović, Razumikhin-type exponential stability criteria of neutral stochastic functional differential equations, J. Math. Anal. Appl., 355 (2009), 811–820. https://doi.org/10.1016/j.jmaa.2009.02.011 doi: 10.1016/j.jmaa.2009.02.011
    [8] K. Liu, X. Xia, On the exponential stability in mean square of neutral stochastic functional differential equations, Syst. Control Lett., 37 (1999), 207–215. https://doi.org/10.1016/S0167-6911(99)00021-3 doi: 10.1016/S0167-6911(99)00021-3
    [9] K. Liu, Stability of infinite dimensional stochastic differential equations with applications, New York: Chapman and Hall/CRC, 2005. https://doi.org/10.1201/9781420034820
    [10] J. Luo, A note on exponential stability in $p$-th mean of solutions of stochastic delay differential equations, J. Comput. Appl. Math., 198 (2007), 143–148. https://doi.org/10.1016/j.cam.2005.11.019 doi: 10.1016/j.cam.2005.11.019
    [11] J. Luo, Fixed points and stability of neutral stochastic delay differential equations, J. Math. Anal. Appl., 334 (2007), 431–440. https://doi.org/10.1016/j.jmaa.2006.12.058 doi: 10.1016/j.jmaa.2006.12.058
    [12] J. Luo, Fixed points and exponential stability of mild solutions of stochastic partial differential equations with delays, J. Math. Anal. Appl., 342 (2008), 753–760. https://doi.org/10.1016/j.jmaa.2007.11.019 doi: 10.1016/j.jmaa.2007.11.019
    [13] Q. Luo, X. Mao, Y. Shen, New criteria on exponential stability of neutral stochastic differential delay equations, Syst. Control Lett., 55 (2006), 826–834. https://doi.org/10.1016/j.sysconle.2006.04.005 doi: 10.1016/j.sysconle.2006.04.005
    [14] X. Mao, Razumikhin-type theorems on exponential stability of stochastic functional differential equations, Stoch. Proc. Appl., 65 (1996), 233–250. https://doi.org/10.1016/S0304-4149(96)00109-3 doi: 10.1016/S0304-4149(96)00109-3
    [15] X. Mao, Stochastic differential equations and applications, 2 Eds., Elsevier, 2007.
    [16] G. Rajchakit, R. Sriraman, Robust passivity and stability analysis of uncertain complex-valued impulsive neural networks with time-varying delays, Neural Process. Lett., 53 (2021), 581–606. https://doi.org/10.1007/s11063-020-10401-w doi: 10.1007/s11063-020-10401-w
    [17] R. Rakkiyappan, P. Balasubramaniam, S. Lakshmanan, Robust stability results for uncertain stochastic neural networks with discrete interval and distributed time-varying delays, Phys. Lett. A, 372 (2008), 5290–5298. https://doi.org/10.1016/j.physleta.2008.06.011 doi: 10.1016/j.physleta.2008.06.011
    [18] D. Ruan, L. Xu, J. Luo, Stability of hybrid stochastic functional differential equations, Appl. Math. Comput., 346 (2019), 832–841. https://doi.org/10.1016/j.amc.2018.03.064 doi: 10.1016/j.amc.2018.03.064
    [19] D. Ruan, X. Guo, Y. Shi, Generalized Halanay inequalities for stability and dissipativity of stochastic functional differential equations, Syst. Control Lett., 173 (2023), 105469. https://doi.org/10.1016/j.sysconle.2023.105469 doi: 10.1016/j.sysconle.2023.105469
    [20] D. Ruan, Y. Lu, Q. Zhu, A note on generalized exponential stability of impulsive stochastic functional differential equations, Appl. Math. Lett., 156 (2024), 109117. https://doi.org/10.1016/j.aml.2024.109117 doi: 10.1016/j.aml.2024.109117
    [21] D. Ruan, Q. Zhu, Y. Lu, Generalized exponential stability of stochastic delayed systems with delayed impulses and infinite delays, Syst. Control Lett., 204 (2025), 106869. https://doi.org/10.1016/j.sysconle.2025.106194 doi: 10.1016/j.sysconle.2025.106194
    [22] L. Shaikhet, Lyapunov functionals and stability of stochastic functional differential equations, Switzerland: Springer, 2013. https://doi.org/10.1007/978-3-319-00101-2
    [23] F. Wu, S. Hu, Razumikhin-type theorems on general decay stability and robustness for stochastic functional differential equations, Int. J. Robust Nonlin., 22 (2012), 763–777. https://doi.org/10.1002/rnc.1726 doi: 10.1002/rnc.1726
    [24] F. Wu, G. Yin, L. Wang, Razumikhin-type theorems on moment exponential stability of functional differential equations involving two-time scale Markovian switching, Math. Control Relat. F., 5 (2015), 697–719. https://doi.org/10.3934/mcrf.2015.5.697 doi: 10.3934/mcrf.2015.5.697
    [25] X. Yao, S. You, W. Mao, X Mao, On the decay rate for a stochastic delay differential equation with an unbounded delay, Appl. Math. Lett., 166 (2025), 109541. https://doi.org/10.1016/j.aml.2025.109541 doi: 10.1016/j.aml.2025.109541
    [26] Z. Zhang, H. Chen, H. Zhu, Generalized Halanay inequality and its application to delay differential inclusions, Automatica, 166 (2024), 111704.
    [27] F. Zhu, Z. Han, J. Zhang, Stability analysis of stochastic differential equations with Markovian switching, Syst. Control Lett., 61 (2012), 1209–1214. https://doi.org/10.1016/j.sysconle.2012.08.013 doi: 10.1016/j.sysconle.2012.08.013
    [28] X. Zong, F. Wu, C. Huang, Exponential mean square stability of the theta approximations for neutral stochastic differential delay equations, J. Comput. Appl. Math., 286 (2015), 172–185. https://doi.org/10.1016/j.cam.2015.03.016 doi: 10.1016/j.cam.2015.03.016
    [29] X. Zong, G. Yin, L. Wang, T. Li, J. Zhang, Stability of stochastic functional differential systems using degenerate Lyapunov functionals and applications, Automatica, 91 (2018), 197–207. https://doi.org/10.1016/j.automatica.2018.01.038 doi: 10.1016/j.automatica.2018.01.038
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(321) PDF downloads(34) Cited by(0)

Article outline

Figures and Tables

Figures(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog