In this paper, we investigate the initial boundary value problem of a wave equation with mixed local and nonlocal propagation. First, we introduce the spatial framework to study the wave equation, which is the intersection of a classical Sobolev space and a fractional Sobolev space. By the Mountain Pass Theorem, we obtain the attainability of the optimal embedding constant from the introduced space to the suitable Lebesgue space. Second, by introducing a family of potential wells in the introduced space, we obtain the existence of a global weak solution through the utilization of potential well theory. At last, by analyzing the properties of the energy functional, we show that any weak solution must blow up at the existence time.
Citation: Jixian Cui. On global existence and blow up of weak solutions for a wave equation with mixed local and nonlocal propagation[J]. AIMS Mathematics, 2025, 10(11): 25329-25345. doi: 10.3934/math.20251121
In this paper, we investigate the initial boundary value problem of a wave equation with mixed local and nonlocal propagation. First, we introduce the spatial framework to study the wave equation, which is the intersection of a classical Sobolev space and a fractional Sobolev space. By the Mountain Pass Theorem, we obtain the attainability of the optimal embedding constant from the introduced space to the suitable Lebesgue space. Second, by introducing a family of potential wells in the introduced space, we obtain the existence of a global weak solution through the utilization of potential well theory. At last, by analyzing the properties of the energy functional, we show that any weak solution must blow up at the existence time.
| [1] | R. Herrmann, Fractional calculus: An introduction for physicists, Singapore: World Scientific, 2011. https://doi.org/10.1142/8934 |
| [2] | R. Hilfer, Applications of fractional calculus in physics, Singapore: World Scientific, 2000. https://doi.org/10.1142/3779 |
| [3] |
Y. Luchko, A. Punzi, Modeling anomalous heat transport in geothermal reservoirs via fractional diffusion equations, Int. J. Geomath., 1 (2011), 257–276. http://dx.doi.org/10.1007/s13137-010-0012-8 doi: 10.1007/s13137-010-0012-8
|
| [4] |
Y. Luchko, Fractional wave equation and damped waves, J. Math. Phys., 54 (2013), 031505. http://dx.doi.org/10.1063/1.4794076 doi: 10.1063/1.4794076
|
| [5] |
F. Mainardi, Fractional relaxation-oscillation and fractional diffusion-wave phenomena, Chaos Soliton. Fract., 7 (1996), 1461–1477. https://doi.org/10.1016/0960-0779(95)00125-5 doi: 10.1016/0960-0779(95)00125-5
|
| [6] |
R. Metzler, J. Klafter, The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics, J. Phys. A, 37 (2004), 161–208. http://dx.doi.org/10.1088/0305-4470/37/31/R01 doi: 10.1088/0305-4470/37/31/R01
|
| [7] |
Y. Q. Fu, On potential wells and vacuum isolating of solutions for space-fractional wave equations, Adv. Differ. Equ. Contr., 18 (2017), 149–176. http://dx.doi.org/10.17654/DE018030149 doi: 10.17654/DE018030149
|
| [8] |
S. Dipierro, E. Valdinoci, Description of an ecological niche for a mixed local/nonlocal dispersal: An evolution equation and a new Neumann condition arising from the superposition of Brownian and Lévy process, Physica A, 575 (2021), 20. https://doi.org/10.1016/j.physa.2021.126052 doi: 10.1016/j.physa.2021.126052
|
| [9] |
S. Dipierro, L. Proietti, E. Valdinoci, (Non)local logistic equations with Neumann conditions, Ann. I. H. Poincaré C., 40 (2023), 1093–1166. http://dx.doi.org/10.4171/AIHPC/57 doi: 10.4171/AIHPC/57
|
| [10] | L. Caffarelli, E. Valdinoci, A priori bounds for solutions of a nonlocal evolution PDE, In: Analysis and Numerics of Partial Differential Equations, Heidelberg: Springer, 2013,141–163. https://doi.org/10.1007/978-88-470-2592-9 |
| [11] |
F. Dell'Oro, V. Pata, Second order linear evolution equations with general dissipation, Appl. Math. Opt., 83 (2021), 1877–1917. http://dx.doi.org/10.1007/s00245-019-09613-x doi: 10.1007/s00245-019-09613-x
|
| [12] |
I. H. Biswas, E. R. Jakobsen, K. H. Karlsen, Difference-quadrature schemes for nonlinear degenerate parabolic integro-PDE, SIAM J. Numer. Anal., 48 (2010), 1110–1135. http://dx.doi.org/10.1137/090761501 doi: 10.1137/090761501
|
| [13] |
M. Barlow, R. Bass, Z. Q. Chen, M. Kassmann, Non-local Dirichlet forms and symmetric jump processes, T. Am. Math. Soc., 361 (2009), 1963–1999. http://dx.doi.org/10.1090/s0002-9947-08-04544-3 doi: 10.1090/s0002-9947-08-04544-3
|
| [14] |
Z. Chen, T. Kumagai, A priori Hölder estimate, parabolic Harnack principle and heat kernel estimates for diffusions with jumps, Rev. Mat. Iberoam., 26 (2010), 551–589. http://dx.doi.org/10.4171/RMI/609 doi: 10.4171/RMI/609
|
| [15] |
P. Garain, J. Kinnunen, Weak Harnack inequality for a mixed local and nonlocal parabolic equation, J. Differ. Equ., 360 (2023), 373–406. http://dx.doi.org/10.1016/j.jde.2023.02.049 doi: 10.1016/j.jde.2023.02.049
|
| [16] |
S. Das, Gradient Hölder regularity in mixed local and nonlocal linear parabolic problem, J. Math. Anal. Appl., 535 (2024), 39. http://dx.doi.org/10.1016/j.jmaa.2024.128140 doi: 10.1016/j.jmaa.2024.128140
|
| [17] |
H. A. Levine, R. A. Smith, A potential well theory for the wave equation with a nonlinear boundary condition, J. Reine Angew. Math., 374 (1987), 1–23. http://dx.doi.org/10.1515/crll.1987.374.1 doi: 10.1515/crll.1987.374.1
|
| [18] |
Y. C. Liu, On potential wells and vacuum isolating of solutions for semilinear wave equations, J. Differ. Equ., 192 (2003), 155–169. http://dx.doi.org/10.1016/S0022-0396(02)00020-7 doi: 10.1016/S0022-0396(02)00020-7
|
| [19] |
T. Matsuyama, R. Ikehata, On global solutions and energy decay for the wave equations of Kirchhoff type with nonlinear damping terms, J. Math. Anal. Appl., 204 (1996), 729–753. http://dx.doi.org/10.1006/jmaa.1996.0464 doi: 10.1006/jmaa.1996.0464
|
| [20] |
L. E. Payne, D. H. Sattinger, Saddle points and instability of nonlinear hyperbolic equations, Israel J. Math., 22 (1975), 273–303. http://dx.doi.org/10.1007/BF02761595 doi: 10.1007/BF02761595
|
| [21] |
D. H. Sattinger, On global solution of nonlinear hyperbolic equations, Arch. Ration. Mech. Anal., 30 (1968), 148–172. http://dx.doi.org/10.1007/BF00250942 doi: 10.1007/BF00250942
|
| [22] | R. A. Adams, J. J. F. Fournier, Sobolev spaces, 2 Eds., Amsterdam: Springer, 2003. |
| [23] |
E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521–573. http://dx.doi.org/10.1016/j.bulsci.2011.12.004 doi: 10.1016/j.bulsci.2011.12.004
|
| [24] | R. Temam, Navier-Stokes equations: Theory and numerical analysis, New York: Elsevier Science, 1984. http://dx.doi.org/10.1090/chel/343 |
| [25] | E. A. Coddington, N. Levinson, Theory of ordinary differential equations, New York: McGraw-Hill, 1955. |