We study the pricing of double barrier knock-out options under stochastic volatility using a conditional Monte Carlo method based on the local time-space formula of Peskir. A valuation formula including an early knock-out discount is provided, where the discount depends on the local time of the underlying stochastic processes and the deltas of the option at the barriers. The latter solve a system of coupled Volterra integral equations of the first kind. This characterization leads to an efficient numerical method for general volatility diffusion models. An algorithm for numerical implementation, based on a conditional quasi-Monte Carlo simulation method, is presented and shown to converge numerically to the true value of the claim. A numerical study is performed to illustrate properties of double barrier knock-out calls in the Heston stochastic volatility model. In our calibration, we find that short-dated (long-dated) at-the-money (ATM) knock-out call prices increase (decrease) when the speed of mean reversion increases, long run mean volatility increases, and vol-of-vol decreases. We also find that the deltas and vegas of short-dated ATM double barrier calls can be very sensitive to volatility in contrast to long-dated ones.
Citation: Jerome Detemple, Yerkin Kitapbayev, Danila Shabalin. On the pricing of double barrier options under stochastic volatility models: A probabilistic approach[J]. AIMS Mathematics, 2025, 10(9): 22622-22649. doi: 10.3934/math.20251007
We study the pricing of double barrier knock-out options under stochastic volatility using a conditional Monte Carlo method based on the local time-space formula of Peskir. A valuation formula including an early knock-out discount is provided, where the discount depends on the local time of the underlying stochastic processes and the deltas of the option at the barriers. The latter solve a system of coupled Volterra integral equations of the first kind. This characterization leads to an efficient numerical method for general volatility diffusion models. An algorithm for numerical implementation, based on a conditional quasi-Monte Carlo simulation method, is presented and shown to converge numerically to the true value of the claim. A numerical study is performed to illustrate properties of double barrier knock-out calls in the Heston stochastic volatility model. In our calibration, we find that short-dated (long-dated) at-the-money (ATM) knock-out call prices increase (decrease) when the speed of mean reversion increases, long run mean volatility increases, and vol-of-vol decreases. We also find that the deltas and vegas of short-dated ATM double barrier calls can be very sensitive to volatility in contrast to long-dated ones.
| [1] |
G. Agazzotti, J. P. Aguilar, C. Aglieri Rinella, J. L. Kirkby, Calibration and option pricing with stochastic volatility and double exponential jumps, J. Comput. Appl. Math., 465 (2025), 116563. https://doi.org/10.1016/j.cam.2025.116563 doi: 10.1016/j.cam.2025.116563
|
| [2] |
K. E. Atkinson, An existence theorem for Abel integral equations, SIAM J. Math. Anal., 5 (1974), 729–736. https://doi.org/10.1137/0505071 doi: 10.1137/0505071
|
| [3] |
D. S. Bates, Jumps and stochastic volatility: Exchange rate processes implicit in deutsche mark options, Rev. Financ. Stud., 9 (1996), 69–107. https://doi.org/10.1093/rfs/9.1.69 doi: 10.1093/rfs/9.1.69
|
| [4] |
M. Boyarchenko, S. Levendorski, Valuation of continuously monitored double barrier options and related securities, Math. Financ., 22 (2012), 419–444. http://doi.org/10.1111/j.1467-9965.2010.00469.x doi: 10.1111/j.1467-9965.2010.00469.x
|
| [5] | H. Brunner, Collocation methods for Volterra integral and related functional equations, Cambridge: Cambridge University Press, 2004. https://doi.org/10.1017/CBO9780511543234 |
| [6] | R. E. Caflisch, B. Moskowitz, Modified Monte Carlo methods using quasi-random sequences, In: Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing. Lecture Notes in Statistics, Springer, New York, 1995. https://doi.org/10.1007/978-1-4612-2552-2_1 |
| [7] |
P. Carr, A. Itkin, Semi-closed form solutions for barrier and American options written on a time-dependent Ornstein-Uhlenbeck process, J. Deriv., 29 (2021), 9–26. https://doi.org/10.3905/jod.2021.1.133 doi: 10.3905/jod.2021.1.133
|
| [8] |
P. Carr, A. Itkin, D. Muravey, Semi-closed form prices of barrier options in the time-dependent CEV and CIR models, J. Deriv., 28 (2020), 26–50. https://doi.org/10.3905/jod.2020.1.113 doi: 10.3905/jod.2020.1.113
|
| [9] |
P. Carr, A. Itkin, D. Muravey, Semi-analytical pricing of barrier options in the time-dependent Heston model, J. Deriv., 30 (2022), 141–171. https://doi.org/10.3905/jod.2022.30.2.141 doi: 10.3905/jod.2022.30.2.141
|
| [10] | H. Chi, P. Beerli, D. W. Evans, M. Mascagni, On the scrambled Sobol sequence, In: International Conference on Computational Science, Berlin: Springer, 2005,775–782. https://doi.org/10.1007/11428862_105 |
| [11] | C. Chiarella, B. Kang, G. H. Meyer, The evaluation of barrier option prices under stochastic volatility, Comput. Math. Appl., 64 (2012). 2034–2048. https://doi.org/10.1016/j.camwa.2012.03.103 |
| [12] | J. Detemple, Y. Kitapbayev, The valuation of corporate securities with finite maturity debt, IMA J. Manag. Math., in press, 2025. https://doi.org/10.1093/imaman/dpaf028 |
| [13] |
H. Funahashi, T. Higuchi, An analytical approximation for single barrier options under stochastic volatility models, Ann. Oper. Res., 266 (2018), 129–157. http://doi.org/10.1007/s10479-017-2559-3 doi: 10.1007/s10479-017-2559-3
|
| [14] |
H. Geman, M. Yor, Pricing and hedging double-barrier options: A probabilistic approach, Math. Financ., 6 (1996), 365–378. https://doi.org/10.1111/j.1467-9965.1996.tb00122.x doi: 10.1111/j.1467-9965.1996.tb00122.x
|
| [15] |
C. Guardasoni, S. Sanfelici, Fast numerical pricing of barrier options under stochastic volatility and jumps, SIAM J. Appl. Math., 76 (2016), 27–57. https://doi.org/10.1137/15100504X doi: 10.1137/15100504X
|
| [16] |
C. Guardasoni, M. R. Rodrigo, S. Sanfelici, A Mellin transform approach to barrier option pricing, IMA J. Manag. Math., 31 (2020), 49–67. https://doi.org/10.1093/imaman/dpy016 doi: 10.1093/imaman/dpy016
|
| [17] |
T. Guillaume, Analytical valuation of a general form of barrier option with stochastic interest rate and jumps, Rev. Deriv. Res., 28 (2025), 8. https://doi.org/10.1007/s11147-025-09215-6 doi: 10.1007/s11147-025-09215-6
|
| [18] |
M. Ha, D. Kim, J. H. Yoon, Pricing of timer volatility-barrier options under Heston's stochastic volatility model, J. Comput. Appl. Math., 457 (2025), 116310. https://doi.org/10.1016/j.cam.2024.116310 doi: 10.1016/j.cam.2024.116310
|
| [19] |
S. L. Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency options, Rev. Financ. Stud., 6 (1993), 327–343. https://doi.org/10.1093/rfs/6.2.327 doi: 10.1093/rfs/6.2.327
|
| [20] |
J. Hull, A. White, The pricing of options on assets with stochastic volatilities, J. Financ., 42 (1987), 281–300. https://doi.org/10.1111/j.1540-6261.1987.tb02568.x doi: 10.1111/j.1540-6261.1987.tb02568.x
|
| [21] | A. Itkin, D. Muravey, Semi-closed form prices of barrier options in the Hull-White model, preprint paper, 2004. https://doi.org/10.48550/arXiv.2004.09591 |
| [22] |
A. Itkin, D. Muravey, Semi-analytic pricing of double barrier options with time-dependent barriers and rebates at hit, Front. Math. Financ., 1 (2022), 53–79. https://doi.org/10.3934/fmf.2021002 doi: 10.3934/fmf.2021002
|
| [23] |
J. Jeon, J. H. Yoon, C. R. Park, An analytic expansion method for the valuation of double-barrier options under a stochastic volatility model, J. Math. Anal. Appl., 449 (2017), 207–227. https://doi.org/10.1016/j.jmaa.2016.11.061 doi: 10.1016/j.jmaa.2016.11.061
|
| [24] |
D. Kim, J. H. Yoon, C. R. Park, Pricing external barrier options under a stochastic volatility model, J. Comput. Appl. Math., 394 (2021), 113555. https://doi.org/10.1016/j.cam.2021.113555 doi: 10.1016/j.cam.2021.113555
|
| [25] |
J. L. Kirkby, C. A. Rinella, J. P. Aguilar, N. Rupprecht, Return to the barrier: Option pricing and calibration in foreign exchange markets, J. Risk, 27 (2025), 1–32. http://doi.org/10.21314/JOR.2025.005 doi: 10.21314/JOR.2025.005
|
| [26] | A. Kufner, B. Opic, How to define reasonably weighted Sobolev spaces, Comment. Math. Univ. Carolin., 25 (1984), 537–554. |
| [27] |
N. Kunimoto, M. Ikeda, Pricing options with curved boundaries, Math. Financ., 2 (1992), 275–298. http://doi.org/10.1111/j.1467-9965.1992.tb00033.x doi: 10.1111/j.1467-9965.1992.tb00033.x
|
| [28] |
M. K. Lee, J. H. Kim, Pricing vanilla, barrier, and lookback options under two-scale stochastic volatility driven by two approximate fractional Brownian motions, AIMS Math., 9 (2024), 25545–25576. http://doi.org/10.3934/math.20241248 doi: 10.3934/math.20241248
|
| [29] | P. Linz, Analytical and numerical methods for Volterra equations, Philadelphia: SIAM, 1985. http://doi.org/10.1137/1.9781611970852 |
| [30] | A. Lipton, Mathematical methods for foreign exchange: A financial engineer's approach, Singapore: World Scientific, 2001. http://doi.org/10.1142/4694 |
| [31] |
A. Lipton, A. Sepp, Toward an efficient hybrid method for pricing barrier options on assets with stochastic volatility, Wilmott, 121 (2022), 74–88. http://doi.org/10.54946/wilm.11053 doi: 10.54946/wilm.11053
|
| [32] | C. F. Lo, C. H. Hui, Valuing double-barrier options with time-dependent parameters by Fourier series expansion, IAENG Int. J. Appl. Math., 36 (2007), 1–5. |
| [33] |
G. Loeper, O. Pironneau, A mixed PDE/Monte-Carlo method for stochastic volatility models, CR Acad. Sci. I-Math., 347 (2009), 559–563. http://doi.org/10.1016/j.crma.2009.02.021 doi: 10.1016/j.crma.2009.02.021
|
| [34] |
R. C. Merton, Theory of rational option pricing, Bell J. Econ., 4 (1973), 141–183. https://doi.org/10.2307/3003143 doi: 10.2307/3003143
|
| [35] |
A. Mijatović, Local time and the pricing of time-dependent barrier options, Financ. Stoch., 14 (2010), 13–48. https://doi.org/10.1007/s00780-008-0077-5 doi: 10.1007/s00780-008-0077-5
|
| [36] |
A. Mijatović, M. Pistorius, Continuously monitored barrier options under Markov processes, Math. Financ., 23 (2013), 1–38. https://doi.org/10.1111/j.1467-9965.2011.00486.x doi: 10.1111/j.1467-9965.2011.00486.x
|
| [37] |
A. Pelsser, Pricing double barrier options using Laplace transforms, Financ. Stoch., 4 (2000), 95–104. https://doi.org/10.1007/s007800050005 doi: 10.1007/s007800050005
|
| [38] |
G. Peskir, A change-of-variable formula with local time on curves, J. Theor. Probab., 18 (2005), 499–535. https://doi.org/10.1007/s10959-005-3517-6 doi: 10.1007/s10959-005-3517-6
|
| [39] |
G. Peskir, On the American option problem, Math. Financ., 15 (2005), 169–181. https://doi.org/10.1111/j.0960-1627.2005.00214.x doi: 10.1111/j.0960-1627.2005.00214.x
|
| [40] | G. Peskir, A. Shiryaev, Optimal stopping and free-boundary problems, In: Lectures in Mathematics, ETH Zürich, Birkhäuser Basel, 2006. https://doi.org/10.1007/978-3-7643-7390-0 |
| [41] | QuantLib: a free/open-source library for quantitative finance, Version v1.39, 2025. https://doi.org/10.5281/zenodo.1440997 |
| [42] |
S. Shahmorad, M. Mostafazadeh, Existence, uniqueness and regularity of the solution for a system of weakly singular Volterra integral equations of the first kind, J. Integral Equ. Appl., 35 (2023), 105–117. https://doi.org/10.1216/jie.2023.35.105 doi: 10.1216/jie.2023.35.105
|
| [43] |
R. Weiss, Product integration for the generalized Abel equation, Math. Comp., 26 (1972), 177–190. https://doi.org/10.1090/s0025-5718-1972-0299001-7 doi: 10.1090/s0025-5718-1972-0299001-7
|
| [44] |
G. A. Willard, Calculating prices and sensitivities for path-independent derivatives securities in multifactor models, J. Deriv., 5 (1997), 45–61. https://doi.org/10.3905/jod.1997.407982 doi: 10.3905/jod.1997.407982
|
| [45] | U. Wystup, FX options and structured products, Hoboken: John Wiley & Sons, 2006. https://doi.org/10.1002/9781118673355 |
| [46] | S. Zhang, J. Zhao, Efficient simulation for pricing barrier options with two-factor stochastic volatility and stochastic interest rate, Math. Probl. Eng., (2017), 3912036. https://doi.org/10.1155/2017/3912036 |
| [47] |
Y. X. Zhao, J. Y. Bao, Barrier option pricing in regime switching models with rebates, Acta Math. Appl. Sin., Engl., 40 (2024), 849–861. https://doi.org/10.1007/s10255-024-1053-3 doi: 10.1007/s10255-024-1053-3
|